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History of the problem

Germ Markov property

The germ σ-field

Let S be a subset in [0,T ]× Rd .
FS: the σ-field generated by {u(t , x) : (t , x) ∈ S}

GS =
⋂

O open:O⊃S

FS.

Definition

The process {u(t , x) : (t , x) ∈ [0,T ]× Rd} is germ Markov if for every
precompact open set A ⊂ [0,T ]× Rd ,

GĀ ⊥ GAc | G∂A,

where ∂A = Ā ∩ Ac .
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History of the problem

Some cases investigated

Donati-Martin and Nualart, 1994{
−∆u + f (u) = Ẇ , x ∈ D

u|∂D = 0
,

where D is a bounded domain in Rd , d = 1,2,3. f is an affine
function.
Nualart and Pardoux, 1994{

ut = uxx + f (u) + Ẇ , (t , x) ∈ [0,1]2

u(0, x) = u0(x), 0 ≤ x ≤ 1; u(t ,0) = u(t ,1) = 0, 0 ≤ t ≤ 1.

Dalang and Hou, 1997

utt = ∆u + L̇,

where L is locally finite Lévy process.

R. Balan and D. Kim (University of Ottawa) SPDE and Markov property Large Deviations, Ann Arbor 4 / 23



History of the problem

Some cases investigated

Donati-Martin and Nualart, 1994{
−∆u + f (u) = Ẇ , x ∈ D
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ut = uxx + f (u) + Ẇ , (t , x) ∈ [0,1]2

u(0, x) = u0(x), 0 ≤ x ≤ 1; u(t ,0) = u(t ,1) = 0, 0 ≤ t ≤ 1.

Dalang and Hou, 1997

utt = ∆u + L̇,

where L is locally finite Lévy process.

R. Balan and D. Kim (University of Ottawa) SPDE and Markov property Large Deviations, Ann Arbor 4 / 23



The Framework The noise

Outline

1 History of the problem

2 The Framework
The noise
The stochastic integral
The equation and its solution

3 RKHS
General characterization
Bessel kernel
Riesz kernel

4 Germ Markov property
The necessary and sufficient condition
Main result

R. Balan and D. Kim (University of Ottawa) SPDE and Markov property Large Deviations, Ann Arbor 5 / 23



The Framework The noise

The noise

Gaussian noise with spatial correlation (Dalang, 1999)

M={M(ϕ), ϕ ∈ D((0,T )× Rd)} Gaussian process with covariance

E(M(ϕ)M(ψ)) =

∫ ∞

0

∫
Rd

∫
Rd
ϕ(t , x)f (x − y)ψ(t , y) dx dy dt

=

∫ T

0

∫
Rd
Fϕ(t , ξ)Fψ(t , ξ)µ(dξ)dt := 〈ϕ,ψ〉0

Here f = Fµ, where µ is a tempered measure on Rd

Riesz kernel f (x) = cα,d |x |−α

Bessel kernel f (x) = cα

∫∞
0 s(α−d)/2−1e−s−|x |2/(4s)ds

Heat kernel f (x) = cα,de−|x |
2/(4α)

Poisson kernel f (x) = cα,d(|x |2 + α2)−(d+1)/2
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The Framework The stochastic integral

Stochastic integral with respect to M

Space of deterministic integrands

P(d)
0 is the completion of D((0,T )× Rd) with respect to 〈·, ·〉0

(This is a space of distributions in x !)

Stochastic integral

M(ϕ) =

∫ T

0

∫
Rd
ϕ(s, x)M(ds,dx)

is defined an an isometry ϕ 7→ M(ϕ) between P(d)
0 and the Gaussian

space HM :
EM(ϕ)M(ψ) = 〈ϕ,ψ〉0, ∀ϕ,ψ ∈ P(d)

0
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The Framework The equation and its solution

Stochastic heat equation

Stochastic heat equation driven by Ṁ{
ut = ∆u + Ṁ in [0,T ]× Rd

u(0, x) = 0
.

Mild solution

u(t , x) =

∫ t

0

∫
Rd

G(t − s, x − y) M(ds,dy),

where
G(t , x) = (4πt)−d/2e−|x |

2/(4t), t > 0, x ∈ Rd

Remark:

G(t − ·, x − ·) ∈ P(d)
0 if and only if

∫
Rd (1 + |ξ|2)−1 µ(dξ) <∞.
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ut = ∆u + Ṁ in [0,T ]× Rd

u(0, x) = 0
.

Mild solution

u(t , x) =

∫ t

0

∫
Rd

G(t − s, x − y) M(ds,dy),

where
G(t , x) = (4πt)−d/2e−|x |

2/(4t), t > 0, x ∈ Rd

Remark:

G(t − ·, x − ·) ∈ P(d)
0 if and only if

∫
Rd (1 + |ξ|2)−1 µ(dξ) <∞.

R. Balan and D. Kim (University of Ottawa) SPDE and Markov property Large Deviations, Ann Arbor 10 / 23



The Framework The equation and its solution

Stochastic heat equation

Stochastic heat equation driven by Ṁ{
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RKHS General characterization

The Reproducing kernel Hilbert space Hu

Row of isometries

P(d)
0 → HM = Hu → Hu

ϕ 7→ M(ϕ) = Y 7→ hY (t , x) = E(Yu(t , x))

Hu = span of {u(t , x) : (t , x) ∈ [0,T ]× Rd} in L2(Ω)

HM = {M(ϕ);ϕ ∈ P(d)
0 }

Definition of Hu:

Hu = {h(t , x) = E(M(ϕ)u(t , x)) : ϕ ∈ P(d)
0 }

and
〈h,g〉Hu = E(M(ϕ)M(ψ)) = 〈ϕ,ψ〉0,
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RKHS General characterization

Attempt to characterize the elements of Hu

Formal calculation

h(t , x) = EM(ϕ)u(t , x) = EM(ϕ)M(G(t − ·, x − ·))
= 〈ϕ,G(t − ·, x − ·)〉0

=

∫ t

0

∫
Rd

∫
Rd

G(t − s, x − y)f (y − z)ϕ(s, z) dy dz ds

=

∫ t

0

∫
Rd

G(t − s, x − y)ϕ1(s, y) dy ,

where ϕ1(s, y) =

∫
Rd
ϕ(s, z)f (y − z) dz.

Intuitively, h should be a solution of:{
ht = ∆h + ϕ1 in (0,T )× Rd

h(0, x) = 0
.
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RKHS Bessel kernel

Characterization of Hu (Bessel kernel of order α)

Spaces of Bessel potentials

Hγ
2 (Rd) = {(1−∆)−γ/2g; g ∈ L2(Rd)}, γ ∈ R

Isometry

P(d)
0 ⊂ L2((0,T ),H−α/2

2 (Rd)) → L2((0,T ),Hα/2
2 (Rd))

ϕ 7→ ϕ1 = (1−∆)−α/2ϕ

Theorem A

Let h(t , x) = EM(ϕ)u(t , x), ϕ ∈ P(d)
0 . Then h is the unique solution in

L2((0,T ),Hα/2+2
2 (Rd)) of

ht = ∆h + ϕ1, h(0, x) = 0.
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RKHS Riesz kernel

Characterization of Hu (Riesz kernel of order α = 4k )

Spaces of Riesz potentials

K α/2(Rd) = {(−∆)−α/4g; g ∈ L2(Rd)} ⊂ Lq(Rd)

where 1/q = 1/2− α/(2d).

K−α/2
2 (Rd) := {ϕ ∈ S ′(Rd);Fϕ is a function,

∫
Rd
|Fϕ(ξ)|2|ξ|−αdξ <∞}

= completion of S(Rd) w.r.t. ‖ · ‖
K−α/2

2 (Rd )

Maps:

P(d)
0 → L2((0,T )× Rd) → L2((0,T ),K α/2

2 (Rd))

ϕ 7→ ϕ0 = (−∆)−α/4ϕ 7→ ϕ1 = (−∆)−α/4ϕ0

R. Balan and D. Kim (University of Ottawa) SPDE and Markov property Large Deviations, Ann Arbor 17 / 23



RKHS Riesz kernel

Characterization of Hu (Riesz kernel of order α)

Theorem B

Let h(t , x) = EM(ϕ)u(t , x), ϕ ∈ P(d)
0 . Then h is the unique solution in

W 1,2
2,q ((0,T )× Rd) of

ht = ∆h + ϕ1, h(0, x) = 0,

where W 1,2
2,q ((0,T )× Rd) is the space of functions u such that

u,ut ,uxi ,uxi xj are in L2((0,T ),Lq(Rd)).
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Germ Markov property The necessary and sufficient condition

A fundamental result

H. Künsch, 1979

The Gaussian process u is germ Markov if and only if the following two
conditions are satisfied:

If h, g ∈ Hu are such that (supp h) ∩ (supp g) = ∅ and supp h is
compact, then

〈h,g〉Hu = 0.

If ζ = h + g ∈ Hu, where h and g are such that
(supp h) ∩ (supp g) = ∅ and supp h is compact, then

h,g ∈ Hu.
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Germ Markov property Main result

Theorem

B. and Kim, 2006

The process solution u is germ Markov if:
(i) f is the Bessel kernel of order α = 2k , k ∈ Z+; or
(ii) f is the Riesz kernel of order α = 4k , k ∈ Z+

Idea of the Proof:

h(t , x) = E(M(ϕ)u(t , x)), g(t , x) = E(M(ψ)u(t , x)), and
(supp h) ∩ (supp g) = ∅.{

ht = ∆h + ϕ1

h(0, x) = 0
,

{
gt = ∆g + ψ1

g(0, x) = 0
.

We need to prove that 〈h,g〉Hu = 0.
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Germ Markov property Main result

Idea of the Proof: (cont’d)

〈h,g〉Hu = 〈ϕ,ψ〉0

=

∫ T

0

∫
Rd

∫
Rd
ψ(s, x)f (x − y)ϕ(s, y) dx dy ds

=

∫ T

0

∫
Rd
ψ(s, x)ϕ1(s, x) dx ds.

Note that
suppϕ1 ⊂ supp h,

suppψ ⊂ suppψ1 ⊂ supp g.

since: (i) if f is the Bessel kernel of order α = 2k

ψ(t , ·) = (1−∆)kψ1(t , ·)

(ii) if f is the Riesz kernel of order α = 4k

ψ(t , ·) = (−∆)2kψ1(t , ·)
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