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Gravity from String Theory

One of the miracles of string theory is that it embodies gen-
eral covariance, and gravity, albeit in an a priori rather non-
transparent way.

It shows up even in perturbative string calulations around a flat
Minkowski spacetime background. The 3-graviton scattering am-
plitude in string theory is consistent with the 3-point interaction
implied by tree-level scattering in Einstein gravity.

The 4-graviton string scattering amplitude has a contribution
that is also consistent with the Einstein-Hilbert term. However,
there is an additional string term that is not explained by Einstein-
Hilbert gravity. It is in fact the first indication of a higher-order
correction to Einstein gravity:

I =
∫
d10x√−g

[
R+ c α′3 (Riemann)4 + · · ·

]
where (Riemann)4 is quartic in curvature.



Corrections to Gravity Backgounds in String Theory

Not only gravity, but the entire leading-order effective supergrav-
ity action receives higher-order string corrections. The detailed
forms of some of these corrections, even at the 4-point level, are
not known. However, if we restrict attention to the gravity (and
dilaton) sector, then all the corrections in the effective action up

to order α′3 are known. This allows, in particular, a detailed dis-
cussion of the α′3 corrections to purely gravitational backgrounds
which, at leading order, satisfied the vacuum Einstein equations.

One particularly interesting question concerns the fate of leading-
order gravitational backgrounds with special holonomy, since these,
at leading order, are supersymmetric. Examples are

(Minkowski)4 ×K6 , (Minkowski)3 ×K7 , (Minkowski)2 ×K8

where K6 is a Ricci-flat Calabi-Yau 6-manifold, K7 is a 7-
manifold of G2 holonomy, and K8 is an 8-dimensional Ricci-flat
Calabi-Yau manifold, a hyper-Kähler manifold or a manifold of
Spin(7) holonomy.



Tree-Level Corrections to Type IIA or IIB Strings

In the gravity/dilaton sector, the corrected effective action up to

order α′3 is given by

L =
√
−g e−2φ

(
R+ 4(∂φ)2 − c α′3 Y

)
where c is a known pure-number constant (proportional to ζ(3)).
Y is quartic in curvature. The equations of motion are

Rµν + 2∇µ∇νφ = c α′3Xµν

∇2φ− 2(∂φ)2 = 1
2c α

′3 (Y − gµνXµν)

where

Xµν =
e2φ
√
−g

δ

δgµν

∫
d10x

√
−g e−2φ Y

The quartic curvature correction Y is quite complicated, as a
ten-dimensional Riemannian expression. With care, we can use
a simpler eight-dimensionally covariant light-cone expression, for
the special case of (Minkowski)×K backgrounds.



The Quartic-Curvature Correction

The quartic curvature invariant is given, in light-cone gauge, by

Y ∝ (ti1···i8 tj1···j8 − 1
4ε
i1···i8 εj1···j8)Ri1i2j1j2 · · ·Ri7i8j7j8

and ti1···i8 is defined by

ti1···i8Mi1i2 · · ·Mi7i8 = 24trM4 − 6(trM2)2 , for all Mij = −Mji

It was shown by Gross and Witten that Y could be written as a
Berezin integral over SO(8) Majorana spinors ψ = (ψ+, ψ−):

Y ∝
∫
d16ψ exp

[
(ψ̄+Γijψ+)(ψ̄−Γk`ψ−)Rijk`

]
Since the integrability condition for a covariantly-constant spinor
η in the transverse 8-space is [∇i,∇j]η = 1

4Rijk`Γ
k`η = 0, it fol-

lows that a leading-order supersymmetric background will have
a spinor zero-mode for at least one of the right-handed or left-
handed spinors in the Berezin integral, and hence Y = 0.



Corrections to (Minkowski)4 ×K6

Corrections to Ricci-flat Calabi-Yau manifolds were analysed long
ago. It was shown (Freeman & Pope, 1986) that the variation
of Y , calculated from the Berezin integral, gives

Xij = ∇î∇ĵS , where for any Vi , V̂i ≡ Ji
j Vj

J is the Kähler form of the original CY background metric, and

S = Rijk`R
k`mnRmn

ij − 2Rijk`R
km`nRm

i
n
j

is the 6-dimensional Euler density. (This agrees with sigma-
model beta function calculations by Grisaru et al.)

The corrected equations of motion then imply:

Rij = c α′3 (∇i∇j +∇î∇ĵ)S , φ = −1
2c α

′3 S

(Quantities on RHS calculated using the leading-order back-

ground; corrections are valid to order α′3.) In complex co-

ordinates this corrected Einstein equation is Rαβ̄ = c α′3 ∂α∂β̄S.

The first Chern class still vanishes, but SU(3) → U(3) holonomy.
What happens to supersymmetry?



Supersymmetry in Corrected (Minkowski)4 ×K6

The leading-order supersymmetry transformation rules also re-
ceive α′3 corrections; their detailed form has never been fully
derived (see Peeters, Vanhove, Westerberg for some partial re-
sults). There is a general expectation that supersymmetry should
survive the corrections. This was studied by Candelas, Freeman,
Pope, Sohnius & Stelle (1986) for the 6-dimensional Calabi-Yau

case: Can we at least conjecture an α′3 correction that will make
this happen?

The modification of δψµ = ∇µε to δψµ = Dµε, where

Di = ∇i +
i

2
c α′3 (∇îS)

has as integrability condition precisely the corrected Einstein
equation in the CY background. In the corrected backgound,
we shall have Killing spinors satisfying the corrected condition
Di η = 0; hence supersymmetry.

We can propose δψµ = Dµε as the corrected SUSY transformation
in the CY background, but since it involves the explicit use of the
Kähler form (hidden in the hat), we must make sure that it is also
expressible as a fully Riemannian expression, which specialises to
Di in CY backgrounds.



Riemannian Form of Supersymmetry Correction

A Killing spinor in the leading-order CY background satisfies
Γjη = −iΓĵη. This allows us to write a Riemannian expression

that reduces to Di = ∇i + i
2c α

′3 (∇îS) in a six-dimensional CY
background (CFPSS):

Di = ∇i + 3
4c α

′3∇sRrik`RstmnRtrpq Γk`mnpq

An alternative form, obtained by dualising in the transverse 8-
space, is

Di = ∇i − 6c α′3∇sRipk`Rst`nRtpnq Γqk
These, extended to the full index range, provide candidate ten-

dimensional Riemannian expressions for the α′3 correction to the
gravitino transformation rule in string theory, that would satisfy
the desideratum of implying that the supersymmetry of leading-
order (Minkowski)4 ×K6 backgrounds is preserved in the face of

string corrections at order α′3.

What about leading-order (Minkowski)3 ×K7 or (Minkowski)2 ×K8
backgrounds? Will these remain supersymmetric? What is Di for
these?



Corrections to G2 Holonomy (Minkowski)3 ×K7

We can view these as (Minkowski)2 ×K8, where K8 = R×K7.
With K7 having G2 holonomy, we shall have one covariantly-
constant SO(8) spinor zero-mode of each chirality. The Berezin
integral for Y again vanishes in the background, and its variation
can be nicely expressed in terms of special structures on the G2
manifold (Lü, Pope, Stelle, Townsend):

Xij = cikm cj`n∇k∇`Zmn

where cijk = i η̄Γijkη is the associative 3-form and

Zmn ≡ 1
32ε

mi1···i6εnj1···j6Ri1i2j1j2 · · ·Ri5i6j5j6
From the corrected string equations, we find that on K7 we now
have

Rij = cα′3 (∇i∇jS + cikm cj`n∇k∇`Zmn) , φ = −1
2cα

′3 S

where S = gij Z
ij is the 6-dimensional Euler integrand again.

Since G2 manifolds are Ricci-flat, the correction here has de-
stroyed the special holonomy completely. But, in a generalised
sense, maybe it hasn’t...



Supersymmetry in Corrected (Minkowski)3 ×K7

Can we again modify the supersymmetry transformation rule in
such a way that the corrected G2 background will again remain
supersymmetric? We can again ask for a modification of the
gravitino transformation rule, to δψµ = Dµ ε, where Di = ∇i + c α′3Qi,
and require that the integrability condition [Di, Dj]ε = 0 give the

corrected G2 Einstein equation to order α′3. We find

Di = ∇i −
i

2
c α′3 cijk (∇jZk`)Γ`

This, and the corrected G2 Einstein equation, both reduce to
the previous CY results if we take K7 = R×K6. Thus these G2
holonomy results encompass the previous CY results.

The corrected gravitino transformation was “cooked up” to re-
tain supersymmetry in the corrected G2 background. We must
check that it at least admits a covariant Riemannian generalisa-
tion, that does not make use of special tensors peculiar to G2
backgrounds. This is more restrictive than the previous CY case.
Remarkably, the previous 6-Gamma Riemmanian expression still
works.



Corrections to (Minkowski)4 ×K7 in M-Theory

So far, we have considered α′3 corrections at tree-level in type
II string theory. The IIA string is an S1 compactification of M-
theory. All the tree-level α′3 corrections vanish in the limit of
uncompactified M-theory. There are (Riemann)4 corrections in

M-theory, which correspond to one-loop α′3 corrections in the IIA
string.

At one loop, the α′3 corrections in the type IIA and type IIB
string differ, because of different R-R sectors circulating in the
loop. In type IIB, SL(2, Z) duality implies it is the same as at
tree-level:

Y ∝ (ti1···i8 tj1···j8 − 1
4ε
i1···i8 εj1···j8)Ri1i2j1j2 · · ·Ri7i8j7j8 = Y0 − E8

(with no e−2φ factor, since it is 1-loop). In type IIA, we have
instead

Ỹ ∝ (ti1···i8 tj1···j8 + 1
4ε
i1···i8 εj1···j8)Ri1i2j1j2 · · ·Ri7i8j7j8 = Y0 + E8

and in addition there is a Chern-Simons term B2 ∧ tR4. These
lift to terms of the form β(Ŷ0 + Ê8) and β Â3 ∧ t R̂4 in M-theory.

(β ∼ α′3.)



Eleven-Dimensional Lagrangian

There are also one-loop α′3 corrections to the form-field La-
grangian terms, whose detailed structure is unknown. This pre-
vents one from considering corrections to backgrounds in string
or M-theory with fluxes where such terms would contribute at
this order. But we don’t need to know about such terms in order
to discuss corrections to M-theory backgrounds that are purely
gravitational at leading-order.

For (Minkowski)4 ×K7 backgrounds, where the curvature is re-
stricted to seven dimensions, neither the Ê8 term nor the Â3 ∧ t R̂4

term contribute at this order. It would suffice to consider the
eleven-dimensional Lagrangian

L =
√
−ĝ

(
R̂−

β

1152
Ŷ0

)
However, it is more elegant to exploit the freedom to add terms
that vanish by the leading-order field equations. Adding these
terms does not change the physics in any way; it corresponds
merely to making field redefinitions. But, as is often the case,
there exist more convenient, and less convenient, choices of field
variable.



M-Theory Equations for (Minkowski)4 ×K7

Performing the field redefinition

ĝMN −→ (1 +
β

5184
R̂ Ŝ) ĝMN

where Ŝ is the 6-dimensional Euler integrand, leads to

L =
√
−ĝ

(
R̂−

β

1152
(Ŷ0 − R̂ Ŝ)

)
up to order β. Variation yields the equations of motion

R̂µν − 1
2R̂ĝµν = −

β

1152
�S

R̂ij − 1
2R̂ĝij =

β

1152
(Xij +∇i∇jS − gij �S)

Thus dŝ211 = ηµν dxµ dxν + ds27, where the metric on K7 again
satisfies

Rij =
β

1152
(∇i∇j S + cikm cj`n∇k∇`Zmn)

The field redefinition has compensated for the absence of the
dilaton, allowing us to get the same deformed K7 field equation
as in string theory.



Corrections to (Minkowski)3 ×K8 in M-Theory

With curvature in 8 dimensions, the β Ê8 and β Â3 ∧ t R̂4 terms
contribute at order β to corrections to gravitational backgrounds.
The relevant M-theory Lagrangian is
L = R̂∗̂1l− 1

2∗̂F̂4 ∧ F̂4 − 1
2Â3 ∧ F̂4 ∧ F̂4 + L1 with

L1 = −
β

1152
(Ŷ0 + Ê8 − R̂ Ŝ) ∗̂1l + β (2π)4 Â3 ∧ X̂8

(including the redefinition-dependent term for convenience), where

X̂8 =
1

192(2π)4
[trΘ̂4 − 1

4(tr(Θ̂)2)2]

This implies the field equations

R̂µν − 1
2R̂ ĝµν = −

β

1152
(�S + E8) gµν

R̂ij − 1
2R̂ ĝij =

β

1152
(Xij +∇i∇j S − gij �S)

d∗̂F̂4 − 1
2F̂4 ∧ F̂4 = (2π)4 β X8

where as usual Xij is the variation of
√
−g(Y0 − E8) in K8. The

Ricci-flatness of K8 is corrected to Rij = (β/1152)(Xij +∇i∇jS),
and we take



dŝ211 = e2A ηµν dx
µ dxν + e−A ds28

F̂4 = d3x ∧ df +G4

If we assume for now that K8 is non-compact we can take G4,
which lives in K8, to be zero, and the field equations then imply

�A =
β

1728
E8 , �f = β (2π)4 ∗X8

Note that the non-zero warp factor is forced by the β(Ŷ0 + Ê8 + · · · )
correction, while the non-zero F̂4 is forced by the anomaly term
βÂ3 ∧ X̂8.

The anomaly term is X8 = 1/(192(2π)4) (P2
1 − 4P2), where Pi is

i’th Pontrjagin class. It was shown (Isham & Pope 1988) that
if an 8-manifold admits a nowhere-vanishing spinor (as does a
special-holonomy manifold with its covariantly-constant spinor)
then there is a topological relation P2

1 − 4P2 = 8χ, and hence we

have E8 = 576(2π)4 ∗X8. This leads to

f = 3A

This is the same relation one finds in a standard M2-brane so-
lution.



Supersymmetry of Corrected (Minkowski)3 ×K8

Taking the leading-order K8 to have Spin(7) holonomy, we find
its Ricci-flatness is corrected to

Rij =
β

1152
(1
2c
mn

k(i c
pq
`j)∇

k∇`Zmnpq +∇k∇`Zmnk(i c
mn`

j) +∇i∇j S)

where cijk` is the calibrating 4-form of the Spin(7) background
and

Zmnpq = 1
64 ε

mni1···i6 εpqj1···j6Ri1i2j1j2Ri3i4j3j4Ri5i6j5j6
We can again look for a corrected covariant derivative, whose

integrability condition yields this corrected Einstein equation. We
find

Di ≡ ∇i +
β

1152
Qi = ∇i +

β

4608
cijk`∇j Zk`mnΓmn

This reduces to our previous G2 result if K8 = R×K7. It also
“Riemannianises” to the same 6-Gamma expression as before!
So we can find a “corrected covariantly-constant” spinor in the
corrected K8 background.



The gravitino transformation rule is then

δψ̂M = ∇̂M ε̂+
β

1152
Q̂M ε̂−

1

288
F̂N1···N4 Γ̂M

N1···N4 ε̂+ 1
36F̂MN1···N3 Γ̂N1···N3 ε̂

with Q̂µ = 0 and Q̂i = Qi. Collecting all the contributions up to
order β, the “M2-brane relation” f = 3A cancels spin-connection
terms against field-strength terms (in a standard M2-brane fash-
ion), and we find a Killing spinor

ε̂ = e
1
2A ε⊗ η

where ε is constant in (Minkowski)3 and η satisfies the corrected
covariant constancy condition

∇iη+
β

4608
cijk`∇j Zk`mnΓmnη = 0

in the corrected internal space K8. (Previous discussions omitted
the O(β) correction to the gravitino transformation rule, and
some omitted the contribution from the

√
−g(Y0 + E8) correction

to the Einstein equations.)



(Minkowski)3 ×K8 Solutions with Compact K8

With K8 non-compact, we could take G4 in F̂4 = d3x ∧ df +G4
to be zero. Adding in a flux G4 in K8 is optional, provided that
it is taken to be sufficiently small that O(β) corrections involving
quadratic and higher powers of F̂4 in M-theory are unimportant
(since we don’t know in detail what they are). Hawking & Taylor-
Robinson, and Becker & Becker, have studied the conditions for
a solution, with preserved supersymmetry, having G4 6= 0. The
conclusion is that it can be added provided G4 is self-dual, and
that

Gijk`Γ
jk` η = 0

where η is the Killing spinor on K8.

If K8 is compact, with non-zero Euler number, the inclusion of
G4 becomes obligatory. This is seen by integrating
d∗̂F̂4 + 1

2F̂4 ∧ F̂4 = β(2π)4 X̂8 over K8, yielding

∫
K8

G4 ∧G4 =
β(2π)4

12
χ



Corrections to (Minkowski)1 ×K10 in M-Theory

There is one further special-holonomy case that can be studied,
where the curved background is a Ricci-flat Kähler 10-manifold,
with SU(5) holonomy. This cannot form part of a vacuum in
perturbative string theory, which has only nine spacelike dimen-
sions. It can in principle occur in M-theory. It is an interesting
example, because it probes aspects of M-theory that cannot be
probed directly from light-cone studies in perturbative string the-
ory. However, there is good reason to think that the O(β) cor-
rections in M-theory are valid in a genuinely eleven-dimensional
sense.

The eleven-dimensional Einstein equations, with their O(β) cor-
rections, are given by

R̂00 − 1
2R̂ ĝ00 = −

β

1152
�S g00 +

β

576
Ê00

R̂ij − 1
2R̂ ĝij =

β

1152
(Xij +∇i∇j S − gij �S) +

β

576
Êij

after imposing the (Minkowski)1 × K10 Ricci-flat Kähler back-
ground conditions in the correction terms on the right-hand sides.
Here ÊMN , coming from the variation of the 8-dimensional Euler
integrand Ŷ2, is given by



Ê00 = 1
2Y2 ,

Êi
j = Ei

j ≡ −
9!

29
δ
jj1···j8
ii1···i8 R

i1i2
j1j2 · · ·R

i7i8
j7j8 , (1)

in the (Minkowski)1 × K10 background. Expecting a warped
deformation, we make the ansatz

dŝ211 = −e2A dt2 + e−
1
4A ds210 , F̂4 = G3 ∧ dt+G4

taking, initially, only G3 non-zero in K10. The corrected equa-
tions of motion then imply

Rij =
β

1152

(
∇î∇ĵ S +∇i∇j S + 2Eij + 1

4E8 gij

)
�A =

β

1728
E8

d∗G3 = (2π)4 β X8

The Ricci tensor becomes, as usual, non-zero, and the equation
for the warp factor has the 8-dimensional Euler integrand E8 as
its source. The equation for the 3-form G3 on K10 is integrable,
and has X8 as source.



Supersymmetry and (Minkowski)1 ×K10 Solutions

For deformed special-holonomy solutions (Minkowski)2 ×K8, we

got away with making one universal addition, at order α′3 (or β),
to the gravitino transformation rule. This was first deduced by
supposing the continued supersymmetry of deformed Calabi-Yau
solutions (Minkowski)4 ×K6. It is highly non-trivial that a Rie-
mannian gravitino correction is possible, that implies continued
supersymmetry of all the deformed special-holonomy solutions.
Since complete and explicit results for the transformation rules
up to order α′3 are not available, this is the best we have.

We certainly expect further correction terms, but presumably
they would play no rôle for SU(3), G2 or Spin(7) backgrounds.
It would have been quite possible that extra terms were needed
for (Minkowski)1 ×K10 backgrounds. Remarkably, however, the
existing corrected gravitino transformation rule implies that su-
persymmetry is again preserved in the (Minkowski)1 ×K10 back-
ground.



Generalised Holonomy

Generalised holonomy was introduced (Duff, Liu, Hull,...) as a
way to characterise the occurrence of Killing spinors in supergrav-
ity backgrounds with fluxes, which modify the usual Riemannian
spin connection in the supersymmetry transformation rule

δψµ = ∇µε −→ δψµ = Dµε
The integrability condition [Dµ,Dν]ε = 0 extends the usual gen-
erators RµνabΓ

ab of Riemannian holonomy to an enlarged set of
generators (with more Gamma-matrix structures) of generalised
holonomy.

We can also employ the idea of generalised holonomy in the
string-corrected backgrounds discussed earlier. In cases where
the original special-holonomy manifold has dimension ≤ 7, there
will be no flux contributions at all, and the generalised holonomy
comes just from the string-corrected supersymmetry transforma-
tion rule

Dµ = ∇µ + 3
4c α

′3∇νRρµabRνσcdRσρef Γabcdef

The commutators of these 2-Gamma and 6-Gamma matrices
generate also 10-Gamma matrices (dual to 1-Gamma), so in M-
Theory the algebra closes on {Γa,Γab,Γa1···a6}.



Generalised Structure Group in M-Theory

Splitting a = (0, i), we have

Hermitean : Γi , Γ0i , Γ0i1···i5 , 10 + 10 + 252 = 272
anti-Hermitean : Γ0 , Γij , Γi1···i6 , 1 + 45 + 210 = 256

This describes the maximally-split algebra Sp(32), with 256+16
non-compact geerators (16 Cartan) and 256 compact generators.
This is the Generalised Structure Group for purely gravitational
backgrounds in M-theory. (It is SL(16,R) in string theory.) In
specific backgrounds, we can then find the Generalised Holonomy
Group as the subgroup realised by the non-vanishing generators.

Inclusion of the 4-form as well enlarges the generalised structure
group to SL(32,R). This is unaltered by the presence of the
higher-order curvature correction.

We may also consider the Generalised Transverse Structure Group
and the Generalised Transverse Holonomy Group. Here, we fac-
tor out the Minkowski spacetime in a corrected Minkowski × K
background, and just focus on the curved transverse space K.

We shall only include the contribution of form-field fluxes if these
are forced by the α′3 string corrections or M-theory corrections.



Example: Seven-Dimensional Transverse Space

Consider the example of a 7-dimensional transverse space. The
deformed background is purely gravitational, and since Γa1···a6 is
dual to Γa, we have closure on {Γa,Γab}. These generate SO(8).
This is the Generalised Transverse Structure Group.

We can determine the Generalised Transverse Holonomy Group
for an originally-G2 transverse space by explicit computation of

the α′3 curvature contribution in Dµ. We took the example of
cohomogeneity-1 metrics with S3 × S3 principal orbits. Calcula-
tion shows the generalised transverse holonomy is SO(7).

So at leading (uncorrected) order, the Killing spinor is the singlet
in

SO(7) −→ G2 : 8 −→ 7 + 1

After including the α′3 corrections, the Killing spinor is the singlet
in

SO(8) −→ SO(7) : 8 −→ 7 + 1



General Dimensions of Transverse Space

Original special holonomy groups, generalised transverse struc-
ture groups and generalised tranverse holonomy groups for back-
grounds Minkowksi×Kn in M-theory:

n Orig. Hol. GT Struct. GT Hol.

6 SU(3) SO(6)× U(1) SU(3)× U(1)
7 G2 SO(8) SO(7)
8 Spin(7) SO(8)+ × SO(8)− SO(8)+×Spin(7)−
10 SU(5) SL(16,C) H

For K10, an example gives

H = [U(1)× SL(5,C)× SL(5,C)] n [C(10,1)
1 ⊕ C(10,5)

3 ]

(Subscripts are U(1) charges.)



Conclusions

• Special-holonomy backgrounds are important in string and M-
theory, since they can describe supersymmetric ground states.

• In all except the special case of hyper-Kähler backgrounds,
the special holonomy is either reduced (e.g. SU(3) → U(3))

or completely destroyed (e.g. G2 → SO(7)) by the O(α′3)
corrections.

• In a generalised sense, however, the structure of the special
holonomy group survives; the α′3-corrected gravitino trans-
formation rule still implies the existence of Killing spinors.
Generalised holonomy.

• We still lack a full derivation of the order α′3 corrections to
the gravitino transformation rule.

• (Minkowski)1 ×K10 backgrounds with SU(5) holonomy pro-
vide a rich arena for probing the structure of M-theory.


