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Motivation

Supergravity solutions are important

• describe low mass d.o.f. of super-string/M theory

• Gauge-gravity correspondence

• Classical solutions such black holes, black rings, p-branes and pp waves

Two popular methods

• Make ansatz for the metric based on isometries.

• Analyze G-structure ( when a Killing spinor is present )
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For large number of supersymmetries

• G-structure method more involved

• New solutions

Simple case: N=4, D=5 supergravity

{Awada and Townsend NPB255(1985)617}

Method applied to N=2, D=5 case by

{Gauntlett, Martelli, Sparks, Waldram: Class. Quan. Grav. 20(2003)4587}

Generalize method to N=4, D=5 case with Lagrangian ( Bosonic part )
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Content

R symmetry : USp(4)�
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Content:

USp(4) rep.
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Related by δΨi
µ = 0, δχi = 0 and Fierz relations.
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Properties
Killing vector
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KµKµ = −fa2 = 0 null case

< 0 time-like case

Identification of a Killing vector naturally separates the metric into

a Killing direction and a 3(4)-dimensional base in (null) time-like case

The base possesses

• R3 structure in null case.

• SU(2) structure in a timelike case (fa2 = f 2).

• SO(4) structure in general timelike case.

• Holonomy not preserved in general.
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Null case : R3 structure

�� ��ds2 = H−1du(2dv + Fdu) + H2hmn(dxm + amdu)(dxn + andu)

G = G+me+ ∧ em −H−2 ∗3 dH1

F a = F a
+me+ ∧ em + 1√

2
H−2 ∗3 [uadH2 −H2dua]

�� ��V a
µ = uaKµ
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√
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H2

H1 andH2 are harmonic.

ua points out SO(5) ⊃ SO(4) ' SU(2)L × SU(2)R.
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Work in progress

• Characterize better the 3(4) dim base by

identifying their holonomies from SUSY

variation integrability conditions.

• Further constrain yet undermined functions

using Bianchi identities and Einstein equation.

• Construct particular solutions in various

cases.
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