Black Hole Vacua

Jeremy Michelson University of Kentucky

based on work with Andrew Chamblin

Motivation

- String Theory is supposed to solve quantum gravity problems
 - e.g. Black hole singularity?

• Fidkowski, Hubeny, Kleban and Shenker suggested using AdS/CFT

- Consider geodesics that bounce off singularity
- AdS/CFT relates this to correlators

Generalities

Consider

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\Omega_{d-1}^{2}$$

Fidkowski, Hubeny, Kleban, Shenker

Where f(r)

- monotonically increasing function
- singular at r = 0
- zero at $r = r_+ > 0$ [horizon]

Examples:

- Schwarzschild: $f(r) = 1 \frac{\omega_d M}{r^{d-2}}$
- AdS-Schwarzschild: $f(r) = \frac{r^2}{\ell^2} + 1 \frac{\omega_d M}{r^{d-2}}$

Technicalities: Define tortoise coordinate: $r^* = \int_0^r \frac{dr'}{f(r')} + \frac{\pi i}{f'(r_+)}$ Double null coordinates:

$$u = t - r^* \qquad \qquad v = t + r^*$$

Kruskal coordinates:

$$U = e^{-\frac{f'(r_+)}{2}u}$$
 $V = e^{\frac{f'(r_+)}{2}v}$

Kruskal coordinates \Leftrightarrow Penrose diagram:

• Which Penrose \Leftarrow asymptotics of r^*

Symmetries:

- $\frac{\partial}{\partial t}$ is timelike (in asymptotic regions) Killing vector
- S^{d-1} symmetries
- $\frac{1}{2}(U+V)$
- $T \rightarrow -T$ (vertical reflection of Penrose)
 - inverts time (t), preserves S^{d-1}
 - fixed points at T = 0

$\frac{1}{2}(-U+V)$

- $\overset{\downarrow}{Z} \rightarrow -Z$ (horizontal reflection of Penrose)
 - inverts time, preserves S^{d-1}
 - fixed points at Z = 0
- antipodal map of S^{d-1} (not on the Penrose diagram)
 - does not affect time; symmetry of S^{d-1}
 - no fixed points

Antipodal Map

Consider combination

 $T \rightarrow -T, Z \rightarrow -Z, \text{antipodal} \text{ map on } S^{d-1}$

- acts freely
- preserves direction of time
- preserves (obvious) symmetries of the spacetime
 - commutes with $\frac{\partial}{\partial t}$

commutes with
$$S^{d-1}$$
 symmetries

Call this the antipodal map

Black Hole Vacua

• $J = R_T R_Z P \Rightarrow \mathbb{Z}_2$ "antipodal" map

Commutes with all symmetries

• Cf. de Sitter space:

- $\exists \mathbb{Z}_2$ antipodal map $X \to -X$ on covering space
- Commutes with all symmetries
- Can partially correlate point and antipodal point
 - $* \Rightarrow$ Mottola-Allen transformation
 - Defines one complex-parameter family of vacua:
 - $\cdot \alpha$ -Vacua

Consider a scalar field on this spacetime.

Can choose modes ϕ_n so that

antipodal point $\phi_n(x_A^{\downarrow}) \to \phi_n(x)^*$

antipodal map:

positive frequencies \leftrightarrow negative frequencies (Antipodal map includes time reversal)

Can Bogoliubov standard vacuum:

$$b_n = \cosh \overset{\text{real}}{\alpha} a_n - e^{-i\overset{\text{real}}{\gamma}} \sinh \alpha a_n^{\dagger}$$
$$b_n^{\dagger} = \cosh \alpha a_n^{\dagger} - e^{i\gamma} \sinh \alpha a_n$$

- One complex parameter family of vacua
- Preserve all (obvious) symmetries

No reason to choose one over another ...

α Vacua

These are *exactly* like dS α -vacua

• including construction

But dS α -vacua are frowned upon:

- Causality problems
- Unphysical Poles
- Pinch Singularities
- Not Thermal

We need not have these problems!

Einhorn, Larson Goldstein, Lowe Kaloper, Kleban, Lawrence, Shenker, Susskind

Causality

lpha-vacua

- send in signal from south pole
- correlation propogates from north pole
 ⇒ Causality problems?
- Yes! Naïvely, lightcones only intersect on horizon, **but**
- dS gets taller (gravitational backreaction) Marol
- \Rightarrow lightcones intersect!

But for black holes,

- gravitational backreaction increases horizon size
- lightcones only intersect inside horizon

Leblond, Marolf, Myers

Unphysical Poles

Consider

 $\langle \phi(x_1)\phi(x_2)\phi(x_3)\rangle \sim \int dy G^F(x_1,y)G^F(x_2,y)G^F(x_3,y)$

For α vacua, poles when y is on lightcone of point or antipodal point

• Divergences if, say, also x_2 on lightcone of x_{3A} - coincident poles

• Surprising if x_1, x_2, x_3 causally connected

But for black holes this requires one of x_1, x_2, x_3 to be inside horizon.

Pinch Singularities

$$-\frac{1}{x} \int \frac{1}{y} \sim \int dx \int dy \, G^F_{\alpha\gamma}(x,y) G^F_{\alpha\gamma}(y,x),$$
$$\sim \dots + \int dx \int dy \sinh^2 2\alpha \, G^F_0(x,y) G^F_0(y,x)^* + \dots$$

Has both $i\epsilon$ prescriptions \Rightarrow can't evade singularity!

Change time-ordering prescription?

No! (In principle) calculate string loops (*unlike* dS!)

 \Rightarrow No pinch singularities

Thermality

In an $\alpha\text{-vacuum}$

$$\frac{P_{\alpha\gamma}(E_i \to E_j)}{P_{\alpha\gamma}(E_j \to E_i)} = \left| \frac{\cosh \alpha + \sinh \alpha e^{i\gamma} e^{\frac{\beta}{2}\Delta E}}{\cosh \alpha + \sinh \alpha e^{i\gamma} e^{-\frac{\beta}{2}\Delta E}} \right|^2 e^{-\beta\Delta E}.$$

- Only thermal (temperature β) if $\alpha = 0$
- Contradicts detailed balance?

- i.e. $\rho(E_i)P(E_i \rightarrow E_j) \neq \rho(E_j)P(E_j \rightarrow E_i)$

NO! Just means nonequilibrium, steady state.

Holography?

- For AdS-Schwarzschild, have AdS/CFT.
- Two boundaries \Rightarrow two CFTs
- Ordinary vacuum ⇔ Pure state of (doubled) CFT
 Trace over CET: ⇒ thermal state of
 - Trace over $CFT_1 \Rightarrow$ thermal state of CFT

For α -vacuum, Bogoliubov CFT:

$$b_{1}^{\dagger} = \cosh \alpha \, a_{1}^{\dagger} - e^{i\gamma} \sinh \alpha \, a_{2},$$

$$b_{2}^{\dagger} = \cosh \alpha \, a_{2}^{\dagger} - e^{i\gamma} \sinh \alpha \, a_{1}$$

Note "1" and "2" no longer bdy_1 and bdy_2 . $Tr_2 \Rightarrow nonthermal$ density matrix Agrees with nonthermal formula on AdS side!

Sim. propagators \leftrightarrow correlation functions

Entropy

Using AdS/CFT, compute $S = -\operatorname{Tr} \rho \ln \rho$:

• Entropy at high temperature:

Conclusions

- Black holes have α -Vacua
 - Very general
 - For AdS-Schwarzschild, can use CFT as well
- Can avoid problems of dS $\alpha\text{-Vacua}$
- \bullet Compute $\alpha\text{-dependent}$ entropy from CFT

– What does it mean???