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universal features

onset of soft modes leading to 
scaling of  the escape rate 

large susceptibility where 
coexisting stable states are 
almost equally occupied

experimental accessibility 
+ applications

comparatively large escape 
probability for weak noise

high sensitivity to system 
parameters

Motivation 

Noise-induced escape in dynamical systems far from thermal equilibrium:

bifurcation points

noise-induced frequency mixing, 
stochastic resonance, …



Near the bifurcation point one of the motions 
is slow, a soft mode universal behavior 
of the escape rate

Kurkijarvi (1972), MD & Krivoglaz (1979, 1980), Graham & Tél (1987), Victora (1989)

Stationary multivariable systems:

No noise: the relaxation time                                           is large for small2/)(/1 2/12 −=∂−= ηaqr qUt ||η

,)( 3
3
1 qqqUUq q η+−=−∂=&

noise D=kBT in thermal equilibrium

)'(2)'()(),( ττδτττ −=+ Dfff

ζξ ηνην ∝=Δ=−= ,),/exp( 3
4URDRW

Noise: delta-correlated in slow time. 

Saddle-node bifurcation 
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The escape rate



Adiabatic bifurcation amplitude : the states touch each other, once per 

period, for 

Slow driving: or    

The system follows the driving field adiabatically (?) 

Adiabatic periodic states: 

[local minimum and maximum of the potential U(q,t)]
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The barrier is at its lowest once per period, for               

the effective 1D potential is a cubic parabola,

In the fully adiabatic picture, escape rate is determined 
by the instantaneous barrier height
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Adiabatic scaling:
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Relaxation time                                                . The adiabaticity condition0for        ad →∞→ Atr δ
breaks down at the bifurcation point.
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Period-averaged escape rate
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Adiabatic scaling
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The true saddle-node bifurcation occurs for                  where the stable and the 
unstable states merge for all times, 
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Avoided crossing of stable and unstable states where adiabaticity is broken

Overall evolution of periodic states

A step back…
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The adiabatic relaxation time
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The adiabaticity conditions:
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⇒ new dynamical time scale
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Expand                  around the adiabatic bifurcation point  

eliminate “fast” modes, rescale: 

ad
cF

ad
c AAntqq ===   ,  , τ

Beyond the adiabatic approximation
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Shift of the bifurcation point due to crossing avoidance
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Locally nonadiabatic regime

:1~η locally nonadiabatic regime,

1<<rF tω but lr tt ~ and decay is nonexponential



Shift of the bifurcation point due to crossing avoidance
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Locally nonadiabatic regime
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1D time-dependent local Langevin equation

optQ

Close to the bifurcation point, , the variational problem for the optimal 

escape path can be linearized and solved:
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The escape activation energy and the prefactor in the escape rate are 
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locally nonadiabatic adiabatic crossover:
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Results for a model system
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Underdamped systems close to a bifurcation point
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friction noise
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A Hamiltonian system with weak damping and noise, close but not too close to 
the saddle-node bifurcation point:

Hamiltonian q

U

Frequency of vibrations about the center        is small, but 
friction is still smaller,
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Nonlocal scenario: squeezing of the homoclinic orbit as             , with no change in 
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The scenarios of approaching the bifurcation

Local scenario: shrinking of the homoclinic orbit as               ,
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crossover to

Friction: drift over energy towards a metastable state
Noise: energy diffusion, ultimately leading to escape 

Escape rate

)/exp( DRW −∝

Crossover for a resonantly driven oscillator
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(Kogan et al., 2006)

Local scenario: ,2/3εηlocCR = the same scaling as in the overdamped region

Non-local scenario: ,εηnlCR = with decreasing        η



Modulated nonlinear oscillator  

Eigenfrequency depends on vibration amplitude, 2
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Cubic equation for the amplitude of forced vibrations, 222
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φ     andBoth a display hysteresis

Periodic state: )cos( φω += taq F
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Hysteresis in a modulated Josephson junction 

tFqqqq Fωγω cos2 32
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Periodic state: )cos( φω += taq F

φ     andBoth a display hysteresis

SS I
0 , JI C

δ phase
difference

A Josephson junction based nonlinear oscillator
(Siddiqi et al. PRL 2004, 2005)
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Hysteresis and switching in nanooscillators

Resonantly modulated MEMS 

(Stambaugh & Chan, PRL, PRB 2006)

Resonantly modulated 
nanoelectromechanical resonators

(Schwab & Roukes, Phys. Today 2005)

(Aldridge & Cleland, PRL 2005)
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High sensitivity to a system parameter 
(e.g., oscillator eigenfrequency): a small 
change in the parameter leads to a shift 
of the bifurcation point
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Quantum readout with a bifurcation amplifier 

(Siddiqi et al., 2004-2006)

Real switching:
fluctuation-induced smearing 

Strong signal amplification at a bifurcation point
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A modulated oscillator does not have detailed balance. Switching
occurs between periodic states. For resonant modulation, the 
activation energy  scales as                      close to bifurcation 
points. For small damping it may also display                scaling

Scaling for a classical oscillator
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Josephson junctions (Siddiqi et al., 2005)
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The predicted scaling                   has been seen near a cusp on the bifurcation curve 
(Aldridge & Cleland, 2005) and for a parametrically modulated oscillator (Stambaugh & 
Chan, 2006) 
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Quantum scaling for resonant driving 
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Still closer to           motion becomes overdamped and  2,1BF
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Underdamped regime:

small-amplitude

large-amplitude

small-amplitude

large-amplitude 2
1 ,)12( BA FFnR −=+∝ − ηη

small-amplitude: tunneling decay, (Dmitriev & Dyakonov, 1986)

scaled dephasing rate (MD, 2006)
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Activation energy and the prefactor in the escape rate scale 
as powers of the distance to the bifurcation point 

Systems lacking detailed balance display scaling behavior 
that does not arise in systems in thermal equilibrium, with 
new scaling exponents. 

Scaling crossovers:                                             in slowly 
modulated systems and                          in underdamped 
systems

Critical exponents near bifurcation points have been 
observed in modulated nonlinear oscillators.
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