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Ordering of  N  walkers on the line:

. . .
x1 x2 x3 x4 xN−1 xN

yN−1y1 y2 y3

Vicious walkers: What’s the survival probability if no two walkers are allowed
to switch places?

Laggard: xNWhat’s the survival probability for the “laggard” at
to never assume the lead?

Leader: What’s the survival probability for the walker at
to remain in the lead? 

x1



Some known results:

Vicious walkers: S(t) ∼ t−αN , αN = N(N − 1)/4 .

Leader: S(t) ∼ t−βN , β2 =
1

2
, β3 =

3

4
, βN −→

N→∞

ln(4N)
4 .

S(t) ∼ t−γN ,Laggard: γ2 =
1

2
, γ3 =

3

8
, γN −→

N→∞

ln N

N
.



“Go with the winners”-Simulations 5
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Fig. 1. Left panel: Survival probabilities for a lamb starting next to N lions, all of
whom are on the same side. Lamb and lions both make ordinary random walks with
Dlion = Dlamb = 1/2. Right panel: Corresponding decay exponents. The lower dashed
line represents the prediction from Eq. (5).
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Fig. 2. Same as Fig.1 but for N/2 lions on each side of the lamb. This time neglecting
fluctuations of the front of the group of lions would give αN = N .

to obtain reliable estimates of probabilities as small as 10−50, which would have
been impossible with straightforward simulation.

3 Other Examples

3.1 Multiple Spanning Percolation Clusters

Let us now consider percolation [22] on a large but finite rectangular lattice in
any dimension 2 ≤ d < 6. We single out one direction as “spanning direction”. In
this direction boundary conditions are open (surface sites just have no neighbours
outside the lattice), while boundary conditions in the other direction(s) might
be either open or periodic. Up to some six years ago there was a general believe,
based on a misunderstood theorem, that there is at most one spanning cluster
in the limit of large lattice size, keeping the shape of the rectangle fixed (Li =
xiL, L → ∞, i = 1, . . . d). A ‘spanning cluster’ is a cluster which touches both
boundaries in the spanning direction.

“Go with the winners”

P. Grassberger
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Figure 1. The order domains for three particles in (a) the full three-dimensional space, and
(b) projected onto the subspace perpendicular to the (1, 1, 1) axis. The notation ijk is shorthand
for xi < xj < xk . The allowed region corresponding to the survival of a leader (x1 < x2, x3) is
indicated by the darker shading, while the lighter shaded region corresponds to the laggard problem
(x3 !< x1, x2).

For two particles, their separation undergoes simple diffusion and the process terminates
when the separation equals zero. Thus, the survival probability of the leader decays as t−1/2.
To fix the notation and ideas for later sections, we now study the three-particle system. For
a leader at x1(t) and particles at x2(t) and x3(t), we view these coordinates as equivalent to
the isotropic diffusion of a single effective particle at (x1(t), x2(t), x3(t)) in three dimensions.
Whenever this effective particle crosses the plane Aij : xi = xj , the original walkers at xi and
xj in one dimension reverse their order. There are three such planes A12, A13, A23 that divide
the space into six domains, corresponding to the 3! possible orderings of the three walkers
(figure 1(a)). These planes all intersect along the (1, 1, 1) axis.

We may simplify this description by projecting onto the plane x1 + x2 + x3 = 0 that
contains the origin and is perpendicular to the (1, 1, 1) axis. Now the plane A12 may be
written parametrically as (a, a, b) and its intersection with the plane x1 + x2 + x3 = 0 is the
line (a, a,−2a). Likewise, the intersections of A13 and A23 with the plane x1 + x2 + x3 = 0
are (a,−2a, a) and (−2a, a, a), respectively (figure 1(b)).

The survival of the leader corresponds to the effective particle remaining within the
adjacent domains 123 and 132 in figure 1(b). The background particles at x2 and x3 are
allowed to cross, but the leader at x1 always remains to the left of both x2 and x3. The union
of these two domains defines a wedge of opening angle 120◦. Since the survival probability

N=3 Walkers

x1 x2 x3

S(t) ∼ t
−π/2ϕ

ϕ

Vicious

Leader

Laggard

π/3

2π/3

4π/3

∼ t
−3/2

∼ t
−3/4

∼ t
−3/8

S(t)



Relation to Electrostatics

ElectrostaticsDiffusion

P (r, t)
∂

∂t
= D∇

2P (r, t)

S(t) =

∫
P (r, t) dN−1

r

∇
2 =

1

ε0

δ(r − r0)V (r)

∫ t

S(t) ∼

∫ √

t

V (r) d
N−1

r

S(t) ∼ t
−α

V (r) ∼ r
−µ

α =
µ − N + 3

2



N=4 Walkers
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Vicious walkers:

V (r) ∼ a1r
−7 + a2r

−11 + a3r
−13 + a4r

−15 + · · ·

S(t) ∼ b1t
−3 + b2t

−5 + b3t
−6 + b4y

−7 + · · ·
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Figure 3. Local exponent µ(r), as a function of 1/r for the tetrahedral wedge with absorbing (+)
and reflecting (◦) finite-size boundary conditions at the outer face of the cube.

While the power-law decay of the potential sets in quickly, the finite-size effect is
pronounced and it is perceptible already at 25 lattice spacings away from the charge. This
is the primary limitation on the accuracy of our exponent estimate. Nevertheless, the
local exponent µ(r) = −d ln V (r)/d ln r varies only at the fourth digit (figure 3). The
approach of the local exponent to the asymptotic limit also suggests that V (r) has the form
V (r) ∼ r−µ + Ar−4. Assuming that this is the case, extrapolation of the data in figure 3 gives
µ = 2.826 84 ± 0.000 16, where the error bar is the difference in the extrapolated value of
µ(r) from the two different boundary conditions. From the exponent correspondence given
in equation (3), we thereby obtain, for the lead probability,

L4(t) ∼ t−β4 + At−3/2 β4 = 0.913 42(8). (4)

It is hard to match this numerical accuracy with that from direct simulations of the survival
of the leader. Using the latter method, we simulated 109 realizations of the system in which the
leader is initially at x = −1, while the other three particles are all at x = 0. Note that this is a
different initial condition from that in the electrostatic approach, but the initial condition does
not affect the asymptotic behaviour. We find extremely linear data for the time dependence of
the leader survival probability on a double logarithmic scale. To estimate the exponent β4, we
computed the local slopes of the survival probability versus time in contiguous time ranges
between t and 1.5t when plotted on a double logarithmic scale. These local exponents are
plotted against 1/ ln1.5 t (figure 4). The results are compatible but much less accurate than
equation (4). Similarly, Bramson and Griffeath [12] quote β4 ≈ 0.91 from direct, but less
extensive, simulations.

5. The laggard problem

In the laggard problem, we study the probability that the initially rightmost particle at xN

has never been the leader during the time interval (0, t). The laggard problem can also be
recast into the diffusion of a single effective particle within an N-dimensional wedge-shaped
region, with absorbing domain boundaries. This mapping leads to the basic conclusion that
every particle that is initially not in the lead exhibits the same asymptotic behaviour as the last
particle. Indeed, for any particle i initially at xi , the regions xi %< x1, . . . , xi−1, xi+1, . . . , xN

are isomorphic. The initial condition merely fixes the location of the effective particle in this
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V (r) ∼ r−µ + Ar−4; µ = 2.82684(16)

S(t) ∼ t−β4 + Bt−3/2; β4 = 0.91342(8)

Leader:
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Vicious Walkers

. . .
x1 x2 x3 x4 xN−1 xN

yN−1y1 y2 y3

M. Fisher

P (x1, . . . , xN , t) ∼
∏

j>i

(xj − xi) exp

(

−

N
∑

i=1

x2

i /t

)



Random Matrices

P (λ1, . . . , λN , t) ∼ exp



−
β

2





N
∑

i=1

λ2

i −
∑

i !=j

ln |λi − λj |









ρ(λ, N) =

√

2

Nπ2

[

1 −

λ2

2N

]1/2

E. P.  Wigner  1902-1995

RandomMatrices, the Ulam Problem, Directed Polymers & GrowthModels, and Sequence Matching9
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Fig. 2. The dashed line shows the semi-circular form of the average density of states. The largest

eigenvalue is centered around its mean
√

2N and fluctuates over a scale of width N−1/6. The prob-

ability of fluctuations on this scale is described by the Tracy-Widom distribution (shown schemati-

cally).

For large N and for any β,

ρ(λ, N) =

√

2

Nπ2

[

1 − λ2

2N

]1/2

. (3.3)

Thus, on an average, theN eigenvalues lie within a finite interval
[

−
√

2N,
√

2N
]

,

often referred to as the Wigner ‘sea’. Within this sea, the average density of

states has a semi-circular form (see Fig. 2) that vanishes at the two edges−
√

2N
and

√
2N . Note that since there are N eigenvalues distributed over the inter-

val
[

−
√

2N,
√

2N
]

, the average spacing between adjacent eigenvalues scales as

N−1/2.

From the semi-circular law, it is clear that the average of the maximum (or

minimum) eigenvalue is
√

2N
(

−
√

2N
)

. However, for finite but large N , the

maximum eigenvalue fluctuates, around its mean
√

2N , from one sample to an-
other. A natural question is: what is the full probability distribution of the largest

eigenvalue λmax? Once again, this distribution can, in principle, be computed

from the joint pdf in Eq. (3.1). To see this, it is useful to consider the cumula-

tive distribution of λmax. Clearly, if λmax ≤ t, it necessarily means that all the
eigenvalues are less than or equal to t. Thus,

Prob [λmax ≤ t, N ] =

∫ t

−∞

N
∏

i=1

dλi P (λ1, λ2, . . . , λN ), (3.4)

C. Tracy H. Widom (Source:  S. N. Majumdar, cond-mat/0701193)



Vicious Walkers . . .
x1 x2 x3 x4 xN−1 xN

yN−1y1 y2 y3

P (x1, . . . , xN , t) ∼
∏

j>i

(xj − xi) exp

(

−

N
∑

i=1

x2

i /t

)

Examine the most probable location: ∂

∂xi
lnP (x1, . . . , xN , t) = 0

N∑

i=1

1

xj − xi

= 2
xj

t
, j = 1, 2, . . . , N

′



Scale zi =

√

2

t
xi

N∑

i=1

1

zj − zi

= zj , j = 1, 2, . . . , N
′
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3, −α2 = α3 = 1
2

√

3 −
√

3; etc... For larger N the equations can be solved
numerically. In figure 3 I show the αm obtained for N = 50, 100, 200, 400, 800, plotted against (2m − N − 1)/N (the
x-axis legend is incorrect). The results scale neatly with N and m:

αm(N) =
2m − N − 1√

N
f

(

2m − N − 1

N

)

, (15)

as shown in figure 4 for N = 400 and 800.
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Finally, it makes sense to look at the relative distances, yj . Question: suppose that one looks for the most likely
y’s, departing from the distribution (11), will the answers coincide with xj+1 − xj found above? My guess is that

zi

2i − N − 1

N

ξ ≡

2i − N − 1

N

zi −→
√

Nf(ξ)
N → ∞

f(ξ) ∼ ξ , ξ " 1
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z(ξ) ∼ (1 − ξ)−δ
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N∑

i=1

1

zj − zi

= zj , j = 1, 2, . . . , N
′

F. Calogero

Compare

to Calogero’s relations for the zeros of Bessel functions:

Jp(y
1/2

j ) , j = 1, 2, 3, . . .

∞∑

i=1

1

yj − yi

= −

p + 1

2yj

, j = 1, 2, 3, . . .
′


