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Space-time from Matrices

o In string theory space and time are not
fundamental, but derived concepts which
emerge out of more fundamental structures.

o In a few cases we have some hint of what this
structure could be — these are situations where
the space-time physics has a holographic
description — usually in terms of a field theory of
matrices.

o These are in fact descriptions of closed string
dynamics in terms of open strings



Examples
Closed String Theory

Open String Theory

2 dimensional strings

M theory/ critical string
In light cone gauge

Strings in - AdS, x S°

Matrix Quantum Mechanics

SUSY Matrix Quantum
Mechanics/ 1+1 YM

3+1 dimensional N=4
Yang-Mills

We will describe some recent attempts to construct toy
models of cosmological singularities in each of these



2d Closed String from Double
scaled Matrix Quantum Mechanics

o) Mij(t) - Nx N hermitian matrix. This is the

degree of freedom of open strings joining DO
branes

S = fdt%Tr[(DtM)z +M?]

o Gauging — states are singlet under SU(N)

o Eigenvalues are fermions. Single particle
hamiltonian 1,
H=E(P -x7)

o Density of fermions
_ |



To leading order in 1/N, the dynamics of the
scalar field is given by the action

(at¢) '7T2 la:

o This collective field theory would be in fact the
fleld theory of closed strings in two dimensions

— the space dimension has emerged out of the
matrix

o The fundamental quantum description is in
terms of fermions

o Collective field theory used to find the

emergent space-time as seen by closed strings
— at the semiclassical level

S = NQfddt



Physics of the ground state

o The ground state is a filled fermi sea — for which
the

1
J ¢, = —\/x2 -2u
T

o Fluctuations ¢(x,?) =@, (x) +n(x,2) are
described at the semiclassical level by two
scalar fields living in the two regions | x|=.2u
with 1(xy/2u,) =0



o In fact, at the semiclassical level these fluctuations
may be thought to live in a relativistic space-time.

o In terms of coordinates

t=T x=+2ucosho

L o, @'

1
H=—(do!{[II* +(0 n)* 1+
2f {[I° +(9,m)7] sinh’o

These two massless scalars
are related to the only two
dynamical fields of 2d string
theory by a transform which

Is non-local at the string scale.

Both these scalars live in the
same space-time.

mirror

I* Weakly coupled



Space-like boundaries

S.R.D. and J. Karczmarek, PRD D71 (2005) 086006

o The infinite w_symmetry of the theory may be used
to find time-dependent classical solutions —

(Karczmarek and Strominger; S.R.D., J. Davis, F. Larsen
and P. Mukhopadhyay)

o Fluctuations around such solutions are once again
massless scalars, but the global nature of the
space-time can be rather non-trivial.

o One of these examples
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o The semiclassical space-time perceived by these
fluctuations are again best described in terms of
Minkowskian coordinates 7,0

x=coshovl+e”||e" =¢' //l+e*

o As the fundamental time of the problem t runs
over its full range, the time 7 stops

—0<[I< = —o=<1t=<(

It appears that there is a I
space-like boundary

T=0

Note : X —= © over the entire I




This is geodesically incomplete.

Normally one would simply extend the space-
time to complete it.

However in this case there is a fundamental
definition of time provided by the matrix model —
the time t - It does not make sense to extend
the space-time beyond this boundary

Several other examples of this type

World-sheet formulation not settled. We have a
proposal — space-like tachyon condensation



Details of tachyon
condensation

o Use Macroscopic loops to guess the perturbation
to the world-sheet action which represent such
classical solutions

T(6.1) =1 —/2u (1 +e) ek, (ﬁu (1+ e%>e‘¢>
o At early times this is the usual Liouville wall

T(p — +o0,t — —0o0) = pe 2 (¢ + const)
o Generally this represents a space-like tachyon
condensation

2t

14 e?

T(¢p>>0,t<¢)= + ue_% (gb + const — Inv1 + 6275)



Beyond semiclassical
approximation

o What is really happening is that unlike the ground
state, the future boundary is not a weakly coupled
region. In fact the hamiltonian o_ is again

1 1 7’
H=={(dof{[TI*’ +(0 n)*1+ M°0 n+=—(d n)’
2[ {[ (0,m)7] SinhzG[ M+ (a,m)°1}

o Except at the very edge there is no true space-
time interpretation in this region

o However the fermion theory is perfectly well
defined



o The time-dependent background is in fact a non-
normalizable state of the fermion theory

e’ | u >

o Various expectation values in this state may be
calculated in terms of corresponding quantities in
the ground state. For example the fermion density

o0 2
« f ds e 7 expli - 2 tanh” i]
\/1+ae2f (=4 sinh s) 21+ ae™) 2

o >=

<p> =

o Expressions like this show that the exact answer
differs significantly from the semiclassical
expression over almost the entire 1°

o There is no S-Matrix. However the time evolution of
the wave function seems to make sense



Lesson

O

O

The open string time — in this case the time of
the matrix model - can go over the full range

The closed string time — the time which is
perceived by fluctuations in a semiclassical
interpretation - can be terminated

At the end of this semiclassical time, there is
no valid relativistic interpretation of the model
— though the model itself seems to make
sense



lIB Matrix Big Bangs

S.R.D., J. Michelson
S.R.D, J. Michelson

o Something similar happens in Matrix Big Bangs of

o We will discuss this for |[IB pp-wave backgrounds
with two compact directions - X and a space x*

ds* = 2dxtde™ — 4°[(z")? + - - (2°)*](dat)?
—8px drSdat 4 [(dat)? + - - (da®)?]
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o The holographic theory is a 2+1 dimensional SU(J)
Yang Mills theory on a torus (p,0)

£=Tr { H(DX" - (DX = (D, X
1
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o At sufficiently early times

(i) only diagonal X's survive

(i) The gauge field F, gets dualized into a
scalar field — so we have 8 scalars now

(iii) The effective size of the O direction is
small — becomes a 1+1 dimensional theory

(iv) This 1+1 dimensional theory becomes the
world-sheet theory of the original |IB string
moving in this background in thex™ =7 gauge

(v) The rank of the gauge group J becomes
identified with the momentum in x  direction

p.=J/R



Details of Dualization

o In the regime where the fields become abelian,
introduce an auxilliary field —add £e“*0,¢F),\

o Integrate out the gauge field
7
1 6

£ = =5[> 00X + Gl 0,0)%) - 2423 (X)? +4(X TV

o=l —+ 4C;YM,LL X7a7'¢

o Perform a field redefinition
Xi=v'" i=1,---,6,
X"=Y" cos(2ut) +Y?® sin(2ur),
Gymé = =Y 7 sin(2ur) +Y® cos(2ut)

o Final form T 8
'Cdiag — _5 Z(aMYI)Q o 2”2 Z(Y[)2
=1 =1



Generically such a space-time interpretation is not
valid. This is specifically true near T == =® - here
the coupling of the YM theory is weak and
nonabelian configurations are important.

From the point of view of the YM theory this is the
far past —

From the point of view of the space-time string
theory forcibly extrapolated to x* — —% this
appears as a “beginning of time”

Once again the open string (YM) time runs over the
full range — while the closed string time appears to
begin.

However at this beginning the space-time
interpretation is itself breaking down.



Matrix Membranes

o The quantity Gn, /4
acts as a semiclassical
parameter in the theory

w/Gni*>>1 : classical
solutions representing
fuzzy ellipsoids

X’ (r,0)=S()J"'
X°(t,0)=S8()J’
X' (r,0)=R(x)J’

; Even though R oscillates, the size
[J, Jb] = igca JC of the fuzzy ellipsoid always goes to
zero at late times




Brane Production

o The effect of factors of ¢2° in front of 0 , Mmay
be thought of as a time-dependent size of the
circle.

o States of the YM theory are labelled by (m,n)
m = momentum along o
n = momentum along P

(m,0) : states of F-strings

(m,n) = (p,q) strings

(O,n) : states of D- strings
In the 1+1 theory in (t,0) ,stateswith 75 = (

are with a time dependent mass
2

R
mn2=4uz+( ke ] e

gl



o This implies particle [(p,q) string] production.
o The “out” vacuum at late times is a squeezed state

(1H )

of “in” particles

1 I
Ooue = [T = 13" explzamalit® o203 10)
n.m
0ut<0‘aﬂ in) {ﬁ%)‘())out — 27m73
e @ —1
b8 . _mwm m? R?
Vm:&—m:—le @ Wi = 4p* + 7

o In other words, if we require the state at late times
to contain only fundamental sirings, the state near
the big bang must be a squeezed state of (p,q)
strings

o Does this say anything about the issue of initial
conditions ?



Big Bangs and AdS/CFT

S.R.D, K. Narayan, J. Michelson and S. Trivedi,
hep-th/0602107

o The IIB pp-wave has another dual — a large R-
charge sector of a 3+1 dim YM theory — or rather
some quiver version of the theory.

o Can we address the issue of singularities in this
AdS/CFT language ?

o This seems to require construction of the
supergravity background before performing a
Penrose limit —we have not yet succeeded in doing
that

o But this led us to find an infinite class of time
dependent backgrounds which have natural CFT
duals



The supergravity solutions are

2 N ) R2
ds® = (ﬁ)gwdz“dw — (ﬁ)drz + R2dSY;

F5 = R*(ws + *10ws) P(x")

This is a solution if g,,(x") and ¢(x") obey

~

R = 20,00, 0,(V/001(3) #0,0) = 0

These are deformations of AdS, xS” In fact they
are near-horizon limits of deformations of the full 3-
brane geometry

There are similar geometries which are
deformations of AdS xS§"




Examples

o ltis easy to find lots of solutions of this form — e.g.
Kasner-like geometries with space-like singularities.

o A particularly interesting set of solutions are those
with potential null singularities

d3? = "X (—2dXTdX ™ + da? + da?)

6= ¢(X")

In this case we must have
| | 5 Solutions retain half
§(f) T 5(8@) of the supersymmetries

Picka Jf(XT) find #(X7)
Looks like Liouville + c=1 matter

This class of solutions also discussed in
Chu and Ho, hep-th/0602054



Details of supersymmetry

o The null solutions retain the following
SUSy'’s
e — . ,)/Jr6 — 0, . — Z—1/86f/477
o where

[4 = ¢[0123 Y a— Z({L‘m) — it



o There are examples X"
where the string
coupling is always
bounded

ef(XT) — tanh? X+

X\ V8
€¢ — (s (tanh 7)

Even though curvature invariants vanish, there is a
singularityat X" =0 . This is reached by
Geodesics at finite proper time.

Here the string coupling vanishes
At X* == the space-time is pure AdS; x S>



In such backgrounds there is a natural CFT dual

Note that we have turned on a non-normalizable
mode. This means we have sources in the gauge
theory

The natural dual is in fact the gauge theory which
lives in the metric 9w and has a coupling ¢*'* -
may be seen e.q. from DBI action of a 3-brane in

this background

The supersymmetries of the bulk translate to those
in this candidate CFT.

Correlation functions of suitably dressed operators
are non-singular at X =0,

Interesting question : How does the gauge theory
encode the space-time singularity ?



