Generalized N = 1 compactifications and Mirror symmetry

Thomas W. Grimm

University of Wisconsin, Madison

based on: [hep-th/0602241] Iman Benmachiche, TWG [hep-th/0507153] TWG

Ann Arbor, Michigan, April 2006

Introduction and Motivation

➡ Phenomenology

• Study compactifications on generalized geometries recently introduced by Hitchin. The four-dimensional N = 1 theories take a particularly elegant form and arise in very general reductions!

 \Rightarrow explore generic features of N=1 compactifications – Landscape of String vacua?

- Address moduli problem: generate potential for massless scalar fields due to background fluxes and non-Calabi-Yau geometries
- Discuss dualities in these generalized geometries in the presence of background flux
- Four-dimensional Gauge theory and specific models

- A realization in Type II String theory: necessity of orientifolds
 - minimal supersymmetry: background $M_{1,3} \times \mathcal{M}_6$ \mathcal{M}_6 – special manifold
 - moduli stabilization:
 background fluxes
 non-Calabi-Yau geometry
 - non-Abelian gauge groups:
 space-time filling D-branes
 - \Rightarrow consistency: orientifold planes

Generalized geometries and the orientifold projection

$rac{1}{2}$ The background manifold \mathcal{M}_6 :

 \mathcal{M}_6 chosen such that the four-dim theory possesses N=2 susy

Number of (independent) globally defined spinors $\eta^1, \eta^2 \dots$ on \mathcal{M}_6 determines number of four-dimensional supersymmetries.

• In absence of flux $\delta \Psi_M = 0$, $\delta \lambda = 0$:

Calabi-Yau manifold:

$$\nabla_m \eta = 0 \qquad \Leftrightarrow \qquad dJ = 0 \quad d\Omega = 0$$

J - real Kähler two-form, Ω - holomorphic three-form

• In the presents of flux, one globally defined spinor η :

• More general ansatz allows for two globally defined spinors η^1, η^2 which can locally coincide. Gates, Hull, Rocek; Graña, Minasian, Petrini, Tomasiello

Jeschek, Witt; Graña, Louis, Waldram

Generalized manifolds with $SU(3) \times SU(3)$ structure:

 $T\mathcal{M}_6 \rightarrow E \cong T\mathcal{M}_6 \oplus T^*\mathcal{M}_6$ generalized tangent bundle

- existence of η^1, η^2 reduce structure group of E: $SO(6,6) \rightarrow SU(3) \times SU(3)$ O(6,6) is T-dualy group

- define complex even and odd forms which encode the geometry of \mathcal{M}_6 :

$$\Phi^{\text{ev/odd}} = \sum_{i=1}^{6} \eta_{+-}^{\dagger 2} \gamma_{m_1...m_i} \eta_{+}^1 \ dx^{m_1} \wedge ... \wedge dx^{m_i}$$

These forms are 'pure' and satisfy certain $SU(3) \times SU(3)$ conditions.

- special cases for SU(3) structure manifold:

$$\Phi^{\text{ev}} = e^{iJ} \qquad \Phi^{\text{odd}} = \Omega$$

Hitchin, Gualtieri, Witt

➡ The orientifold projection (Type IIA example):

Acharya, Aganagic, Brunner, Hori, Vafa,...

Bosonic Type IIA spectrum

NS-NS: $\hat{\phi}, \ \hat{G}_{MN}, \ \hat{B}_2$ R-R: $\hat{C}^{\text{odd}} = \hat{C}_1 + \hat{C}_3 + \hat{C}_5 + \hat{C}_7 + \hat{C}_9$

• mod out (gauge-fix) discrete symmetries of the string theory:

1) world sheet parity Ω_p

 $\mathcal{O} = (-)^{F_L} \Omega_p \, \sigma^*$

- 2) geometric symmetry σ of \mathcal{M}_6 : $\sigma^2 = 1$ (identity on $M_{3,1}$)
- demand N = 1 supersymmetry $\lambda(\omega_{2n}) = (-1)^n \omega_{2n}$ $\lambda(\omega_{2n-1}) = (-1)^n \omega_{2n-1}$

 $\sigma^* \Phi^{\text{odd}} = \lambda(\bar{\Phi}^{\text{odd}}) \qquad \qquad \sigma^* \Phi^{\text{ev}} = \lambda(\Phi^{\text{ev}})$

Calabi-Yau case: σ is anti-holomorphic and isometric involution – O6 planes.

• truncate spectrum such that: $\mathcal{O}(Field) = Field$

$$\sigma^* \hat{\phi} = \hat{\phi} \qquad \sigma^* \hat{B}_2 = -\hat{B}_2 \qquad \sigma^* \hat{C}^{\text{odd}} = \lambda(\hat{C}^{\text{odd}})$$

The four-dimensional theory of the N = 1 chiral multiplets

 $rac{1}{2}$ Four-dimensional spectrum: expand ten-dimensional forms in appropriate eigenspaces of σ^{*}

forms on \mathcal{M}_6 : $\Lambda^{ev} = \Lambda^{ev}_+ \oplus \Lambda^{ev}_- \qquad \Lambda^{odd} = \Lambda^{odd}_+ \oplus \Lambda^{odd}_-$

• R-R sector

scalars
$$C^{\text{odd}}_{(0)} = \hat{C}^{\text{odd}}|_{\Lambda^{\text{odd}}_+}$$
 two-forms $C^{\text{odd}}_{(2)} = \hat{C}^{\text{odd}}|_{\Lambda^{\text{odd}}_-}$

A similar expansion is performed on even forms Λ^{ev} yielding vectors and three-forms. Infinite set of scalars, two-form as well as vectors, three-form related by duality condition on the ten-dimensional field strengths.

NS-NS sector

$$\varphi^{\text{odd}} = e^{-\hat{\phi}} e^{-\hat{B}_2} \wedge \Phi^{\text{odd}} \qquad \qquad \varphi^{\text{ev}} = e^{-\hat{B}_2} \wedge \Phi^{\text{ev}}$$

Together with the four-dimensional graviton the forms $\varphi^{\text{ev/odd}}$ encode all degrees of freedom in the NS-NS sector. The B-field appears through the natural action of SO(6,6) on forms ($so(6,6) \cong \Lambda^2 T^* \oplus \Lambda^2 T \oplus \text{End}T$). Not all degrees of freedom are independent, e.g.

 \rightarrow Im(φ^{odd}) = $*_6 \operatorname{Re}(\varphi^{\text{odd}})$ is function of $\operatorname{Re}(\varphi^{\text{odd}})$ only

Hitchin

- ➡ The scalar field space:
 - 1.

How do they combine into N = 1 chiral multiplets?

• correct D-brane couplings: combine

 $\varphi_c^{\text{odd}} \equiv e^{-\hat{B}_2} \wedge \hat{C}^{\text{odd}} + i \operatorname{\mathsf{Re}}(\varphi^{\text{odd}}) \mid_{\Lambda_+^{\text{odd}}}$

 $\underline{\mathsf{linear}}$ in the N=1 complex scaler fields

• $\varphi^{\text{ev}}(t)$ is holomorphic function of complex scalars t^a (Calabi-Yau example $e^{\hat{B}_2 + iJ} = e^t$) Hitchin; Graña, Louis, Waldram

- N = 1 susy \rightarrow Kähler metric, i.e. $G_{AB} = \partial_A \bar{\partial}_B K$
- Kähler potential:

$$K(t,\varphi_c^{\text{odd}}) = -\ln\left(\int_{\mathcal{M}_6}\varphi^{\text{ev}} \wedge \bar{\varphi}^{\text{ev}}\right) - 2\ln\left(\int_{\mathcal{M}_6}\varphi^{\text{odd}} \wedge \bar{\varphi}^{\text{odd}}\right)$$

- first term: as in N = 2 scale invariant functional on even forms Hitchin; Graña, Louis, Waldram
- second term: Kähler space inside the N=2 quaternionic manifold, metric encoded by functional of $\text{Re}(\varphi^{\text{ev}})$

r The N = 1 superpotential:

The background fluxes and non-Calabi-Yau geometry induce a potential for the scalar fields.

• We allow for non-trivial NS-NS background flux H_3 and R-R fluxes F^{ev} on \mathcal{M}_6

$$H_3 = \left\langle d\hat{B}_2 \right\rangle_{\mathcal{M}_6} \,, \qquad \qquad F^{\mathrm{ev}} = \left\langle d\hat{C}^{\mathrm{odd}} \right\rangle_{\mathcal{M}_6}$$

- The manifold with $SU(3) \times SU(3)$ structure generically has $d\varphi_c^{\text{odd}} \neq 0$ and $d\varphi^{\text{ev}} \neq 0$. This deviation from a Calabi-Yau manifold contributes to the potential.
- The induced superpotential can be derived by a fermionic reduction.

$$W(t,\varphi_c^{\mathrm{odd}}) = \int_{\mathcal{M}_6} (F^{\mathrm{ev}} + d_H \varphi_c^{\mathrm{odd}}) \wedge \varphi^{\mathrm{ev}}$$

Here $d_H = d + H_3 \wedge$ denotes the H-twisted differential. This superpotential reduces to the known cases on general Calabi-Yau and SU(3) structure orientifolds.

TWG,Louis; Villadoro,Zwirner; Graña,Louis,Waldram

• A similar analysis can be performed for type IIB set-ups: essentially exchanges the role of even and odd forms

Mirror symmetry / T-duality with fluxes: A conjecture

 \Rightarrow The Question:

What is the mirror dual of type IIB Calabi-Yau O3/O7 orientifolds with background fluxes?

- Mirror symmetry/T-duality is believed to map H-flux to a non-trivial mirror geometry.
- In type IIB Calabi-Yau orientifolds fluxes induce the Gukov-Vafa-Witten superpotential

$$W_{GVW} = \int_{Y} (F_3 - \tau H_3) \wedge \Omega(z)$$

Let us restrict to a simple case: one complex structure modulus z
 F₃ = 0 and H₃ = mα₁ + eβ¹
 In large complex structure limit:

$$W_{GVW} = -\tau(e\,z + m\,z^2)$$

Has the H-flux e and m an $SU(3) \times SU(3)$ mirror geometry?

⇒ Perform mirror symmetry (T-dulality in three directions SYZ):

 H_3 has maximally two legs into the T-dualized directions (the 'Q-space' Shelton, Taylor, Wecht)

• Mirror deformation due to <u>electric flux e</u>: The complex three-form Ω_3 is not anymore closed. SU(3) structure mirror ('half-flat') Gurrieri,Louis,Micu,Waldram; Fidanza,Minasian,Tomasiello

$$d \operatorname{Re}(\Omega_3) \propto e$$

 Mirror deformation due to magnetic flux m: A non-trivial one-form Ω₁ on the mirror space is needed:

$$d\mathsf{Re}(\Omega_1) \propto m$$

Such a one-form is present on an appropriate $SU(3) \times SU(3)$ manifold! Can use the superpotential calculated above

$$W_{SU(3)\times SU(3)} = \int d\varphi_c^{\text{odd}} \wedge \varphi^{\text{ev}}(t) = -N^0(e\,t + m\,t^2)$$

• Origin of Ω_1 ? Recall $so(6,6) \cong \Lambda^2 T^* \oplus \Lambda^2 T \oplus \text{End}T \implies \beta \in \Lambda^2 T$ two-vector

 $\Omega_1 + \Omega_3 = e^{-\beta}\Omega_3$: Can β correspond to non-commutativity of \mathcal{M}_6 ?

Kapustin, Mathai, Rosenberg

Conclusions

- discussed compactification of type II supergravity on orientifolds of $SU(3) \times SU(3)$ manifolds
 - determined four-dimensional spectrum without finite truncation, NS-NS and R-R sector is encoded by specific odd and even forms on \mathcal{M}_6
 - Kähler potential consists of the two Hitchin functionals on \mathcal{M}_6
 - holomorphic superpotentials for the geometry due to fluxes and non-Calabi-Yau geometry
- commented on mirror symmetry/T-duality of flux compactifications
 - mirror spaces of Calabi-Yau compactifications with H-flux are generically generalized $SU(3)\times SU(3)$ manifolds