Rare Event Statistics of Random Walkers on the Line

Sid Redner, Paul Krapivsky, Brent Johnson, Chris Monaco*
*D. ben-Avraham, B.M. Johnson, C.A. Monaco, P.L. Krapivsky, and S. Redner, J. Phys. A 36, 1789-1799 (2003).

Ordering of N walkers on the line:

Vicious walkers: What's the survival probability if no two walkers are allowed to switch places?

Leader: What's the survival probability for the walker at x_{1} to remain in the lead?

Laggard: What's the survival probability for the "laggard" at x_{N} to never assume the lead?

Some known results:

Vicious walkers: $\quad S(t) \sim t^{-\alpha_{N}}, \quad \alpha_{N}=N(N-1) / 4$.
Leader: $\quad S(t) \sim t^{-\beta_{N}}, \quad \beta_{2}=\frac{1}{2}, \quad \beta_{3}=\frac{3}{4}, \quad \beta_{N} \underset{N \rightarrow \infty}{\longrightarrow} \frac{\ln (4 N)}{4}$.

Laggard: $\quad S(t) \sim t^{-\gamma_{N}}, \quad \gamma_{2}=\frac{1}{2}, \gamma_{3}=\frac{3}{8}, \quad \gamma_{N} \underset{N \rightarrow \infty}{\longrightarrow} \frac{\ln N}{N}$.
$\mathrm{N} / 2$ lions on each side

"Go with the winners"

$\mathrm{N}=3$ Walkers

$$
S(t) \sim t^{-\pi / 2 \varphi}
$$

$$
\varphi \quad S(t)
$$

Vicious

$$
\pi / 3 \quad \sim t^{-3 / 2}
$$

Leader

$$
2 \pi / 3 \quad \sim t^{-3 / 4}
$$

Laggard

$$
4 \pi / 3 \quad \sim t^{-3 / 8}
$$

(a)

Relation to Electrostatics

Diffusion
Electrostatics

$$
\begin{array}{ll}
\frac{\partial}{\partial t} P(\mathbf{r}, t)=D \nabla^{2} P(\mathbf{r}, t) & \\
S(t)=\int P(\mathbf{r}, t) d^{N-1} \mathbf{r} & \nabla^{2} V(\mathbf{r})=\frac{-}{\varepsilon} \\
\int^{t} S(t) \sim \int^{\sqrt{t}} V(\mathbf{r}) d^{N-1} \mathbf{r} \\
S(t) \sim t^{-\alpha} & V(\mathbf{r}) \sim r^{-\mu} \\
& \alpha=\frac{\mu-N+3}{2}
\end{array}
$$

$\mathrm{N}=4$ Walkers

Vicious walkers:

$$
\begin{gathered}
V(\mathbf{r}) \sim a_{1} r^{-7}+a_{2} r^{-11}+a_{3} r^{-13}+a_{4} r^{-15}+\cdots \\
S(t) \sim b_{1} t^{-3}+b_{2} t^{-5}+b_{3} t^{-6}+b_{4} y^{-7}+\cdots
\end{gathered}
$$

$\mathrm{N}=4$ Walkers Leader:

$$
\begin{aligned}
& V(\mathbf{r}) \sim r^{-\mu}+A r^{-4} ; \quad \mu=2.82684(16) \\
& S(t) \sim t^{-\beta_{4}}+B t^{-3 / 2} ; \quad \beta_{4}=0.91342(8)
\end{aligned}
$$

Vicious Walkers

$P\left(x_{1}, \ldots, x_{N}, t\right) \sim \prod_{j>i}\left(x_{j}-x_{i}\right) \exp \left(-\sum_{i=1}^{N} x_{i}^{2} / t\right)$
M. Fisher

Random Matrices

$P\left(\lambda_{1}, \ldots, \lambda_{N}, t\right) \sim \exp \left[-\frac{\beta}{2}\left(\sum_{i=1}^{N} \lambda_{i}^{2}-\sum_{i \neq j} \ln \left|\lambda_{i}-\lambda_{j}\right|\right)\right]$
$\rho(\lambda, N)=\sqrt{\frac{2}{N \pi^{2}}}\left[1-\frac{\lambda^{2}}{2 N}\right]^{1 / 2}$

(Source: S. N. Majumdar, cond-mat/0701193)

Vicious Walkers

$P\left(x_{1}, \ldots, x_{N}, t\right) \sim \prod_{j>i}\left(x_{j}-x_{i}\right) \exp \left(-\sum_{i=1}^{N} x_{i}^{2} / t\right)$
Examine the most probable location: $\quad \frac{\partial}{\partial x_{i}} \ln P\left(x_{1}, \ldots, x_{N}, t\right)=0$

Scale $z_{i}=\sqrt{\frac{2}{t}} x_{i} \rightleftharpoons \sum_{i=1}^{N} \frac{1}{z_{j}-z_{i}}=z_{j}, \quad j=1,2, \ldots, N$

Compare $\quad \sum_{i=1}^{N} \frac{1}{z_{j}-z_{i}}=z_{j}, \quad j=1,2, \ldots, N$
to Calogero's relations for the zeros of Bessel functions:

$$
\begin{gathered}
J_{p}\left(y_{j}^{1 / 2}\right), \quad j=1,2,3, \ldots \\
\sum_{i=1}^{\infty} \frac{1}{y_{j}-y_{i}}=-\frac{p+1}{2 y_{j}}, \quad j=1,2,3, \ldots
\end{gathered}
$$

