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Introduction and Motivation

ê Phenomenology

String Theory −→ Four-dimensional N = 1 Supergravity

• Study compactifictions on generalized geometries recently introduced by Hitchin.

The four-dimensional N = 1 theories take a particularly elegant form and arise in

very general reductions!

⇒ explore generic features of N = 1 compactifications – Landscape of String vacua?

• Address moduli problem: generate potential for massless scalar fields due to background

fluxes and non-Calabi-Yau geometries

• Discuss dualities in these generalized geometries in the presence of background flux

• Four-dimensional Gauge theory and specific models
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ê A realization in Type II String theory: necessity of orientifolds

- minimal supersymmetry: background M1,3 ×M6

M6 – special manifold

- moduli stabilization:

background fluxes

non-Calabi-Yau geometry

- non-Abelian gauge groups:

space-time filling D-branes

⇒ consistency: orientifold planes
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Generalized geometries and the orientifold projection

ê The background manifold M6:

M6 chosen such that the four-dim theory possesses N = 2 susy

Number of (independent) globally defined spinors η1, η2 . . . on M6 determines number of

four-dimensional supersymmetries.

• In absence of flux δΨM = 0, δλ = 0:

Calabi-Yau manifold: ∇mη = 0 ⇔ dJ = 0 dΩ = 0

J - real Kähler two-form, Ω - holomorphic three-form

• In the presents of flux, one globally defined spinor η: Strominger, Hull, ...

SU(3) structure manifold: ∇mη = Flux ⇔ dJ 6= 0 dΩ 6= 0

J - globally def. (1,1)-form, Ω - globally def. (3,0)-form

Relation of η to J,Ω : Jmn = η†+γmnη+ Ωmnp = η†+γmnpη−
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• More general ansatz allows for two globally defined spinors η1, η2 which can locally coincide.

Gates,Hull,Rocek; Graña,Minasian,Petrini,Tomasiello

Jeschek,Witt; Graña,Louis,Waldram

Generalized manifolds with SU(3)× SU(3) structure: Hitchin, Gualtieri, Witt

TM6 → E ∼= TM6 ⊕ T ∗M6 generalized tangent bundle

– existence of η1, η2 reduce structure group of E: O(6,6) is T-dualy group

SO(6, 6) → SU(3)× SU(3)

– define complex even and odd forms which encode the geometry of M6:

Φev/odd =
6∑

i=1

η† 2
+−γm1...mi

η1
+ dxm1 ∧ ... ∧ dxmi

These forms are ’pure’ and satisfy certain SU(3)× SU(3) conditions.

– special cases for SU(3) structure manifold:

Φev = eiJ Φodd = Ω
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ê The orientifold projection (Type IIA example): Acharya,Aganagic,Brunner,Hori,Vafa,...

Bosonic Type IIA spectrum

NS-NS: φ̂, ĜMN , B̂2 R-R: Ĉodd = Ĉ1 + Ĉ3 + Ĉ5 + Ĉ7 + Ĉ9

• mod out (gauge-fix) discrete symmetries of the string theory:

O = (−)FLΩp σ∗
1) world sheet parity Ωp

2) geometric symmetry σ of M6: σ2 = 1 (identity on M3,1)

• demand N = 1 supersymmetry λ(ω2n) = (−1)nω2n λ(ω2n−1) = (−1)nω2n−1

σ∗Φodd = λ(Φ̄odd) σ∗Φev = λ(Φev)

Calabi-Yau case: σ is anti-holomorphic and isometric involution – O6 planes.

• truncate spectrum such that: O(Field) = Field

σ∗φ̂ = φ̂ σ∗B̂2 = −B̂2 σ∗Ĉodd = λ(Ĉodd)
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The four-dimensional theory of the N = 1 chiral multiplets

ê Four-dimensional spectrum: expand ten-dimensional forms in appropriate eigenspaces of σ∗

forms on M6 : Λev = Λev
+ ⊕ Λev

− Λodd = Λodd
+ ⊕ Λodd

−

• R-R sector

scalars Codd
(0) = Ĉodd|Λodd

+
two-forms Codd

(2) = Ĉodd|Λodd
−

A similar expansion is performed on even forms Λev yielding vectors and three-forms.

Infinite set of scalars, two-form as well as vectors, three-form related by duality condition on

the ten-dimensional field strengths.

• NS-NS sector

ϕodd = e−φ̂e−B̂2 ∧ Φodd ϕev = e−B̂2 ∧ Φev

Together with the four-dimensional graviton the forms ϕev/odd encode all degrees of

freedom in the NS-NS sector. The B-field appears through the natural action of SO(6, 6)
on forms (so(6, 6) ∼= Λ2T ∗ ⊕ Λ2T ⊕ EndT ).

Not all degrees of freedom are independent, e.g.

→ Im(ϕodd) = ∗6 Re(ϕodd) is function of Re(ϕodd) only Hitchin
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ê The scalar field space:

1. How do they combine into N = 1 chiral multiplets?

• correct D-brane couplings: combine

ϕodd
c ≡ e−B̂2 ∧ Ĉodd + iRe(ϕodd) |Λodd

+
linear in the N = 1 complex scaler fields

• ϕev(t) is holomorphic function of complex scalars ta (Calabi-Yau example eB̂2+iJ = et)

Hitchin; Graña, Louis, Waldram

2. What is the metric on the scalar field space?

• N = 1 susy → Kähler metric, i.e. GAB = ∂A∂̄BK

• Kähler potential:

K(t, ϕodd
c ) = − ln

( ∫
M6

ϕev ∧ ϕ̄ev
)
− 2 ln

( ∫
M6

ϕodd ∧ ϕ̄odd
)

• first term: as in N = 2 scale invariant functional on even forms Hitchin; Graña, Louis, Waldram

• second term: Kähler space inside the N = 2 quaternionic manifold,

metric encoded by functional of Re(ϕev)
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ê The N = 1 superpotential:

The background fluxes and non-Calabi-Yau geometry induce a potential for the scalar fields.

• We allow for non-trivial NS-NS background flux H3 and R-R fluxes F ev on M6

H3 =
〈
dB̂2

〉
M6

, F ev =
〈
dĈodd

〉
M6

• The manifold with SU(3)× SU(3) structure generically has dϕodd
c 6= 0 and dϕev 6= 0. This

deviation from a Calabi-Yau manifold contributes to the potential.

• The induced superpotential can be derived by a fermionic reduction.

W (t, ϕodd
c ) =

∫
M6

(F ev + dHϕodd
c ) ∧ ϕev

Here dH = d + H3∧ denotes the H-twisted differential. This superpotential reduces to the

known cases on general Calabi-Yau and SU(3) structure orientifolds.

TWG,Louis; Villadoro,Zwirner; Graña,Louis,Waldram

• A similar analysis can be performed for type IIB set-ups: essentially exchanges the role of

even and odd forms
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Mirror symmetry / T-duality with fluxes: A conjecture

ê The Question:

What is the mirror dual of type IIB Calabi-Yau O3/O7 orientifolds with background fluxes?

• Mirror symmetry/T-duality is believed to map H-flux to a non-trivial mirror geometry.

• In type IIB Calabi-Yau orientifolds fluxes induce the Gukov-Vafa-Witten superpotential

WGV W =
∫

Y

(F3 − τH3) ∧ Ω(z)

• Let us restrict to a simple case: one complex structure modulus z

F3 = 0 and H3 = mα1 + eβ1

In large complex structure limit:

WGV W = −τ(e z + m z2)

Has the H-flux e and m an SU(3)× SU(3) mirror geometry?
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ê Perform mirror symmetry (T-dulality in three directions SYZ):

H3 has maximally two legs into the T-dualized directions (the ‘Q-space’ Shelton,Taylor,Wecht)

• Mirror deformation due to electric flux e: The complex three-form Ω3 is not anymore closed.

SU(3) structure mirror (‘half-flat’) Gurrieri,Louis,Micu,Waldram; Fidanza,Minasian,Tomasiello

dRe(Ω3) ∝ e

• Mirror deformation due to magnetic flux m: A non-trivial one-form Ω1 on the mirror space

is needed:

dRe(Ω1) ∝ m

Such a one-form is present on an appropriate SU(3)× SU(3) manifold!

Can use the superpotential calculated above

WSU(3)×SU(3) =
∫

dϕodd
c ∧ ϕev(t) = −N0(e t + m t2)

• Origin of Ω1? Recall so(6, 6) ∼= Λ2T ∗ ⊕ Λ2T ⊕ EndT ⇒ β ∈ Λ2T two-vector

Ω1 + Ω3 = e−βΩ3 : Can β correspond to non-commutativity of M6?

Kapustin,Mathai,Rosenberg
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Conclusions

• discussed compactification of type II supergravity on orientifolds of SU(3)× SU(3) manifolds

– determined four-dimensional spectrum without finite truncation, NS-NS and R-R sector is

encoded by specific odd and even forms on M6

– Kähler potential consists of the two Hitchin functionals on M6

– holomorphic superpotentials for the geometry due to fluxes and non-Calabi-Yau geometry

• commented on mirror symmetry/T-duality of flux compactifications

– mirror spaces of Calabi-Yau compactifications with H-flux are generically generalized

SU(3)× SU(3) manifolds


