# Semiclassical strings <br> in $A d S_{5} \times S^{5}$ and AdS/CFT 

some related papers:
J. A. Minahan, A. Tirziu and A. A. Tseytlin, " $1 / \mathrm{J}$ corrections to semiclassical AdS/CFT states from quantum Landau-Lifshitz model," hep-th/0509071;
" $1 / J^{2}$ corrections to BMN energies from the quantum long range Landau-Lifshitz model," hep-th/0510080.
N. Beisert and A. A. Tseytlin, "On quantum corrections to spinning strings and Bethe equations," hep-th/0509084

## AdS/CFT

$\mathcal{N}=4 \mathrm{SYM}$ at $N=\infty$ dual to
free type IIB superstrings in $A d S_{5} \times S^{5}$
Parameters:
$\lambda=g_{Y M}^{2} N$ related to string tension
$2 \pi T=\frac{R^{2}}{\alpha^{\prime}}=\sqrt{\lambda}$
$g_{s}=\frac{\lambda}{4 \pi N} \rightarrow 0$

One implication of duality:
string energies $=$ dimensions of gauge-invariant operators

$$
E(\sqrt{\lambda}, J, m, \ldots)=\Delta(\lambda, J, m, \ldots)
$$

$J$ - global charges of $S O(2,4) \times S O(6)$ :
spins $S_{1}, S_{2} ; J_{1}, J_{2}, J_{3}$
$m$ - extra quantum numbers like winding numbers, number of folds, oscillation numbers, ...

Operators: $\operatorname{Tr}\left(\prod_{i} \Phi_{i}^{J_{i}} D_{+}^{S_{1}} D_{*}^{S_{2}} \ldots F_{m n} \ldots \Psi \ldots\right)$
Solve SYM/string theory $\rightarrow$
compute $E=\Delta$ for any $\lambda$ (and $J, m$ )

Solve non-trivial max. susy 4-d CFT = string in curved R-R background Remarkable well-defined problem of mathematical physics
hope to learn more about less susy theories, e.g., role of integrability and string picture in perturbative / large energy QCD

Perturbative expansions are opposite:
$\lambda \gg 1$ in perturbative string theory
$\lambda \ll 1$ in perturbative planar gauge theory
"Constructive" approach:
use perturbative results on both sides and other properties (integrability,...) as guides to exact answers (Bethe ansatze,...)

Recent progress:
"semiclassical" states with large quantum numbers $(J \gg 1)$
dual to "long" gauge operators:
same dependence on $J$ with coefficients = interpolating functions of $\lambda$ connection to spectrum of integrable spin chains

- anomalous dimensions on gauge side

Semiclassical strings in $A d S$ : oscillating, rotating, etc:
$E=N+\ldots$, or $E=S+\ldots \quad$ (de Vega, Sanchez, 1994)
while $E \sim \sqrt{N}$ in flat space

Generic long quantum rotating/pulsating string in $A d S_{5} \times S^{5}$

$$
E=f(\lambda) J+\ldots, \quad J \gg 1
$$

dual to long operators like $\operatorname{Tr}(\bar{\Phi} \Phi \ldots)$
or

$$
E=S+f(\lambda) \ln S+\ldots, \quad S \gg 1
$$

dual to $\operatorname{Tr}\left(\Phi D^{S} \Phi\right)$
in both cases:

$$
\begin{gathered}
f(\lambda \gg 1)=a_{1} \sqrt{\lambda}+a_{2}+\frac{a_{3}}{\sqrt{\lambda}}+\ldots \\
f(\lambda \ll 1)=k_{1} \lambda+k_{2} \lambda^{2}+\ldots
\end{gathered}
$$

Generic pattern: non-trivial "interpolating" functions of $\lambda$

Other examples:
" $q-\bar{q}$ " potential (conformal theory !):

$$
V(r)=\frac{f(\lambda)}{r}
$$

$f(\lambda \gg 1)=c_{1} \sqrt{\lambda}+c_{2}+\ldots, \quad c_{1}=-\frac{4 \pi^{2}}{[\Gamma(1 / 4)]^{4}}$
SYM entropy:

$$
S=\frac{2 \pi^{2}}{3} f(\lambda) N^{2} T^{3} V_{3}
$$

$f(\lambda \ll 1)=1-\frac{3}{2 \pi^{2}} \lambda+\frac{3+\sqrt{2}}{\pi^{2}} \sqrt{\lambda}+\ldots$
$f(\lambda \gg 1)=\frac{3}{4}+\frac{45}{32} \zeta(3) \frac{1}{(\sqrt{\lambda})^{3}}+\ldots$

General properties of $f(\lambda)$ ?
Sign-alternating series with finite radius of convergence? ('t Hooft, large $N$ )

Indicative example:
folded string rotating at the center of $A d S$ (de Vega, Egusquiza, 1996)

$$
\Delta=S+f(\lambda) \ln S+\ldots
$$

$$
f(\lambda \gg 1)=a_{1} \sqrt{\lambda}+a_{2}+\frac{a_{3}}{\sqrt{\lambda}}+\ldots
$$

dual to $\operatorname{Tr}\left(F_{+m} D_{+}^{S-4} F_{+m}\right)+\ldots, \quad S \gg 1$
$a_{1}=\frac{1}{\pi} \quad$ (Gubser, Klebanov, Polyakov (2002))
$a_{2}=-\frac{3}{\pi} \ln 2 \quad$ (Frolov, A.T. (2002))

$$
f(\lambda \ll 1)=k_{1} \lambda+k_{2} \lambda^{2}+\ldots
$$

$k_{1}=\frac{1}{2 \pi^{2}}, \quad k_{2}=-\frac{1}{96 \pi^{2}}, \quad k_{3}=\frac{11}{23040 \pi^{2}}, \ldots$
(perturbative QCD/SYM)

Approximate Pade interpolation (Lipatov et al, 2004):
$f(\lambda) \approx \frac{12}{\pi^{2}}\left(\sqrt{1+\frac{\lambda}{12}}-1\right)$
Branch cut from $(-\infty,-12)$
more likely hypergeometric function e.g. ${ }_{2} F_{1}\left(a, b, c,-\frac{\lambda}{\pi^{2}}\right), \ldots$

Semiclassical strings in $A d S_{5}$
spiky strings (Kruczenski, 2004):

$$
\Delta=S+m f(\lambda) \ln \frac{S}{m}+\ldots
$$

dual to $\operatorname{Tr}\left(D_{+}^{s_{1}} F D_{+}^{s_{2}} F \ldots D_{+}^{s_{m}} F\right), \quad S=s_{1}+s_{2}+\ldots+s_{m}$

Smooth strings without folds/spikes:
dual to operators without covariant derivatives
$\operatorname{Tr}\left(F_{n_{1} k_{1}} F_{n_{2} k_{2} \ldots} \ldots F_{n_{L} k_{L}}\right)$
1-loop closed sector in YM if $F_{n k}$ is selfdual
1-loop dilatation operator: Hamiltonian of
antiferromagnetic $\mathrm{XXX}_{1}(s=-1,0,1)$ spin chain (Heise, Ferreti, Zarembo, 2005)
$S O(4):\left(S_{1}, S_{2}\right), \quad S_{L}=S_{1}+S_{2}, \quad S_{R}=S_{1}-S_{2}$
Antiferromagnetic state: $S_{L}=0$
Ferromagnetic state: $S_{L}=S, \quad S_{R}=0$
Anomalous dimension:

$$
\Delta=f(\lambda) S=S+c_{1} \lambda S+\ldots, \quad S \gg 1
$$

Dual to which strings?
Circular string rotating in two orthogonal planes:

$$
S_{1}=S_{2}=S / 2 \quad \text { (Frolov, A.T., 2003) }
$$

$$
E=S+(\lambda S)^{1 / 3}+\ldots
$$

1-loop string correction - linear in $S$ in the region of stability
(Park, Tirziu, A.T., 2005)

$$
E=a_{0} S+\frac{1}{\sqrt{\lambda}} a_{1} S+\ldots, \quad S \gg 1
$$

Supports identification with ferromagnetic state on gauge side
Reducing spin-pulsations in radial direction of AdS:
antiferromagnetic (spin 0 ) state corresponds to string pulsating in $S^{3}$ part of $A d S_{5}$

Special classes of semiclassical string states in $S^{5}$
strings moving in $S^{5}$ - operators built of SYM scalars $\Phi_{i}$

BPS: pointlike string along big circle of $S^{5}$
dual to $\operatorname{Tr} \Phi^{J}: \quad E=\Delta=J$ (protected by susy)
near-BPS: small strings with large c.o.m. momentum $J$
dual to near-BPS (Berenstein-Maldacena-Nastase) operators $\operatorname{Tr}\left(\Phi^{J} \ldots\right)$
energies/dimensions match to leading order in $1 / J$
to all orders in $\tilde{\lambda}=\frac{\lambda}{J^{2}}$
large strings which are "locally BPS":
"Fast" strings = multi-spin strings fast-rotating in $S^{5}$
nearly-null world surface (cf. ray of BPS geodesics - as if tension=0)

$$
\begin{aligned}
E_{\text {class }}= & \sqrt{\lambda} \mathcal{E}(\mathcal{J})=J+a_{0} \frac{\lambda}{J}+b_{0} \frac{\lambda^{2}}{J^{3}}+\ldots \\
& =J\left(1+a_{0} \tilde{\lambda}+b_{0} \tilde{\lambda}^{2}+\ldots\right)
\end{aligned}
$$

$\lambda \gg 1, \quad J \equiv \sqrt{\lambda} \mathcal{J} \gg 1$,
$\tilde{\lambda} \equiv \frac{1}{\mathcal{J}^{2}}=\frac{\lambda}{J^{2}}=$ fixed
Dual to "locally-BPS" long operators, e.g.
$\operatorname{Tr}\left(\Phi_{1}^{J_{1}} \Phi_{2}^{J_{2}}+\ldots\right) \approx \operatorname{Tr}\left(n_{a} \Phi_{a}\right)^{J}$
$\approx$ special low-energy states of spin chain for dilatation operator

## Limits:

BMN limit:
$J_{1} \gg 1, J_{2}=$ finite:
"short" strings with c.o.m. along $S^{5}$ geodesic dual to $\operatorname{Tr}\left(\left[\Phi_{1} \ldots . \Phi_{1}\right] \Phi_{2}\left[\Phi_{1} \ldots \Phi_{1}\right] \Phi_{2} \ldots\right)$ with $J_{2}$ "impurities"
"Thermodynamic" or "multi-spin" limit:
$J_{1} \gg 1, \quad J_{2} \gg 1, \frac{J_{1}}{J_{2}}=$ finite
(Frolov, A.T., 2003)
Long fast strings dual to long "spin-wave" operators
$\operatorname{Tr}\left(\left[\Phi_{1} \ldots . \Phi_{1}\right]\left[\Phi_{2} \ldots \Phi_{2}\right]\left[\Phi_{1} \ldots . \Phi_{1}\right]\left[\Phi_{2} \ldots \Phi_{2}\right] \ldots\right)$
planar 1-loop dilatation operator of $\mathcal{N}=4$ SYM
$=$ Hamiltonian of ferromagnetic Heisenberg $\mathrm{XXX}_{1 / 2}$ spin chain

$$
H_{1}=\frac{\lambda}{(4 \pi)^{2}} \sum_{l=1}^{J}\left(I-\vec{\sigma}_{l} \cdot \vec{\sigma}_{l+1}\right)
$$

$E=J+\lambda E_{1}+.$.
Spectrum (long length $J$ ):
$E_{1}=0: \quad$ ferromagnetic vacuum - BPS operator (point-like string)
$E_{1} \sim \frac{1}{J^{2}}$ : magnons - BMN states (short strings)
$E_{1} \sim \frac{1}{J}$ : low-energy spin waves (fast long strings)
$E_{1} \sim J:$ anti-ferromagnetic state and near-by spinons ("slow" strings)

Higher orders (Beisert,Kristjansen,Staudacher, 2003; Beisert, 2004):

$$
H_{2}=\frac{\lambda^{2}}{(4 \pi)^{4}} \sum_{l=1}^{J}\left(-3+4 \vec{\sigma}_{l} \cdot \vec{\sigma}_{l+1}-\vec{\sigma}_{l} \cdot \vec{\sigma}_{l+2}\right)
$$

$H_{3}$ contains $\vec{\sigma}_{l} \cdot \vec{\sigma}_{l+3}$ and also $\left(\vec{\sigma}_{l} \cdot \vec{\sigma}_{l+1}\right)\left(\vec{\sigma}_{l+2} \cdot \vec{\sigma}_{l+3}\right)$, etc.
"long-range" ferromagnetic spin chain
[ $\mathrm{H}=$ e effective Hamiltonian for Hubbard model:
Rej, Serban, Staudacher, 2005 ]

## Known structure of $E$ and $\Delta$

String side: classical + quantum $\alpha^{\prime} \sim \frac{1}{\sqrt{\lambda}}$ corrections first large $\lambda$ or large $J$ at fixed $\tilde{\lambda}$, then expanded in $\tilde{\lambda}$

$$
\begin{gathered}
E=J\left[1+\tilde{\lambda}\left(a_{0}+\frac{a_{1}}{J}+\frac{a_{2}}{J^{2}}+\ldots\right)+\tilde{\lambda}^{2}\left(b_{0}+\frac{b_{1}}{J}+\frac{b_{2}}{J^{2}}+\ldots\right)\right. \\
\left.+\tilde{\lambda}^{3}\left(c_{0}+\ldots\right)+\ldots\right]
\end{gathered}
$$

perturbative SYM: first small $\lambda$, then expand in large $J$

$$
\Delta=J+\lambda\left(\frac{d_{1}}{J}+\frac{d_{2}}{J^{2}}+\ldots\right)+\lambda^{2}\left(\frac{e_{1}}{J^{3}}+\frac{e_{2}}{J^{4}}+\ldots\right)+\lambda^{3}\left(\frac{h_{1}}{J^{5}}+\ldots\right)+\ldots
$$

two expansions seem to have same structure! apparent existence of thermodynamic scaling limit on gauge side -non-trivial consequence of susy

Moreover, leading coefficients happen to match precisely
(Frolov, A.T., 2003; Beisert,Minahan,Staudacher,Zarembo, 2003)
$a_{0}=d_{1}, \quad b_{0}=e_{1}, \quad a_{1}=d_{2}, \quad b_{1}=e_{2}$
e.g., 1-loop string coeff. $=1 / J$ (finite size) correction on spin chain side (Beisert, A.T., Zarembo, 2005)

But $c_{0} \neq h_{1}$ ?!
general pattern should not be exact matching but rather weak to strong coupling interpolation

Indeed, the limits are different
string side :
first $\lambda \gg 1$ at fixed $\tilde{\lambda}=\frac{\lambda}{J^{2}}$, then expand in $\tilde{\lambda}$
gauge side :
first $\lambda \ll 1$ at fixed $J$, then expand in $1 / J$

Resolution of "3-loop discrepancy":
Quantum string expansion near fast or BMN strings
contains "non-analytic" terms with explicit factors of $\sqrt{\lambda}$
(Beisert, A.T., 2005)
matching to perturbative gauge theory expansion beyond $\lambda^{2}$ order only in a proper limit

$$
E=J\left[1+\tilde{\lambda}\left(a_{0}+\ldots\right)+\tilde{\lambda}^{2}\left(b_{0}+\ldots\right)+\tilde{\lambda}^{3}(f(\lambda)+\ldots)+\ldots\right]
$$

interpolating function

$$
f(\lambda)=c_{0}+\frac{c_{1}}{\sqrt{\lambda}}+\ldots
$$

$f(\lambda \gg 1)=c_{0} \neq f(\lambda \ll 1)=h_{1}$

Similarly for "M-impurity" BMN states:
was expected
$E(M)=J-M+\sum_{j=1}^{M} \sqrt{1+\tilde{\lambda} n_{j}^{2}}+\frac{F_{1}\left(\tilde{\lambda}, n_{i}\right)}{J}+\frac{F_{2}\left(\tilde{\lambda}, n_{i}\right)}{J^{2}}+\ldots$
with $F_{i}$ polynomial in $\tilde{\lambda}$
but in fact they contain $\sqrt{\tilde{\lambda}}$ or

$$
F_{1}\left(\tilde{\lambda}, n_{i}\right)=\tilde{\lambda} q_{1}\left(n_{i}\right)+\tilde{\lambda}^{2} q_{2}\left(n_{i}\right)+\tilde{\lambda}^{3} f(\lambda) q_{3}\left(n_{i}\right)+\ldots
$$

$f(\lambda \gg 1) \neq f(\lambda \ll 1)$
(Beisert, A.T.; Minahan, Tirziu, A.T., 2005)

How to compute "interpolating functions"?
Structure of underlying Bethe ansatz?
Superstring world-sheet S-matrix?

Effective field theory approach:

How to explain/understand leading-order matching between string and gauge energies, states, higher conserved charges?
two microscopically consistent theories

- spin chain and superstring -
approximated by low-energy 2d effective actions
lead to non-relativistic "Landau-Lifshitz" 2d action describing spin chain and string world-sheet d.o.f. works not only classically but also at the quantum level supports of integrability of $A d S_{5} \times S^{5}$ superstring at the quantum level reveals "spin chain" structure of quantum string
$\lambda \gg 1$ to $\lambda \ll 1$ interpolation between "string" and "gauge" effective actions and corresponding "spin chains"

Coherent-state action for low-energy excitations of spin chain (determined by $\mathrm{H}=$ dilatation operator) and "fast-string" limit of string action $\vec{n}$ - transverse position of string or spin coherent state $\left(\vec{n}^{2}=1\right)$

Continuum limit:

Classical Landau-Lifshitz equations of motion

$$
\partial_{t} n_{i}=\frac{1}{2} \tilde{\lambda} \epsilon_{i j k} n_{j} \partial_{\sigma}^{2} n_{k}
$$

describing low-energy part of the spectrum with energies
$\sim J \tilde{\lambda}=\frac{\lambda}{J}$
(lowest order in quantum $1 / J$ expansion)
Integrable system: Lax pair, finite gap solution, etc.

## Beyond $\tilde{\lambda}^{2}$ order: weak-strong coupling interpolation

effective actions from gauge-theory spin chain and string theory:

$$
\begin{gathered}
S=J \int d t \int_{0}^{2 \pi} \frac{d \sigma}{2 \pi} L \\
L=\vec{C}(n) \cdot \partial_{t} \vec{n}-\frac{1}{4} \vec{n}\left(\sqrt{1-\tilde{\lambda} \partial_{\sigma}^{2}}-1\right) \vec{n}-\frac{3}{128} \tilde{\lambda}^{2}\left(\partial_{\sigma} \vec{n}\right)^{4} \\
-\frac{\tilde{\lambda}^{3}}{64}\left[-\frac{7}{4}\left(\partial_{\sigma} \vec{n}\right)^{2}\left(\partial_{\sigma}^{2} \vec{n}\right)^{2}+\mathrm{b}(\lambda)\left(\partial_{\sigma} \vec{n} \partial_{\sigma}^{2} \vec{n}\right)^{2}+\mathrm{c}(\lambda)\left(\partial_{\sigma} \vec{n}\right)^{6}\right]+\ldots
\end{gathered}
$$

quadratic part is exact: reproduces the BMN dispersion relation for small ("magnon") fluctuations near the BPS vacuum $\vec{n}=(0,0,1)$.

Orders $\tilde{\lambda}$ and $\tilde{\lambda}^{2}$ :
agreement between two effective actions $\rightarrow$ explains observed agreement of energies of states, integrable structures, etc.
finite-size $1 / J$ corrections on spin chain side: non-trivial quantum $\alpha^{\prime} \sim \frac{1}{\sqrt{\lambda}}$ corrections on superstring side: hard Quantizing LL action provides a short-cut to exact results Effective field theory philosophy: underlying microscopic UV finite
theories (spin chain and string ) dictate particular choice of regularization of quantum LL theory
extra modes (bosons outside $S^{3}$ LL sector and fermions) are "heavy" can be integrated out - play the role of UV regulators

Both spin chain and string theory lead to the same $1 / J$ quantum-corrected effective field theory at orders $\lambda$ and $\lambda^{2}$
(Minahan, Tirziu, A.T, 2005)
"3-loop" coefficients in the string and gauge theory expressions

$$
\begin{array}{ll}
\mathrm{b}_{s}=-\frac{25}{2}, & \mathrm{c}_{s}=\frac{13}{16} \\
\mathrm{~b}_{g}=-\frac{23}{2}, & \mathrm{c}_{g}=\frac{12}{16}
\end{array}
$$

Quantum string effective action: include $\alpha^{\prime} \sim \frac{1}{\sqrt{\lambda}}$ corrections:

$$
\mathrm{b}(\lambda)=\mathrm{b}_{s}+\frac{p_{1}}{\sqrt{\lambda}}+\ldots, \quad \mathrm{c}(\lambda)=\mathrm{c}_{s}+\frac{q_{1}}{\sqrt{\lambda}}+\ldots, \quad \lambda \gg 1
$$

for small $\lambda$ should approach gauge values
agrees with the structure of non-analytic terms in 1-loop string correction:

$$
J \times \tilde{\lambda}^{3} \times \frac{1}{\sqrt{\lambda}}=\frac{\lambda^{5 / 2}}{J^{5}}
$$

## All-order gauge theory Bethe ansatz

(Beisert,Dippel,Staudacher, 2004)
asymptotic: up to $\lambda^{J}$

$$
\begin{gathered}
e^{i p_{i} J}=\prod_{j \neq i}^{M} \frac{u_{i}-u_{j}+i}{u_{i}-u_{j}-i} \\
u_{i}=\frac{1}{2} \cot \frac{p_{i}}{2} \sqrt{1+\frac{\lambda}{\pi^{2}} \sin ^{2} \frac{p_{i}}{2}} \\
E=\sum_{i=1}^{M}\left(\sqrt{1+\frac{\lambda}{\pi^{2}} \sin ^{2} \frac{p_{i}}{2}}-1\right)
\end{gathered}
$$

$p_{i}=$ momenta of magnons that may form bound states
To match quantum string need extra S-matrix phase factor:
$e^{i \phi\left(\lambda, p_{i}\right)}$ containing interpolating functions of coupling $\lambda$ with $\phi\left(\lambda \rightarrow 0, p_{i}\right) \rightarrow 0$
"string Bethe ansatz" (Arutyunov, Frolov, Staudacher, 2004)

## Antiferromagnetic end of the spectrum

all spin-chain states should have string counterparts
dimensions of gauge operators bound from above by antiferromagnetic $\left(J_{1}=J_{2}\right)$ state of XXX chain

Similar bound should appear in quantum string theory
corresponding string state? Can be seen in semiclassical approximation? [work in progress with Tirziu]

Hint from strong-coupling extrapolation of AF state of BDS chain:
anom. dim. of AF state operator $\operatorname{Tr}\left(\Phi_{1}^{J / 2} \Phi_{2}^{J / 2}\right)$ (Zarembo, 2005)

$$
\begin{gathered}
\Delta=f(\lambda) J \\
f(\lambda)=1+\frac{\sqrt{\lambda}}{\pi} \int_{0}^{\infty} \frac{d k}{k} \frac{\mathbf{J}_{0}\left(\frac{\sqrt{\lambda} k}{2 \pi}\right) \mathbf{J}_{1}\left(\frac{\sqrt{\lambda} k}{2 \pi}\right)}{\mathrm{e}^{k}+1}
\end{gathered}
$$

small $\lambda$ :

$$
f(\lambda \ll 1)=1+4 \ln 2 \frac{\lambda}{16 \pi^{2}}-9 \zeta(3)\left(\frac{\lambda}{16 \pi^{2}}\right)^{2}+75 \zeta(5)\left(\frac{\lambda}{16 \pi^{2}}\right)^{3}+\ldots
$$

large $\lambda$ extrapolation:

$$
f(\lambda \gg 1)=\frac{\sqrt{\lambda}}{\pi^{2}}+\ldots
$$

suggests that $E \sim \sqrt{\lambda} J$ for dual string state

Simplest circular rotating string 2-spin solution (Frolov, A.T., 2003) on $S^{3}$ part of $S^{5}: \quad\left|\mathrm{X}_{1}\right|^{2}+\left|\mathrm{X}_{2}\right|^{2}=1$

$$
\mathrm{X}_{1}=a e^{i(w \tau+m \sigma)}, \quad \mathrm{X}_{1}=a e^{i(w \tau-m \sigma)}, \quad a=\frac{1}{\sqrt{2}}
$$

$J=\sqrt{\lambda} w$ and $J_{1}=J_{2}=J / 2, \quad m=$ integer winding

$$
E=\sqrt{\lambda} \sqrt{w^{2}+m^{2}}, \quad \text { i.e. } \quad E=\sqrt{J^{2}+\lambda m^{2}}
$$

string in flat space: $m=w, \quad a=$ arbitrary
string on a sphere: can be static $-w=0$, wrapped on circle (unstable) Semiclassical expansion:
$\lambda \gg 1, \quad w, m=$ fixed

Fast string limit: $\quad w \gg m: \quad \tilde{\lambda}=\frac{\lambda}{J^{2}} \ll 1$

$$
E=J+\frac{\lambda m^{2}}{2 J}+O\left(\lambda^{2}\right)=J\left[1+\frac{1}{2} \tilde{\lambda} m^{2}+O\left(\tilde{\lambda}^{2}\right)\right]
$$

matched precisely to gauge theory state
Slow string limit: $w \ll m$, i.e. $J \ll \sqrt{\lambda} m$

$$
E=\sqrt{\lambda} m+\ldots
$$

Very low string limit: $\quad J=m \gg 1, \quad w=\frac{m}{\sqrt{\lambda}} \ll 1$

$$
E=J \sqrt{\lambda+1}=\sqrt{\lambda} J+\ldots
$$

should correspond to antiferromagnetic state spin state Quantum string corrections suppressed by $\frac{1}{\sqrt{\lambda}}$
but subleading terms in classical $E$ may receive corrections from higher loop orders

## Some conclusions

- Matching between gauge and string states near and far from BPS limit
- Presence of non-analytic in $\lambda$ terms in quantum string semiclassical expansion explains "3-loop" disagreement
- Implies presence of non-trivial $\lambda$-dependent phase in string S-matrix or in string Bethe ansatz
- Landau-Lifshitz action: low-energy effective action for relevant string/spin chain modes
- Quantization of Landau-Lifshitz action: effective method of finding finite size corrections on spin chain side and $\alpha^{\prime}$ quantum corrections on string side
- Suggests integrability extends to quantum level: local action that reproduces results of Bethe ansatz based on 2-body S-matrix

