CRITICAL EXPONENTS IN ACTIVATED ESCAPE OF NONEQUILIBRIUM SYSTEMS

Mark Dykman Department of Physics and Astronomy Michigan State University

In collaboration with

B. Golding (MSU)

O. Kogan (Caltech)

D. Ryvkine (MSU)

I. Schwartz (NRL)

M. Shapiro (MSU)

Motivation

Noise-induced escape in dynamical systems far from thermal equilibrium:

Saddle-node bifurcation

Near the bifurcation point one of the motions is slow, a soft mode is universal behavior of the escape rate

Stationary multivariable systems:

$$\dot{q} = -\partial_{q}U + f(\tau), \qquad U(q) = -\frac{1}{3}q^{3} + \eta q, \qquad \left\langle f(\tau)f(\tau') \right\rangle = 2D\,\delta(\tau - \tau')$$
noise
$$D = k_{B}T \text{ in thermal equilibrium}$$

No noise: the relaxation time $t_r = -1/\partial_q^2 U(q_a) = \eta^{-1/2}/2$ is large for small $|\eta|$

Noise: delta-correlated in slow time. The escape rate

$$W = v \exp(-R/D), \quad R = \Delta U = \frac{4}{3}\eta^{\xi}, \quad v \propto \eta^{\zeta} \qquad \xi = 3/2, \quad \zeta = 1/2$$

Kurkijarvi (1972), MD & Krivoglaz (1979, 1980), Graham & Tél (1987), Victora (1989)

Slow periodic modulation

A periodically modulated dynamical system: $\dot{\mathbf{q}} = \mathbf{K}(\mathbf{q}, t) + \mathbf{f}(t), \ \mathbf{K}(\mathbf{q}, t) = \mathbf{K}(\mathbf{q}, t + \tau_F)$ for example $K = -\partial_q U(q, t) = -\partial_q U(q) + A \cos \omega_F t$

Slow driving:
$$\omega_F t_r \ll 1$$
 or $\tau_F = 2\pi / \omega_F >> t_r$

The system follows the driving field adiabatically (?)

Adiabatic periodic states: $\mathbf{K}(\mathbf{q}_{a,b}^{\mathrm{ad}}(t),t) = \mathbf{0}$

[local minimum and maximum of the potential U(q,t)]

Adiabatic bifurcation amplitude A_c^{ad} : the states $\mathbf{q}_{a,b}^{ad}(t)$ touch each other, once per period, for $t = n\tau_F$

Small $\delta A^{ad} = A - A_c^{ad}$, $|t - n\tau_F|$: one-dimensional motion

Adiabatic scaling

In the fully adiabatic picture, escape rate is determined by the instantaneous barrier height

$$\Delta U(t) = U(\mathbf{q}_b, t) - U(\mathbf{q}_a, t)$$

Period-averaged escape rate

$$\overline{W} = v \exp(-R/D), \quad R_{ad} = \min_t \Delta U(t)$$

The barrier is at its lowest once per period, for $t = n\tau_F$ the effective 1D potential is a cubic parabola,

$$U(q,t=n\tau_F) \approx -\frac{1}{3}q^3 - \delta A^{\mathrm{ad}} q, \quad \delta A^{\mathrm{ad}} = A - A_c^{\mathrm{ad}}$$

Adiabatic scaling:

$$R_{\rm ad} = \Delta U(t=0) = \frac{4}{3} (-\delta A^{\rm ad})^{\xi}, \quad v_{\rm ad} \propto (-\delta A^{\rm ad})^{\zeta} \qquad \xi = 3/2, \quad \zeta = 1/4$$

Relaxation time $t_r \to \infty$ for $\delta A^{ad} \to 0$. The adiabaticity condition $\omega_F t_r << 1$ breaks down at the bifurcation point.

A step back...

The true saddle-node bifurcation occurs for $A = A_c$ where the stable and the unstable states merge for all times,

Avoided crossing of stable and unstable states where adiabaticity is broken

Beyond the adiabatic approximation

Expand $\mathbf{K}(\mathbf{q}, t)$ around the adiabatic bifurcation point

$$q = q_c^{ad}, \ t = n\tau_F, \ A = A_c^{ad}$$

eliminate "fast" modes, rescale:

$$\dot{q} = q^2 + \delta A^{ad} - \gamma^2 (\omega_F t)^2$$
, $\gamma \sim 1$

The adiabatic relaxation time

$$t_r^{ad}(t) = |2q_a(t)|^{-1} = [(\gamma \omega_F t)^2 - \delta A^{ad}]^{-1/2} / 2$$

The adiabaticity conditions:

1)
$$t_r^{ad} \omega_F \ll 1$$

2) $\left| \frac{\partial t_r^{ad}}{\partial t} \right| \ll 1 \implies t_r^{ad} \ll t_l = (\gamma \omega_F)^{-1/2} \iff$ new dynamical time scale

Shift of the bifurcation point due to crossing avoidance

$$A_c^{sl} = A_c^{ad} + \gamma \omega_F$$

Control parameter $\eta = (A_c^{sl} - A) / (\gamma \omega_F)$

Scaled coordinate and time $Q = t_l q$, $\tau = t / t_l$

 $\eta \sim 1$: locally nonadiabatic regime,

 $\omega_F t_r \ll 1$ but $t_r \sim t_l$ and decay is nonexponential

Shift of the bifurcation point due to crossing avoidance

$$A_c^{\rm sl} = A_c^{\rm ad} + \gamma \omega_F$$

Control parameter $\eta = (A_c^{sl} - A) / (\gamma \omega_F)$

Scaled coordinate and time $Q = t_l q$, $\tau = t / t_l$

1D time-dependent local Langevin equation

$$\frac{dQ}{d\tau} = Q^{2} - \tau^{2} + 1 - \eta + \widetilde{f}(\tau)$$

Close to the bifurcation point, $\eta \ll 1$, the variational problem for the optimal escape path can be *linearized* and solved:

$$Q_{opt}(\tau) = \tau - \eta \int_{-\infty}^{\tau} d\tau_1 e^{\tau^2 - \tau_1^2} \left[1 - \sqrt{2} e^{-\tau_1^2} \right]$$

The escape activation energy and the prefactor in the escape rate are

$$R = (\pi / 8)^{1/2} \eta^{\xi}, \quad v \propto \eta^{\zeta}$$

Slow driving, $\omega_F t_r \ll 1$: locally nonadiabatic \iff adiabatic crossover:

 $\overline{W} = \nu \exp(-R / D)$

 $R \propto (A_c - A)^{\xi}, \quad \xi = 2 \Leftrightarrow 3/2$

$$v \propto (A_c - A)^{\zeta}, \quad \zeta = -1 \Leftrightarrow 1/4$$

 $\eta \propto A_c - A$

Results for a model system

A Hamiltonian system with weak damping and noise, close but not too close to the saddle-node bifurcation point:

$$\frac{dq}{dt} = \partial_p H(p,q;\eta) - \varepsilon \upsilon^{(q)}(p,q) + f^{(q)}(t)$$

$$\frac{dp}{dt} = -\partial_q H(p,q;\eta) - \varepsilon \upsilon^{(p)}(p,q) + f^{(p)}(t)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

Hamiltonian friction noise $\langle f^{(i)}(t)f^{(j)}(t')\rangle = 2D_{ij}(p,q)\delta(t-t')$

Frequency of vibrations about the center ω_c is small, but friction is still smaller, $\omega_c t_r >> 1$, $t_r \propto \varepsilon^{-1}$

Assume:

$$\begin{split} & \triangleright \ \ \, \omega_c \to 0 \quad \text{where the control parameter} \quad \eta \to 0 \quad \text{("Hamiltonian bifurcation point")} \\ & \triangleright \ \ \, H(p,q;\eta) \quad \text{is analytic in } \eta \quad \text{for small} \mid \eta \mid \\ & \triangleright \ \ \, \partial_\eta H \neq 0 \quad \text{for} \quad \eta = 0 \end{split}$$

The scenarios of approaching the bifurcation

Local scenario: shrinking of the homoclinic orbit as $\eta \rightarrow 0$, with $q_c \rightarrow q_s$

Generic Hamiltonian, to leading order in η

$$H = \frac{1}{2} p^2 - \frac{1}{3} q^3 + \eta q$$

The energy barrier $\Delta E = H(p_s, q_s; \eta) - H(p_c, q_c; \eta)$

$$\Delta E = \frac{4}{3} \eta^{3/2}$$

 $H = \frac{1}{2}p^2 + \eta U(q)$

<u>Nonlocal scenario</u>: squeezing of the homoclinic orbit as $\eta \rightarrow 0$, with no change in q_c , q_s

Escape rate

Friction: drift over energy towards a metastable state $W \propto \exp(-R/D)$ *Noise:* energy diffusion, ultimately leading to escape

Local scenario: $R = C_{loc} \epsilon \eta^{3/2}$, the same scaling as in the overdamped region

Non-local scenario: $R = C_{nl} \mathcal{E} \eta$, <u>crossover</u> to $R \propto \eta^{3/2}$ with decreasing η

Crossover for a resonantly driven oscillator

$$\ddot{q} + 2\Gamma \dot{q} + \omega_0^2 q + \gamma q^3 = F \cos \omega_F t$$

Periodic state: $q = a \cos(\omega_F t + \phi)$

Both a and ϕ display hysteresis

Eigenfrequency depends on vibration amplitude,

$$\omega_0 \rightarrow \omega_0 + \widetilde{\gamma} a^2$$

$$a^{2} = \frac{F^{2} / 4\omega_{F}^{2}}{\left(\omega_{F} - \omega_{0}\right)^{2} + \Gamma^{2}}$$

$$\ddot{q} + 2\Gamma \dot{q} + \omega_0^2 q + \gamma q^3 = F \cos \omega_F t$$

Periodic state: $q = a \cos(\omega_F t + \phi)$

Both a and ϕ display hysteresis

drive current i_{RF} / I_0

Resonantly modulated nanoelectromechanical resonators

(Schwab & Roukes, Phys. Today 2005)

Resonantly modulated MEMS

(Aldridge & Cleland, PRL 2005)

(Stambaugh & Chan, PRL, PRB 2006)

Strong signal amplification at a bifurcation point

 $\frac{d(\text{output})}{d(\text{input})} \to \infty$

High sensitivity to a system parameter (e.g., oscillator eigenfrequency): a small change in the parameter leads to a shift of the bifurcation point

(Siddiqi et al., 2004-2006)

Real switching: fluctuation-induced smearing

Scaling for a classical oscillator

a(A modulated oscillator does not have detailed balance. Switching occurs between periodic states. For resonant modulation, the activation energy scales as $R \propto \eta^{3/2}$ close to bifurcation points. For small damping it may also display $R \propto \eta$ scaling (MD and Krivoglaz, 1979, 1980) -5 (In W^{2/3} log E ∳a Temp
 Noise -7 Ô. T^{esc}(K) -1.5 15 i_{RF}^2 20 -3.5 -2.5 10 25 $\log \Delta \omega$ (rad s⁻¹) MEMS (Stambaugh & Chan, 2005/2006) Josephson junctions (Siddigi et al., 2005)

The predicted scaling $R \propto \eta^2$ has been seen near a cusp on the bifurcation curve (Aldridge & Cleland, 2005) and for a parametrically modulated oscillator (Stambaugh & Chan, 2006)

Quantum scaling for resonant driving

scaled dephasing rate

(MD, 2006)

- Activation energy and the prefactor in the escape rate scale as powers of the distance to the bifurcation point
- Systems lacking detailed balance display scaling behavior that does not arise in systems in thermal equilibrium, with new scaling exponents.
- > Scaling crossovers: $\xi = 3/2 \rightarrow 2 \rightarrow 3/2$ in slowly modulated systems and $\xi = 1 \rightarrow 3/2$ in underdamped systems
- Critical exponents near bifurcation points have been observed in modulated nonlinear oscillators.