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Cosmic Microwave Background

from WMAP

• An almost scale invariant, adiabatic, Gaussian primordial fluctuation

predicted by inflation is in good agreement with CMB data.

• A tantalizing upper bound on the energy density during inflation:

V ∼ M4
GUT ∼ (1016GeV )4 i.e., H ∼ 1014GeV.

The relevant energy scale is close to the scale where stringy physics

becomes important.



Construct inflationary models from string theory

• String theory contains higher dimensional extended objects such as D-

branes.

A simple scenario: D − D̄ annihilation. Inflaton is the separation be-

tween D-brane and anti-D-brane. D-brane and anti-D-brane have an

attractive potential. Inflation is ended by DD̄ annihilation, providing

also a mechanism for reheating.

However, this scenario is not entirely satisfactory...
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branes.

A simple scenario: D − D̄ annihilation. Inflaton is the separation be-

tween D-brane and anti-D-brane. D-brane and anti-D-brane have an

attractive potential. Inflation is ended by DD̄ annihilation, providing

also a mechanism for reheating.

However, this scenario is not entirely satisfactory...

• Inflaton potential is not sufficiently flat:

• Need to be embedded in a setting where all other moduli are fixed.
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• DBI inflation: Warped inflation avoids the fine tuning problem, due to

the scalar speed limit imposed by the Dirac-Born-Infeld action of the

D-brane. (M. Alishahiha, E. Silverstein and D. Tong)

S =
Mpl

2

∫

d4x
√
−gR

−
∫

d4x
√
−q[f(φ)−1

√

1 − f(φ)(φ̇2 − (∇φ)2) − f(φ)−1 + V (φ)]

here f(φ) = λ
φ4 is the warping factor.
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here f(φ) = λ
φ4 is the warping factor.

• Speed limit for inflaton:

φ̇ ≃ 1
√

f(φ)
=

φ2
√

λ

In a highly warped throat, the inflaton can move very slowly even though

the potential is not so flat, generating enough e-folding to solve the

cosmological problems.



• Distinctive phenomenological features of warped inflation (DBI infla-

tion) (X. Chen, M. Alishahiha, E. Silverstein and D. Tong):

– The sound speed cs is small. It modified the “consistency relation”

between the tensor-scalar ratio and the tensor spectral index
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– The sound speed cs is small. It modified the “consistency relation”

between the tensor-scalar ratio and the tensor spectral index

Ph
k

P
ζ
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= −8csnT

– The models predict large enough primordial non-Gaussianities that

can be observed in future experiments.



Our Results

• General analysis for an arbitrary action of the form (c.f. Garriga-
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∫

d4x
√
−g[M2
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1

2
gµν∂µφ∂νφ

• Our results are applicable to the intermediate regime, as well as in

extracting subleading (but potentially observable) non-Gaussianities.

• We obtain all known shapes of non-Gaussianities plus more.

• Laboratory for testing the dS/CFT proposal Strominger

[Maldacena]; [Larsen, McNees]; [van der Schaar]

〈fk1
fk2

fk3
〉′ =

2Re〈Ok1
Ok2

Ok3
〉′

∏

i(−2Re〈Oki
Oki

〉′)
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〈ζk1
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〉 ∼ δ3(k1 + k2)
P

ζ
k
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• WMAP ansatz for the primordial non-Gaussianities

ζ(x) = ζg(x) −
3

5
fNL(ζg(x)

2 − 〈ζ2
g (x)〉

here ζg(x) is a purely Gaussian perturbation with vanishing three point

functions.



• The size of the non-Gaussianities is measured by the parameter fNL in

the above ansatz. The experimental bound is

−58 < fNL < 134 at 95% C.L.

Future experiments will increase precision level, and can measure non-

Gaussianities down to about fNL ∼ 5
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the above ansatz. The experimental bound is

−58 < fNL < 134 at 95% C.L.

Future experiments will increase precision level, and can measure non-

Gaussianities down to about fNL ∼ 5

• However, the primordial non-Gaussianities contain much more informa-

tion than the power spectrum. It has a shape.

〈ζk1
ζk2

ζk3
〉 = (2π)3δ3(k1 + k2 + k3)F(k1,k2,k3)

The delta function constrains the three momentum to form a trian-

gle. The shape of non-Gaussianities F(k1,k2,k3) is the symmetric,

homogeneous function of degree −6.



• The WMAP experimental bound analyze the non-Gaussianities at the

equilateral triangle limit k1 = k2 = k3. The experimental bounds are

slightly different for different shapes of non-Gaussianities. P. Creminelli,

A. Nicolis, L. Senatore, M. Tegmark and M. Zaldarriaga, arXiv:astro-

ph/0509029.
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equilateral triangle limit k1 = k2 = k3. The experimental bounds are

slightly different for different shapes of non-Gaussianities. P. Creminelli,

A. Nicolis, L. Senatore, M. Tegmark and M. Zaldarriaga, arXiv:astro-

ph/0509029.

• Due to the symmetry and scaling property of the shape function, all

information about the shape can be viewed by plotting

F(1, k2, k3)k
2
2k2

3

D. Babich, P. Creminelli and M. Zaldarriaga, astro-ph/0405356.



• The shape of non-Gaussianities for the WMAP ansatz

F(k1,k2,k3) ∼ fNL(P
ζ
k )2

k3
1 + k3

2 + k3
3

k3
1k3

2k3
3
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• It is useful to work in ADM metric formalism

ds2 = −N2dt2 + a2e2ζδij(dxi + N idt)(dxj + Njdt)

here ζ is the scalar perturbation and remains constant outside horizon.

We will focus one scalar perturbation and neglect tensor perturbation.
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• It is useful to work in ADM metric formalism

ds2 = −N2dt2 + a2e2ζδij(dxi + N idt)(dxj + Njdt)

here ζ is the scalar perturbation and remains constant outside horizon.

We will focus one scalar perturbation and neglect tensor perturbation.

• The primordial non-Gaussianities are the three point functions of the

density perturbation ζ. It is encoded in the cubic terms of the Lagra-

gian.



Shape of Non-Gaussianities

F(k1,k2, k3) = (2π)4(P
ζ
k )2

1
∏

i k3
i

× (Aλ + Ac + Aǫ + Aη + As)

where Aλ =

(

1

c2s
− 1 − 2λ

Σ

)

3k2
1k2

2k2
3

2K3
,
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(

1

c2s
− 1

)
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and K = k1+k2+k3, Σ = XP,X +2X2P,XX, λ = X2P,XX + 2
3X3P,XXX.



• These five types of shapes are potentially observable in small sound

speed limit. Two of shapes Aλ, Ac look similar to DBI inflation, three

others Aǫ, Aη, As look similar to the shape of slow roll inflation. We

reproduce various known results above by taking different limit of the

parameters. The sizes of the five types of shapes in equilateral triangle

limit are

fλ
NL = − 5

81

(

1

c2s
− 1 − 2λ

Σ

)

,

fc
NL =

35

108

(

1

c2s
− 1

)

,

fǫ
NL = −55

36

ǫ

c2s
,

f
η
NL = − 5

12

η

c2s
,

fs
NL =

85

54

s

c2s
.



• The shape of Aǫ is
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• The shape of Aη is similar. The shapes of both slow roll inflation look

similar to the shape WMAP ansatz we plot earlier.



Non-Gaussianities in DBI inflation

• The shape of non-Gaussianities vanishes in the squeeze triangle limit

k3 ≪ k1, k2.
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• A simple realization of all the shapes of non-Gaussianities: k-Inflation

models.
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• A simple realization of all the shapes of non-Gaussianities: k-Inflation

models.

• An example: Power law k-inflation (C. Armendariz-Picon, T. Damour

and V. Mukhanov):

P =
1

6πG

4 − 3γ

γ2

1

φ2
(−X + X2)

• Comparing the sizes of the two shapes

fλ
NL = − 5

81

16(2 − γ)2

γ(8 − 3γ)

fc
NL =

35

108
(
8

γ
− 4)

When γ → 0, the two shapes are both large, and have opposite signs.

The DBI non-Gaussianities are 5.25 times bigger in size.



• We also compute small corrections to the first two leading contribu-

tions to non-Gaussianities. They are the same of order as the three

sub-leading slow-roll type shapes. There are two possible sources of

corrections

1. Time variations of nearly constant parameters H, ǫ, η, cs etc. Ex-

pand around the point of horizon crossing τ0 = − 1
csk

,

f(τ) = f(τ0) −
1

H0

∂f

∂t
log(

τ

τ0
) + O(ǫ2f(τ0))

2. Slow roll corrections to the density fluctuation u(τ,k).
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2. Slow roll corrections to the density fluctuation u(τ,k).

• If the sound speed is small enough

c2s ≪ ǫ, η

it is possible to observe the slow roll shapes Aǫ, Aη and these correction

terms. This can be realized in DBI inflation, consistent with current

experimental bound on the sound speed.



Probing the inflationary vacuum with primordial non-Gaussianities

• There have been some interest in the question whether we can observe

trans-Planckian physics in the CMB radiation. The answer depends on

whether we can allow a slight deviation from the standard Bunch-Davies

vacuum of de-Sitter space during inflation. A general phenomenological

feature of these deviations is a small modulation of the power spectrum

in the log scale of the fluctuation mode.
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trans-Planckian physics in the CMB radiation. The answer depends on

whether we can allow a slight deviation from the standard Bunch-Davies

vacuum of de-Sitter space during inflation. A general phenomenological

feature of these deviations is a small modulation of the power spectrum

in the log scale of the fluctuation mode.

• A different perspective: We investigate whether there are pronounced

effects of non-standard vacua to be observed in non-Gaussianities.



• There are two potentially observable contributions Ãλ and Ãc due to de-

viation from Bunch-Davies vacuum. The size of the non-Gaussianities
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• More importantly, the shapes are very distinctive...



• The shapes are highly peaked at the “folded triangle” limit k1 = k2+k3

for arbitrary values of k2, k3. This feature is not shared by any known

inflationary models. The effects are potentially more pronounced than

power spectrum where the modulation is running in the log scale of the

wave mode.
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Conclusion and Outlook

• Inflation models in string theory such as DBI inflation capture many

interesting features of a general inflation Lagragian with small sound

speed. Some general features of these models include:

– Modification of the “consistency relation”, the tensor-scalar ratio

can be much smaller tensor index.

– Trans-Planckian effects are enhanced compared to the slow roll in-

flations.

– Generically predict large non-Gaussianities.

It is very interesting to continue this inflation model building business

in fundamental theory, and see how natural and general these features

are. It would be interesting to construct string models for k-inflations.
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• it is interesting to study the reheating mechanism after inflation. It is

interesting to study the phenomenological signatures of cosmic strings

produced by DD̄ inflation.

• The shape of primordial non-Gaussianities, if detected by future exper-

iment, will contain a lot of information about the underlying physics,

e.g. deviation from the Bunch-Davies vacuum.

• It will interesting to see whether the dS/CFT proposal can shed some

light on the universality of the shape of non-Gausianities. This will be

very useful especially for multi-field inflation.



Thank You


