

Rare Event Statistics of Random Walkers on the Line Large Deviations Conference, Ann Arbor, Michigan, June 7, 2007

Rare Event Statistics of Random Walkers on the Line

Sid Redner, Paul Krapivsky, Brent Johnson, Chris Monaco*

^{*}D. ben-Avraham, B.M. Johnson, C.A. Monaco, P.L. Krapivsky, and S. Redner, *J. Phys. A* **36**, 1789 - 1799 (2003).

Ordering of N walkers on the line:

Vicious walkers: What's the survival probability if *no* two walkers are allowed to switch places?

- **Leader:** What's the survival probability for the walker at x_1 to remain in the lead?
- Laggard: What's the survival probability for the "laggard" at x_N to never assume the lead?

Some known results:

 $\begin{array}{ll} \text{Vicious walkers:} \quad S(t) \sim t^{-\alpha_N}, & \alpha_N = N(N-1)/4 \,. \\ \\ \text{Leader:} \quad S(t) \sim t^{-\beta_N}, & \beta_2 = \frac{1}{2}, \ \beta_3 = \frac{3}{4}, \ \beta_N \underset{N \to \infty}{\longrightarrow} \frac{\ln(4N)}{4} \,. \\ \\ \\ \text{Laggard:} \quad S(t) \sim t^{-\gamma_N}, & \gamma_2 = \frac{1}{2}, \ \gamma_3 = \frac{3}{8}, \ \gamma_N \underset{N \to \infty}{\longrightarrow} \frac{\ln N}{N} \,. \end{array}$

"Go with the winners"

P. Grassberger

$$S(t) \sim t^{-\pi/2\varphi}$$

Relation to Electrostatics

Diffusion

Electrostatics

$$\begin{split} \frac{\partial}{\partial t} P(\mathbf{r}, t) &= D \nabla^2 P(\mathbf{r}, t) \\ S(t) &= \int P(\mathbf{r}, t) \, d^{N-1} \mathbf{r} \\ \int^t S(t) &\sim \int^{\sqrt{t}} V(\mathbf{r}) \, d^{N-1} \mathbf{r} \end{split}$$

$$S(t) \sim t^{-\alpha}$$

$$V(\mathbf{r}) \sim r^{-\mu}$$

$$\alpha = \frac{\mu - N + 3}{2}$$

<u>N=4 Walkers</u>

Vicious walkers:

$$V(\mathbf{r}) \sim a_1 r^{-7} + a_2 r^{-11} + a_3 r^{-13} + a_4 r^{-15} + \cdots$$

$$S(t) \sim b_1 t^{-3} + b_2 t^{-5} + b_3 t^{-6} + b_4 y^{-7} + \cdots$$

L₁₂₃

Vicious Walkers

$$P(x_1,\ldots,x_N,t) \sim \prod_{j>i} (x_j - x_i) \exp\left(-\sum_{i=1}^N x_i^2/t\right)$$

M. Fisher

Random Matrices

$$P(\lambda_{1}, \dots, \lambda_{N}, t) \sim \exp\left[-\frac{\beta}{2}\left(\sum_{i=1}^{N} \lambda_{i}^{2} - \sum_{i \neq j} \ln|\lambda_{i} - \lambda_{j}|\right)\right]$$

$$\rho(\lambda, N) = \sqrt{\frac{2}{N\pi^{2}}}\left[1 - \frac{\lambda^{2}}{2N}\right]^{1/2}$$

$$(Source: S. N. Majumdar, cond-mat/0701193)$$

Examine the *most probable* location:

$$\frac{\partial}{\partial x_i} \ln P(x_1, \dots, x_N, t) = 0$$

$$\sum_{i=1}^{N} \frac{1}{x_j - x_i} = 2\frac{x_j}{t}, \qquad j = 1, 2, \dots, N$$

$$z_{i} \xrightarrow[N \to \infty]{} \sqrt{N} f(\xi)$$
$$f(\xi) \sim \xi, \quad \xi \ll 1$$
$$\xi \equiv \frac{2i - N - 1}{N}$$

Compare
$$\sum_{i=1}^{N} \frac{1}{z_j - z_i} = z_j, \quad j = 1, 2, ..., N$$

to Calogero's relations for the zeros of Bessel functions:

$$J_p(y_j^{1/2}), \quad j = 1, 2, 3, \dots$$

$$\sum_{i=1}^{\infty} \frac{1}{y_j - y_i} = -\frac{p+1}{2y_j}, \quad j = 1, 2, 3, \dots$$

