

Discrete Symmetries of Quiver Theories and Wrapped Branes hep-th/0602094

B.A. Burrington, J. T. Liu, L.A. Pando Zayas

Department of Physics University of Michigan

Great Lakes Strings April Fool's Day

Overview

Pattern first recognized in hep-th/9811048: (Gukov, Rangamani, Witten)

D3 on Orbifold 6D Backgrounds \rightarrow Quiver Gauge Theories Orbifold \mathbb{Z}_n Backgrounds \rightarrow Cycles Valued in \mathbb{Z}_n Branes may wrap these cycles. Number Operators of Wrapped Branes have AdS/CFT Dual Quiver Gauge Theories Have \mathbb{Z}_n symmetries Discrete Symmetries \rightarrow NONCOMMUTATIVE

Overview

Pattern first recognized in hep-th/9811048: (Gukov, Rangamani, Witten)

D3 on Orbifold 6D Backgrounds \rightarrow Quiver Gauge Theories

Drbifold \mathbb{Z}_n Backgrounds \rightarrow Cycles Valued in \mathbb{Z}_n

Branes may wrap these cycles.

Number Operators of Wrapped Branes have AdS/CFT Dual

Quiver Gauge Theories Have \mathbb{Z}_n symmetries

Discrete Symmetries \rightarrow NONCOMMUTATIVE

Overview

Pattern first recognized in hep-th/9811048: (Gukov, Rangamani, Witten) D3 on Orbifold 6D Backgrounds \rightarrow Quiver Gauge Theories Orbifold \mathbb{Z}_n Backgrounds \rightarrow Cycles Valued in \mathbb{Z}_n Branes may wrap these cycles. Number Operators of Wrapped Branes have AdS/CFT Dual Quiver Gauge Theories Have \mathbb{Z}_n symmetries Discrete Symmetries \rightarrow NONCOMMUTATIVE

Overview

Pattern first recognized in hep-th/9811048: (Gukov, Rangamani, Witten)

D3 on Orbifold 6D Backgrounds \rightarrow Quiver Gauge Theories Orbifold \mathbb{Z}_n Backgrounds \rightarrow Cycles Valued in \mathbb{Z}_n Branes may wrap these cycles.

Number Operators of Wrapped Branes have AdS/CFT Dual Quiver Gauge Theories Have \mathbb{Z}_n symmetries Discrete Symmetries \rightarrow NONCOMMUTATIVE

Overview

Pattern first recognized in hep-th/9811048: (Gukov, Rangamani, Witten) D3 on Orbifold 6D Backgrounds \rightarrow Quiver Gauge Theories Orbifold \mathbb{Z}_n Backgrounds \rightarrow Cycles Valued in \mathbb{Z}_n Branes may wrap these cycles. Number Operators of Wrapped Branes have AdS/CFT Dual Quiver Gauge Theories Have \mathbb{Z}_n symmetries Discrete Symmetries \rightarrow NONCOMMUTATIVE

Overview

Pattern first recognized in hep-th/9811048: (Gukov, Rangamani, Witten) D3 on Orbifold 6D Backgrounds \rightarrow Quiver Gauge Theories Orbifold \mathbb{Z}_n Backgrounds \rightarrow Cycles Valued in \mathbb{Z}_n Branes may wrap these cycles. Number Operators of Wrapped Branes have AdS/CFT Dual Quiver Gauge Theories Have \mathbb{Z}_n symmetries Discrete Symmetries \rightarrow NONCOMMUTATIVE

Overview

Pattern first recognized in hep-th/9811048: (Gukov, Rangamani, Witten)

D3 on Orbifold 6D Backgrounds \rightarrow Quiver Gauge Theories Orbifold \mathbb{Z}_n Backgrounds \rightarrow Cycles Valued in \mathbb{Z}_n

Branes may wrap these cycles.

Number Operators of Wrapped Branes have AdS/CFT Dual

Quiver Gauge Theories Have \mathbb{Z}_n symmetries

 $\text{Discrete Symmetries} \rightarrow \text{NONCOMMUTATIVE}$

New infinite class of theories $Y^{p,q}$ geometries (Gauntlett, Martelli, Sparks, Waldram (0403002))

$$ds_1 0^2 = H^{-\frac{1}{2}} dx^{\mu} dx_{\mu} + H^{\frac{1}{2}} \left(dr^2 + r^2 \left(ds_{Y^{\rho,q}}^2 \right) \right)$$
(1)

When $GCD(p, q) = a \neq 1$ these are orbifold geometries. Quiver diagram given by (Martelli, Sparks (0411238))

$$\underbrace{\left(\frac{\sigma\tilde{\sigma}\tau\cdots\cdots}{(p-q)/a)\tau-\text{type}, (q/a)\sigma-\text{type}}\right)}_{\textbf{(p-q)/a}\tau-\text{type}, (q/a)\sigma-\text{type}} (2)$$

New infinite class of theories $Y^{p,q}$ geometries (Gauntlett, Martelli, Sparks, Waldram (0403002))

$$ds_1 0^2 = H^{-rac{1}{2}} dx^{\mu} dx_{\mu} + H^{rac{1}{2}} \left(dr^2 + r^2 \left(ds_{Y^{\rho,q}}^2
ight)
ight)$$
 (1)

When $GCD(p, q) = a \neq 1$ these are orbifold geometries. Quiver diagram given by (Martelli, Sparks (0411238))

$$\underbrace{(\sigma\tilde{\sigma}\tau\cdots\cdots)}_{((p-q)/a)\ \tau-\text{type},\ (q/a)\ \sigma-\text{type}}(\cdots)(\cdots)(\cdots)\cdots (2)$$

$$\underline{(p-q)/a}_{a-\text{times}}$$

New infinite class of theories $Y^{p,q}$ geometries (Gauntlett, Martelli, Sparks, Waldram (0403002))

$$ds_1 0^2 = H^{-\frac{1}{2}} dx^{\mu} dx_{\mu} + H^{\frac{1}{2}} \left(dr^2 + r^2 \left(ds_{Y^{p,q}}^2 \right) \right)$$
 (1)

When $GCD(p, q) = a \neq 1$ these are orbifold geometries. Quiver diagram given by (Martelli, Sparks (0411238))

$$\underbrace{\underbrace{(\sigma\tilde{\sigma}\tau\cdots\cdots)}_{((p-q)/a)\ \tau-\text{type},\ (q/a)\ \sigma-\text{type}}(\cdots)(\cdots)(\cdots)\cdots}_{a-\text{times}}$$
(2)

New infinite class of theories $Y^{p,q}$ geometries (Gauntlett, Martelli, Sparks, Waldram (0403002))

$$ds_1 0^2 = H^{-\frac{1}{2}} dx^{\mu} dx_{\mu} + H^{\frac{1}{2}} \left(dr^2 + r^2 \left(ds_{Y^{p,q}}^2 \right) \right)$$
(1)

When $GCD(p, q) = a \neq 1$ these are orbifold geometries. Quiver diagram given by (Martelli, Sparks (0411238))

$$\underbrace{\left(\sigma\tilde{\sigma}\tau\cdots\cdots\right)}_{((p-q)/a)\tau-\text{type}, (q/a)\sigma-\text{type}}(\cdots)(\cdots)(\cdots)\cdots$$

$$\underbrace{((p-q)/a)\tau-\text{type}, (q/a)\sigma-\text{type}}_{a-\text{times}}$$
Unit cells
$$\underbrace{\int_{\tau}}_{\tau}$$

$$\underbrace{\int_{\tau}}_{\sigma}$$

$$\underbrace{\int_{\sigma}}_{\sigma}$$
by by 600000, beg by 6002114

B.A. Burrington, J. T. Liu, L.A. Pando Zayas

hep-th/0602094, hep-th/0603114

Our Work

Example: $Y^{2,0}$: Diagram

Symmetries $A: (1, 2, 3, 4) \rightarrow (3, 4, 1, 2)$ $B: (1, 1, \omega, \omega^{-1})$ and $C: (\omega, \omega^{-1}, \omega^{-1}, \omega)$ with $\omega^{2N} = 1$ These satisfy (up to the COGG)

$$A^2 = B^2 = C^2 = 1$$
, $AB = BAC$, C commutes (3)

and is a finite Heisenberg Group

Our Work

Example: $Y^{2,0}$: Diagram

Symmetries $A: (1,2,3,4) \rightarrow (3,4,1,2)$ $B: (1,1,\omega,\omega^{-1})$ and $C: (\omega,\omega^{-1},\omega^{-1},\omega)$ with $\omega^{2N} = 1$ These satisfy (up to the COGG)

$$A^2 = B^2 = C^2 = 1$$
, $AB = BAC$, C commutes (3)

and is a finite Heisenberg Group

Our Work

Example: $Y^{2,0}$: Diagram

Symmetries $A: (1,2,3,4) \rightarrow (3,4,1,2)$ $B: (1,1,\omega,\omega^{-1}) \text{ and } C: (\omega,\omega^{-1},\omega^{-1},\omega) \text{ with } \omega^{2N} = 1$ These satisfy (up to the COGG)

$$A^2 = B^2 = C^2 = 1$$
, $AB = BAC$, C commutes (3)

and is a finite Heisenberg Group

General $Y^{p,q}$ (p, q not coprime)

We find this to be a general pattern, even for complicated $Y^{p,q}$! We work out explicitly:

Conclusions

For a large class of theories, we find that Wrapped Brane Number Operators DO NOT COMMUTE!

(Worked on by D. Belov and G. Moore)

We later generalize this to even the non-conformal case! (hep-th/0603114)

(also, see hep-th/0412193 Herzog, Ejaz, Klebenov for non-conformal generalizations)