TRANSPORT PROPERTIES OF

$$\mathcal{N}=4$$
 SYM AT FINITE COUPLING

Paolo Benincasa

(University of Western Ontario)

P.B., Alex Buchel - JHEP 06 01: 103, 2006 - [hep-th/0510041]

Aim of the Work

- Study of the hydrodynamics for SYM theory with leading correction in the inverse 't Hooft coupling
 - Shear diffusion constant
 - Speed of sound
 - Bulk viscosity
- ightharpoonup Consistent picture of the α' -corrected sugra hydrodynamics

Supergravity Approximation

- → Gauge/string correspondence provides an effective description of strongly coupled gauge theories in terms of supergravity black brane background
- \Rightarrow Large- N $\mathcal{N}=4$ SU(N) SYM at large 't Hooft coupling \sim IIB-sugra in near-extremal black 3-brane background
- ightharpoonup Hydrodynamics approximation: $\omega \to 0$, $q \to 0$, $\frac{\omega}{q} = {\rm const}$
 - Shear viscosity η (Policastro, Son, Starinets [hep-th/0104066], [hep-th/0205052]):

$$\eta = \frac{\pi}{8} N^2 T^3$$

Speed of sound c_s and bulk viscosity ζ (Policastro, Son, Starinets - [hep-th/0210220]):

$$c_s = \frac{1}{\sqrt{3}} \qquad \qquad \zeta = 0$$

Leading α' -corrections (1)

ightharpoonup 10-dim type-IIB action with leading α' -corrections:

$$I = I_{sugra} + \frac{1}{16\pi G_{10}} \int d^{10}x \sqrt{-g} \gamma e^{-\frac{3}{2}\phi} W$$

with

$$\gamma = \frac{1}{8}\zeta(3)(\alpha')^3, \qquad W \sim C^4$$

- → Important features:
 - The entropy density differs from B.H. formula
 - T_H , S, E, F are α' -corrected
 - $R(S^5)$ not constant

Leading α' -corrections (2)

- Analisys of pertubations in the background geometry
- → Shear channel (Buchel, Liu, Starinets [hep-th/0406264]):

$$\frac{\eta}{s} = \frac{1}{4\pi} \left(1 + 135\gamma + \mathcal{O}(\gamma^2) \right)$$

Sound channel:

$$\omega = c_s q - i \frac{2}{3} \frac{q^2}{T} \frac{\eta}{s} \left(1 + \frac{3}{4} \frac{\zeta}{\eta} \right) \quad \to \quad \omega = c_s q - i \frac{\Gamma_s}{2\pi T} q^2 + \mathcal{O}(q^3)$$
$$c_s = \frac{1}{\sqrt{3}} + \mathcal{O}(\gamma^2) \qquad \Gamma_s = \frac{1}{3} + 40\gamma + \mathcal{O}(\gamma^2)$$

→ Bulk viscosity:

$$\zeta = \mathcal{O}(\gamma^2)$$