Tachyon Condensation and "Non-BPS" D-Branes in a Ramond-Ramond Plane Wave Background

Partha Mukhopadhyay
DAMTP, Cambridge, UK
University of Kentucky, USA
Based on work in progress

Great Lakes Strings Conference, 2006 Michigan Center for Theoretical Physics

Plan

- Review of Tachyon Condensation in Flat Background
- Existence of Tachyon Potential in PP-Wave
- Consequence: D-Brane Descent Relations
- Non-BPS D-branes of Flat Space in GreenSchwarz Formalism
- Open String Theory (light-cone gauge) in PP-Wave
- Future Directions

Review of Tachyon Condensation in Flat Background
[Sen]
Consider a coincident brane-anti-brane system in type IIB string theory in flat space.

Tachyon potential

Lower dimensional D-branes as lump solutions

D-brane descent relation

D-branes ($\mathrm{D} p$) of all dimensions are allowed.
$\mathrm{BPS} \rightarrow p+1=$ even.

Non-BPS $\rightarrow p+1=$ odd.

Type IIB pp-wave

 $\left[\begin{array}{l}\text { Blau, Figueroa-O'Farrill, } \\ \text { Hull, Papadopoulos }\end{array}\right]$We would like to address similar issues in the particular case of type IIB pp-wave background with R-R flux:

$$
\begin{aligned}
& d s^{2}=2 d x^{+} d x^{-}-\mu^{2} x^{I} x^{I} d x^{+} d x^{+}+d x^{I} d x^{I}, \\
& F_{+1234}=F_{+5678} \propto \mu, \\
& x^{ \pm}=\left(x^{9} \pm x^{0}\right) / \sqrt{2}, \quad I=1,2, \cdots 8,
\end{aligned}
$$

Flat space limit: $\mu \rightarrow 0$.

String theory can be solved in light-cone gauge (Green-Schwarz-Metsaev-Tseytlin covariant acton):

$$
\begin{gathered}
\mathcal{L}_{B}=\frac{1}{2}\left(\partial_{+} X^{I} \partial_{-} X^{I}-m^{2} X^{I} X^{I}\right), \\
\mathcal{L}_{F} \sim S^{1} \partial_{+} S^{1}+S^{2} \partial_{-} S^{2}-2 m S^{1} \Pi S^{2} . \\
\partial_{ \pm}=\partial_{\tau} \pm \partial_{\sigma}, \\
m \propto \mu p^{+}, \quad \Pi_{a b}=\sigma_{a b}^{1234}=\sigma_{a b}^{5678} . \\
\Gamma^{\mu}=\left(\begin{array}{cc}
0 & \gamma^{\mu} \\
\bar{\gamma}^{\mu} & 0
\end{array}\right), \\
\gamma^{0}=\bar{\gamma}^{0}=I_{16}, \quad \gamma^{9}=\bar{\gamma}^{9}=\left(\begin{array}{cc}
I_{8} & 0 \\
0 & -I_{8}
\end{array}\right), \\
\gamma^{I}=\bar{\gamma}^{I}=\left(\begin{array}{cc}
0 & \sigma_{a \dot{b}}^{I} \\
\bar{\sigma}_{a b}^{I} & 0
\end{array}\right) .
\end{gathered}
$$

A claim

Given a world-volume field $\Phi\left(x^{+}, x^{I}\right)$ on a coincident brane-anti-brane pair which satisfies $\partial_{-} \Phi=0$, the following is true for the worldvolume action:

$$
S_{p p}[\Phi]=S_{f l a t}[\Phi]
$$

An argument

Let $\widetilde{\Phi}\left(p^{+}, p_{-}, p^{I}\right)$ be the Fourier transformed field.

Any given term in $S_{p p}\left[\Phi\left(x^{+}, x^{-}, x^{I}\right)\right]$ has the form
$T_{p p}=\int \delta\left(\sum p_{i}\right) f\left(\mu, p_{i}^{+}, p_{i}^{-}, p_{i}^{I}\right) \prod_{i} \widetilde{\Phi}_{i}\left(p_{i}^{+}, p_{i}^{-}, p_{i}^{I}\right)$,
Corresponding term in flat background,
$T_{f l a t}=\int \delta\left(\sum p_{i}\right) f\left(0, p_{i}^{+}, p_{i}^{-}, p_{i}^{I}\right) \prod_{i} \tilde{\Phi}_{i}\left(p_{i}^{+}, p_{i}^{-}, p_{i}^{I}\right)$,
We need to argue,

$$
\begin{gathered}
f\left(\mu, p_{i}^{+}=0, p_{i}^{-}, p_{i}^{I}\right)=f\left(0, p_{i}^{+}=0, p_{i}^{-}, p_{i}^{I}\right) . \\
\text { or } \\
f=f\left(m_{i}, p_{i}^{+}, p_{i}^{-}, p_{i}^{I}\right) .
\end{gathered}
$$

This will be true if all μ dependence can be absorbed into the m dependence and symmetries of theories match for the field configurations considered.

Symmetry currents:

Kinematical generators

PP-wave
$P^{ \pm}, P^{I}, J^{+I}, J^{i j}, J^{i^{\prime} j^{\prime}}$,
$Q^{+A a}$
Dynamical generators

$$
\begin{array}{lr}
\text { PP-wave } \\
P^{-}, Q^{-A} & P^{-}, Q^{-A}
\end{array}
$$

Missing generators:

$$
J^{+-}, J^{-I}, J^{i i^{\prime}}
$$

We need to

1. account for the missing generators,
2. show that in expressions for generators and symmetry algebras
(a) Π dependence go away in $p^{+} \rightarrow 0$ limit.
(b) μ only appears as m,
(Since $\mu \rightarrow 0$ is the flat space limit where Π should not appear, Π must always come with a factor of μ. Therefore establishing 2(b) only is sufficient)

- Kinematical generators evaluated in lightcone gauge do not depend on μ (hence Π). They formally pretend as if the full $S O(8)$ symmetry were present.
- Dynamical generators do depend on μ, but the dependence is only through m.
- Above is not true of symmetry algebra. μ explicitly appears in commutation relations. Schematically,

$$
\begin{aligned}
{\left[P^{-}, P^{I}\right] \sim \mu^{2} J^{+I}, } & {\left[P^{I}, Q^{-}\right] \sim \mu Q^{+} } \\
{\left[P^{-}, Q^{+}\right] \sim \mu Q^{+}, } & \left\{Q^{+}, Q^{-}\right\} \sim \mu J^{+I}, \\
\left\{Q^{-}, Q^{-}\right\} \sim & \mu J^{I J} .
\end{aligned}
$$

But generators have additional p^{+}dependence:

$$
P^{+}=p^{+}, P^{-} \sim \frac{1}{p^{+}}, J^{+I} \sim p^{+},
$$

$$
Q^{+} \sim \sqrt{p^{+}}, Q^{-} \sim \frac{1}{\sqrt{p^{+}}} .
$$

This dependence is precisely the one that allows one to write the commutation relations in terms of m.

Consequences:

1. world-volume theory on a brane-anti-brane pair in pp-wave admits the same tachyon potential as in flat space.

2. All D-branes, in particular non-BPS D-barnes, in flat space should have pp-wave analogues!!

Detailed properties are, in general, expected to be different.

Non-BPS D-branes in flat space

[PM]

Bosonic part is as simple as for BPS D-branes. Complication arises in writing down fermion boundary condition in Green-Schwarz formalism.

In light-cone gauge: $S^{a}(z), \widetilde{S}^{a}(\bar{z})$.
Variation of action gives,

$$
S^{a}(z) \delta S^{a}(z)=\widetilde{S}^{a}(\bar{z}) \delta \widetilde{S}^{a}(\bar{z}), \quad \text { at } z=\bar{z} .
$$

BPS boundary condition:

$$
\begin{aligned}
S^{a}(z) & =M_{a b} \widetilde{S}^{a}(\bar{z}), \quad \text { at } z=\bar{z}, \\
M_{a b} & =\gamma_{a b}^{I_{1} \cdots I_{p-1}}, \quad(\text { Recall } p \text { odd }) .
\end{aligned}
$$

For non-BPS D-branes p is even. It turns out that boundary condition is bi-local.

$$
\begin{gathered}
S^{a}(z) S^{b}(w)=\mathcal{M}_{c d}^{a b} \widetilde{S}^{c}(\bar{z}) \tilde{S}^{d}(\bar{w}), \text { at } z=\bar{z} \\
\mathcal{M}_{c d}^{a b}=\frac{1}{8} \delta_{a b} \delta_{c d}+\frac{1}{16} \sum_{I, J} \lambda_{(I J)} \sigma_{a b}^{I J} \sigma_{c d}^{I J} \\
+\frac{2}{384} \sum_{\{I, J, K, L\} \in \mathcal{K}} \lambda_{(I J K L)} \sigma_{a b}^{I J K L} \sigma_{c d}^{I J K L} \\
\lambda_{(I J \cdots)}=\lambda_{I} \lambda_{J} \cdots, \\
\lambda_{I}=\left\{\begin{array}{cc}
-1 & \text { if } X^{I} \text { Neman } \\
1 & \text { if } X^{I} \text { Dirichlet }
\end{array}\right. \\
\{\{I, J, K, L\}\}=\mathcal{K}+\mathcal{K}_{D},
\end{gathered}
$$

such that, for every $\{I, J, K, L\} \in \mathcal{K}$ there exists a dual element $\{M, N, O, P\} \in \mathcal{K}_{D}$ satisfying,

$$
\epsilon^{I J K L M N O P} \neq 0 .
$$

Q. How to deal with this boundary condition?

[PM]

Generalise the usual "doubling trick".

$$
\mathcal{S}^{a}(u) \cdots \mathcal{S}^{b}(v)=\left\{\begin{array}{l}
\left.S^{a}(z) \cdots S^{b}(w)\right|_{z=u, w=v} \\
(\Im u, \Im v \geq 0) \\
\left.\mathcal{M}_{c d}^{a b} \widetilde{S}^{c}(\bar{z}) \cdots \widetilde{S}^{d}(\bar{w})\right|_{\bar{z}=u, \bar{w}=v} \\
(\Im u, \Im v \leq 0)
\end{array}\right.
$$

One consequence:

$$
\begin{aligned}
\mathcal{S}^{a}(\tau, 2 \pi) \mathcal{S}^{b}\left(\tau^{\prime}, 2 \pi\right) & =\mathcal{S}^{a}(\tau, 0) \mathcal{S}^{b}\left(\tau^{\prime}, 0\right) \\
\text { i.e. } \mathcal{S}^{a}(\tau, 2 \pi) & = \pm \mathcal{S}^{a}(\tau, 0)
\end{aligned}
$$

Open-string spectrum: $R+N S$.
$\mathrm{R}: \quad S_{-n_{1}}^{a_{1}} S_{n_{2}}^{a_{2}} \cdots\binom{|I\rangle}{|\dot{a}\rangle}$,

NS: $\quad S_{-r_{1}}^{a_{1}} S_{r_{2}}^{a_{2}} \cdots|0\rangle$.

Non-BPS D-Branes in PP-Wave

- $S O(8)$ fermions in light-cone gauge:

$$
S^{1 a}(\tau, \sigma), \quad S^{2 a}(\tau, \sigma)
$$

- EOM:

$$
\partial_{+} S^{1}-m \Pi S^{2}=0, \quad \partial_{-} S^{2}+m \Pi S^{1}=0 .
$$

- Boundary condition (at $\sigma=0, \pi$):

$$
S^{1 a}(\tau, \sigma) S^{1 b}\left(\tau^{\prime}, \sigma\right)=\mathcal{M}_{c d^{a b}}^{a c} S^{2 c}(\tau, \sigma) S^{2 d}\left(\tau^{\prime}, \sigma\right)
$$

- Spectrum: NS + R (without zero modes) (one can argue that R -sector zero modes are inconsistent. This feature is different from flat space. One recovers zero modes in the limit $m \rightarrow 0$.)

Hamiltonian

$$
\begin{aligned}
p^{+} H_{R}= & m \vec{a}_{\| \mid}^{\dagger} \cdot \vec{a}_{\|}+\frac{1}{4} m \vec{x}_{\perp}^{2} \frac{\sinh (2 m \pi)}{\sinh ^{2}(m \pi)}+\frac{m}{2}(p-1) \\
& \sum_{n=1}^{\infty} w_{n}\left[\vec{a}_{n}^{\dagger} \cdot \vec{a}_{n}+\mathcal{S}_{-n}^{a} \mathcal{S}_{n}^{a}\right] . \\
p^{+} H_{N S}= & m \vec{a}_{\| \mid}^{\dagger} \cdot \vec{a}_{\|}+\frac{1}{4} m \vec{x}_{\perp}^{2} \frac{\sinh (2 m \pi)}{\sinh ^{2}(m \pi)}+\frac{m}{2}(p-1) \\
& \sum_{n=1}^{\infty} w_{n} \vec{a}_{n}^{\dagger} \cdot \vec{a}_{n}+\sum_{r=1 / 2}^{\infty} w_{r} \mathcal{S}_{-r}^{a} \mathcal{S}_{r}^{a}+E_{0}
\end{aligned}
$$

$$
\frac{1}{2} E_{0}(m)=\sum_{n=1}^{\infty} w_{n}-\sum_{r=1 / 2}^{\infty} w_{r}
$$

$$
w_{n}=\sqrt{n^{2}+m^{2}}, \quad w_{r}=\sqrt{r^{2}+m^{2}}
$$

Regularisation of $E_{0}(m)$

$$
\frac{1}{2} E_{0}(m)=2 \sum_{n=1}^{\infty}\left(\sqrt{n^{2}+m^{2}}-\sqrt{\left(\frac{n}{2}\right)^{2}+m^{2}}\right)
$$

Use

$$
\begin{aligned}
\sum_{n=1}^{\infty} \sqrt{\left(\frac{n}{a}\right)^{2}+m^{2}}= & -\frac{m}{2}-\frac{a m^{2}}{2 \pi} \Gamma(-1) \\
& -\frac{2 m}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} K_{1}(2 \pi n m)
\end{aligned}
$$

$$
E_{0}(m)=-m+\frac{4}{\pi} m \sum_{n=1}^{\infty} \frac{1}{n}\left[K_{1}(4 \pi n m)-2 K_{1}(2 \pi n m)\right]
$$

$$
\lim _{m \rightarrow 0} E_{0} \rightarrow-\frac{1}{2}
$$

Correct flat space limit, but no lower bound!!

On the other hand:

Future Directions

1. Boundary state construction.

- Demonstrate open-closed duality.
- Show zero RR-part.
- Clarify zero-point energy in NS-sector hamiltonian.

2. Use covariant formulation to study nonBPS D-branes that can not be seen in lightcone gauge.
Example: D-particle
An application \rightarrow study decay process.
3. Study defect CFT representing coincident brane-anti-brane system in dual gauge theory.

- How to see $V(T)$ in gauge theory?
- Can we understand

$$
\lim _{m \rightarrow \infty} E_{0}(m), \quad\left(\text { recall } \lambda^{\prime} \propto \frac{1}{m} \rightarrow 0\right)
$$

in dual gauge theory?

- Open-closed duality in gauge theory?

