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The stochastic nonlinear Schrödinger equations

Deterministic equation: generic model for the propagation of wave
packets in weakly nonlinear and weakly dispersive media

The linear equation as an evolution equation:{
i d
dt u = ∆u, t ∈ R

u(0) = u0

u(t) ∈ H1 = {f ∈ L2(Rd ,C) : ∇f ∈ L2(Rd ,C)} where L2(Rd ,C) is
equipped w/ (f , g)L2(Rd ,C) = Re

∫
Rd f (x)g(x)dx .

(−i∆,H3) generates a unitary group (U(t))t∈R, U(t) are isometries
on the spaces Hs .

Dispersive property: exp
(
i
−→
k · −→x − iωt

)
solution iff ω = |k|2.

∀p ≥ 2, ∀t 6= 0, ∀u0 ∈ Lp′ , ‖U(t)u0‖Lp ≤ (4π|t|)−d( 1
2−

1
p )‖u0‖Lp′
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The stochastic nonlinear Schrödinger equations

We consider mild solutions in H1 := H1(Rd ,C) of

idu =
(
∆u + λ|u|2σu

)
dt +

√
εdW (1),

idu =
(
∆u + λ|u|2σu

)
dt +

√
εu ◦ dW (2);

Example (eq. (2))

u(t) = U(t)u0 − iλ
∫ t

0
U(t − s)(|u(s)|2σu(s))ds

− 1
2
ε
∫ t

0
U(t − s)FΦ(x)u(s)ds − i

√
ε
∫ t

0
U(t − s)u(s)dW (s)

where FΦ(t) =
∑∞

i=1 (Φei (t))2, (ei )i≥1 c.o.s. of L2.

Nonlinearity and noise treated as perturbations

W = ΦWc , Φ is Hilbert-Schmidt from L2 to H1 (eq. (1)) or Hs(Rd ,R)
where s > d

2
+ 1 (eq. (2)), Wc is a cylindrical Wiener process ”on” L2:

Wc =
∞∑
i=1

βi (t)ei ;

u(0) = u0 ∈ H1, λ = ±1 and σ > 0.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves
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The stochastic nonlinear Schrödinger equations

Theorem (de Bouard & Debussche 03’)

When the noise is additive the Cauchy problem is
B locally well posed for 0 ≤ σ < 2

d−2
(σ ≥ 0 if d = 1, 2)

B globally well posed if 0 ≤ σ < 2
d−2

and λ = −1 or 0 ≤ σ < 2
d

and
λ = 1.

When the noise is multiplicative, the Cauchy problem is
B locally well posed under weaker assum. on Φ than ours and σ s.t.{

0 < σ if d = 1, 2, 0 < σ < 2 if d = 3
1
2
≤ σ < 2

d−2
or σ < 1

d−1
if d ≥ 4

,

B ∀t < T ∗, N(u(t)) =
∫

Rd |u(t, x)|2dx = ‖u(t)‖2
L2 = cst

B same result on global existence than for an additive noise.

In a series of paper they study the influence of a noise on the blow-up
phenomenon.

Under some restrictions, local well-posedness is obtained for some SNLS

equations driven by a fractional (in time) additive noises in EJP 07’ for any

Hurst parameter H and with Hölder continuity in time.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves
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Large deviations

For A measurable set of paths that does not contain the deterministic solution,
LD quantify the convergence of P (uε,u0 ∈ A) to 0 with ε.

Definition

LDP: for every Borel set A, we have the sequence of inequalities

− inf
w∈Int(A)

Iu0 (w) ≤ limε→0ε log P (uε,u0 ∈ A) ≤ limε→0ε log P (uε,u0 ∈ A) ≤ − inf
w∈A

Iu0 (w),

where Iu0 (rate function) is l.s.c. (LDP of speed ε)

When ∀r > 0 I−1
u0

([0, r ]) is compact, Iu0 is good.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves
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Large deviations

When σ is large (except when λ = −1 and d = 1, 2) solutions blow-up in finite
time ⇒ we consider spaces of exploding paths.

1 define C([0,+∞); H1 ∪ {∆}) and T (ϕ) = inf{t ∈ [0,+∞) : ϕ(t) = ∆},
2 allows to define as a set

E(H1) = {ϕ ∈ C([0,+∞); H1∪{∆}) s.t. ϕ(t0) = ∆⇒ ∀t ≥ t0, f (t) = ∆}

3 we equip this set with the topology defined by the neighborhood basis{
ϕ ∈ E(H1) : T (ϕ) ≥ T (ϕ1), ‖ϕ1 − ϕ‖C([0,T ];H1) ≤ r ,T < T (ϕ1)

}
.

It is a Haudorff topological space.

B The stronger the topology the sharper the LDP: we state the LDP in a

subspace space E∞ where solutions indeed live embedded with a topology that

takes into account all the integrability properties of the Schrödinger group.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Large deviations

When σ is large (except when λ = −1 and d = 1, 2) solutions blow-up in finite
time ⇒ we consider spaces of exploding paths.

1 define C([0,+∞); H1 ∪ {∆}) and T (ϕ) = inf{t ∈ [0,+∞) : ϕ(t) = ∆},
2 allows to define as a set

E(H1) = {ϕ ∈ C([0,+∞); H1∪{∆}) s.t. ϕ(t0) = ∆⇒ ∀t ≥ t0, f (t) = ∆}

3 we equip this set with the topology defined by the neighborhood basis{
ϕ ∈ E(H1) : T (ϕ) ≥ T (ϕ1), ‖ϕ1 − ϕ‖C([0,T ];H1) ≤ r ,T < T (ϕ1)

}
.

It is a Haudorff topological space.

B The stronger the topology the sharper the LDP: we state the LDP in a

subspace space E∞ where solutions indeed live embedded with a topology that

takes into account all the integrability properties of the Schrödinger group.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Large deviations

When σ is large (except when λ = −1 and d = 1, 2) solutions blow-up in finite
time ⇒ we consider spaces of exploding paths.

1 define C([0,+∞); H1 ∪ {∆}) and T (ϕ) = inf{t ∈ [0,+∞) : ϕ(t) = ∆},
2 allows to define as a set

E(H1) = {ϕ ∈ C([0,+∞); H1∪{∆}) s.t. ϕ(t0) = ∆⇒ ∀t ≥ t0, f (t) = ∆}

3 we equip this set with the topology defined by the neighborhood basis{
ϕ ∈ E(H1) : T (ϕ) ≥ T (ϕ1), ‖ϕ1 − ϕ‖C([0,T ];H1) ≤ r ,T < T (ϕ1)

}
.

It is a Haudorff topological space.

B The stronger the topology the sharper the LDP: we state the LDP in a

subspace space E∞ where solutions indeed live embedded with a topology that

takes into account all the integrability properties of the Schrödinger group.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Large deviations

When σ is large (except when λ = −1 and d = 1, 2) solutions blow-up in finite
time ⇒ we consider spaces of exploding paths.

1 define C([0,+∞); H1 ∪ {∆}) and T (ϕ) = inf{t ∈ [0,+∞) : ϕ(t) = ∆},
2 allows to define as a set

E(H1) = {ϕ ∈ C([0,+∞); H1∪{∆}) s.t. ϕ(t0) = ∆⇒ ∀t ≥ t0, f (t) = ∆}

3 we equip this set with the topology defined by the neighborhood basis{
ϕ ∈ E(H1) : T (ϕ) ≥ T (ϕ1), ‖ϕ1 − ϕ‖C([0,T ];H1) ≤ r ,T < T (ϕ1)

}
.

It is a Haudorff topological space.

B The stronger the topology the sharper the LDP: we state the LDP in a

subspace space E∞ where solutions indeed live embedded with a topology that

takes into account all the integrability properties of the Schrödinger group.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Large deviations

Theorem (SPA and ESAIM: PS 05’)

µε,u0 satisfy on E∞, with the restriction for multiplicative noises{
1
2
≤ σ si d = 1, 2

1
2
≤ σ < 2

d−2
si d ≥ 3

∣∣∣∣, a LDP of speed ε and good rate function

Iu0 (u) =
1

2
inf

h∈L2(0,∞;L2): S(u0,h)=u

{
‖h‖2

L2(0,∞;L2)

}
,

where inf ∅ =∞ and S(u0, h) is the unique mild solution of{
i ∂u
∂t

= ∆u + λ|u|2σu + Θ(u, h),
u(0) = u0 ∈ H1, h ∈ L2

(
0,∞,L2

)
.

Θ(u, h) = Φh (additive noise), Θ(u, h) = uΦh (multiplicative noise)

Case of fractional in time noise studied in EJP 07’.
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Application to error in transmission

We consider the case where d = σ = λ = 1 ;

t ∈ [0, L] is the coordinate along the line, L is of the order of 1000 km ;

x is some retarded time ;

Solitons are particular solutions

ΨA(t, x) =
√

2Asech(A(x − x0)) exp
(
−iA2t + iθ0

)
To compensate for loss in the fiber an amplification device is introduced:
Regularly spaced Erbium Doped Amplifiers, or distributed amplification
⇒ complex additive noise
Raman or 4 wave mixing amplification ⇒ real multiplicative noises (we
neglect the Raman non linear response...).

Heisenberg principle ⇒ uncertainty on the amplified signal ⇒ noise.

Noise is assumed to be small compared to L (fixed) εL << 1 ;

Eric Gautier Large deviations for stochastic nonlinear dispersive waves
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Application to error in transmission

Soliton profile allow to code bits
1 := Ψ0

A(x) =
√

2Asech(Ax)
0 := 0

At the end of the line we measure:

1

T

∫ T/2

−T/2

|u(L, x)|2dx

and compare the number to a threshold.

Due to noise error in transmission may occur
A 1 is wrongly discarded and it is decided that a 0 has been emitted
or the contrary may also happen

Two processes are mainly responsible for these errors:

1 A fluctuation of the arrival time
Y (u(L, x)) =

∫
Rd x |u(L, x)|2dx

2 A fluctuation of the mass (with additive noise only)

Error rate ≈ 10−12 ⇒ possibilities IS MC methods or genealogical particle
systems (c.f. Del Moral & Garnier 05’ used for a similar problem) ;

Eric Gautier Large deviations for stochastic nonlinear dispersive waves
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Application to error in transmission

Some results in the physics litterature:

1 Variances (e.g. Gordon & Haus 86’, Drummond & Corney 01’)
(that of the arrival time is ∝ L3 while that of the mass is ∝ L)
and deduce the limitation on the transmission rate via a
Gaussian approximation ;

2 Densities
B using the Martin-Siggia-Rose formalism (use ansatz)
(Falkovich, Kolokov, Lebedev, Mezentsev & Turitsyn 04’),
B or the Fokker-Planck equations (use ansatz) (ex.
Derevyanko, Turitsyn & Yakushev 03’) ;

3 CDFs numerically using IS and considering ansatz (Moore,
Biondini, Kath 03’)

LD allows for theoretical predictions of the error rate ;

Our Goal: Evaluate the tails of N (uε,u0 (L)) and Y (uε,u0 (L)) pushing
forward the LDPs ;

Eric Gautier Large deviations for stochastic nonlinear dispersive waves
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Application to error in transmission

Obtain upper and lower bounds of the log of the tails, e.g.

log P (Y (uε,u0 (L)) ≥ R)

and try to obtain the same order in the parameters L,A,R ;

The log of the tails is of the order of (e.g.)

−1

2
inf

h∈L2(0,L;L2)

{
‖h‖2

L2(0,L;L2) : Y (S (u0, h) ≥ R)
}

Obtain lower bounds by minimizing on a smaller set (parameterized h) ⇒
Calculus of the Variations ;

Obtain upper bounds using energy inequalities ;

We do not want to use the approximation by an ansatz (this
approximation only gives lower bounds). We want to compare with the
results from physics ;

We present results for the mass and arrival time and additive noise (see
Debussche & EG AAP 07’ where the case of multiplicative noise is also
studied).

Eric Gautier Large deviations for stochastic nonlinear dispersive waves
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Obtain lower bounds by minimizing on a smaller set (parameterized h) ⇒
Calculus of the Variations ;

Obtain upper bounds using energy inequalities ;

We do not want to use the approximation by an ansatz (this
approximation only gives lower bounds). We want to compare with the
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Tails of the mass, lower bounds

For D ⊂ R∗+ set : A1
D =

{
A : [0, L]→ R, ∃R̃ ∈ D : A(t) = R̃

(
t

2L

)2
}

A2
D =

{
A : [0, L]→ R, ∃R̃ ∈ D :

A(t) =

(
8− R̃ − 4

√
4− R̃

)(
t

2L

)2
+

(
−4 + 2

√
4− R̃

)
t

2L
+ 1

}
.

Ci
D =

{
h ∈ L2(0,T ; L2), ∃A ∈ Ai

D :

h(t, x) = i
A′(t)

A(t)
ΨA(t, x)− i

√
2A′(t) exp

(
−i

∫ t

0
A2(s)ds

)
A(t)x

sinh

cosh2
(A(t)x)

}
, i = 1, 2

Proposition

For L,R > 0 (R ∈ (0, 4) in (2)), D dense in [R,R + 1] and (Φn)n∈N H.S. with

values in L2 s.t. ∀h ∈ C1
D , Φnh→ h in L1

(
0, L; L2

)
, then

limn→∞,ε→0ε log P
(
N
(

uε,0,n(L)
)
≥ R

)
≥ −R(12 + π2)

18L
(1)

Replacing C1
D by C2

D we get

limn→∞,ε→0ε log P
(
N
(

uε,Ψ
0
1,n(L)

)
− 4 < −R

)
≥ − (2−

√
4− R)2(12 + π2)

9L
(2)

n recalls that Φ is replaced by Φn.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Tails of the mass, lower bounds

For D ⊂ R∗+ set : A1
D =

{
A : [0, L]→ R, ∃R̃ ∈ D : A(t) = R̃

(
t

2L

)2
}

A2
D =

{
A : [0, L]→ R, ∃R̃ ∈ D :

A(t) =

(
8− R̃ − 4

√
4− R̃

)(
t

2L

)2
+

(
−4 + 2

√
4− R̃

)
t

2L
+ 1

}
.

Ci
D =

{
h ∈ L2(0,T ; L2), ∃A ∈ Ai

D :

h(t, x) = i
A′(t)

A(t)
ΨA(t, x)− i

√
2A′(t) exp

(
−i

∫ t

0
A2(s)ds

)
A(t)x

sinh

cosh2
(A(t)x)

}
, i = 1, 2

Proposition

For L,R > 0 (R ∈ (0, 4) in (2)), D dense in [R,R + 1] and (Φn)n∈N H.S. with

values in L2 s.t. ∀h ∈ C1
D , Φnh→ h in L1

(
0, L; L2

)
, then

limn→∞,ε→0ε log P
(
N
(

uε,0,n(L)
)
≥ R

)
≥ −R(12 + π2)

18L
(1)

Replacing C1
D by C2

D we get

limn→∞,ε→0ε log P
(
N
(

uε,Ψ
0
1,n(L)

)
− 4 < −R

)
≥ − (2−

√
4− R)2(12 + π2)

9L
(2)

n recalls that Φ is replaced by Φn.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Idea of the proof, case where initial datum is 0

Look for solutions of the form

S0
WN(t, x) =

√
2A(t) exp

(
−i

∫ t

0

A2(s)ds

)
sech(A(t)x)

Consider first the case of a controlled equation where Φ = I

The optimal control problem becomes a problem of the calculus of
variations where we have to find an optimal A

inf
h∈L2(0,L;L2): N(S0

WN
(h)(L))≥R

‖h‖2
L2(0,L;L2)

2
≤ inf

A∈ C1([0,T ]),b.c.

∫ L

0

(12 + π2)

18

(A′(t))2

A(t)
dt,

Boundary conditions are derived from the constraints on the mass:
A0(0) = 0 and 4A0(L) = R̃ > R

The singular Euler-Lagrange equation

2
A′′

A
=

(
A′

A

)2

allows to make the guesses corresponding to A1
D .

We use the fact that Φn approximate I and R̃ arbitrary close to R.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Idea of the proof, case where initial datum is 0

Look for solutions of the form

S0
WN(t, x) =

√
2A(t) exp

(
−i

∫ t

0

A2(s)ds

)
sech(A(t)x)

Consider first the case of a controlled equation where Φ = I

The optimal control problem becomes a problem of the calculus of
variations where we have to find an optimal A

inf
h∈L2(0,L;L2): N(S0

WN
(h)(L))≥R

‖h‖2
L2(0,L;L2)

2
≤ inf

A∈ C1([0,T ]),b.c.

∫ L

0

(12 + π2)

18

(A′(t))2

A(t)
dt,

Boundary conditions are derived from the constraints on the mass:
A0(0) = 0 and 4A0(L) = R̃ > R

The singular Euler-Lagrange equation

2
A′′

A
=

(
A′

A

)2

allows to make the guesses corresponding to A1
D .

We use the fact that Φn approximate I and R̃ arbitrary close to R.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Idea of the proof, case where initial datum is 0

Look for solutions of the form

S0
WN(t, x) =

√
2A(t) exp

(
−i

∫ t

0

A2(s)ds

)
sech(A(t)x)

Consider first the case of a controlled equation where Φ = I

The optimal control problem becomes a problem of the calculus of
variations where we have to find an optimal A

inf
h∈L2(0,L;L2): N(S0

WN
(h)(L))≥R

‖h‖2
L2(0,L;L2)

2
≤ inf

A∈ C1([0,T ]),b.c.

∫ L

0

(12 + π2)

18

(A′(t))2

A(t)
dt,

Boundary conditions are derived from the constraints on the mass:
A0(0) = 0 and 4A0(L) = R̃ > R

The singular Euler-Lagrange equation

2
A′′

A
=

(
A′

A

)2

allows to make the guesses corresponding to A1
D .

We use the fact that Φn approximate I and R̃ arbitrary close to R.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Idea of the proof, case where initial datum is 0

Look for solutions of the form

S0
WN(t, x) =

√
2A(t) exp

(
−i

∫ t

0

A2(s)ds

)
sech(A(t)x)

Consider first the case of a controlled equation where Φ = I

The optimal control problem becomes a problem of the calculus of
variations where we have to find an optimal A

inf
h∈L2(0,L;L2): N(S0

WN
(h)(L))≥R

‖h‖2
L2(0,L;L2)

2
≤ inf

A∈ C1([0,T ]),b.c.

∫ L

0

(12 + π2)

18

(A′(t))2

A(t)
dt,

Boundary conditions are derived from the constraints on the mass:
A0(0) = 0 and 4A0(L) = R̃ > R

The singular Euler-Lagrange equation

2
A′′

A
=

(
A′

A

)2

allows to make the guesses corresponding to A1
D .

We use the fact that Φn approximate I and R̃ arbitrary close to R.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Idea of the proof, case where initial datum is 0

Look for solutions of the form

S0
WN(t, x) =

√
2A(t) exp

(
−i

∫ t

0

A2(s)ds

)
sech(A(t)x)

Consider first the case of a controlled equation where Φ = I

The optimal control problem becomes a problem of the calculus of
variations where we have to find an optimal A

inf
h∈L2(0,L;L2): N(S0

WN
(h)(L))≥R

‖h‖2
L2(0,L;L2)

2
≤ inf

A∈ C1([0,T ]),b.c.

∫ L

0

(12 + π2)

18

(A′(t))2

A(t)
dt,

Boundary conditions are derived from the constraints on the mass:
A0(0) = 0 and 4A0(L) = R̃ > R

The singular Euler-Lagrange equation

2
A′′

A
=

(
A′

A

)2

allows to make the guesses corresponding to A1
D .

We use the fact that Φn approximate I and R̃ arbitrary close to R.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Idea of the proof, case where initial datum is 0

Look for solutions of the form

S0
WN(t, x) =

√
2A(t) exp

(
−i

∫ t

0

A2(s)ds

)
sech(A(t)x)

Consider first the case of a controlled equation where Φ = I

The optimal control problem becomes a problem of the calculus of
variations where we have to find an optimal A

inf
h∈L2(0,L;L2): N(S0

WN
(h)(L))≥R

‖h‖2
L2(0,L;L2)

2
≤ inf

A∈ C1([0,T ]),b.c.

∫ L

0

(12 + π2)

18

(A′(t))2

A(t)
dt,

Boundary conditions are derived from the constraints on the mass:
A0(0) = 0 and 4A0(L) = R̃ > R

The singular Euler-Lagrange equation

2
A′′

A
=

(
A′

A

)2

allows to make the guesses corresponding to A1
D .

We use the fact that Φn approximate I and R̃ arbitrary close to R.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Tails of the mass, upper bounds

Proposition

∀L,R > 0 (R ∈ (0, 4) in (2)), D dense in [R,R + 1] and (Φn)n∈N H.S. with

values in L2 s.t. ∀h ∈ C1
D , Φnh→ h in L1

(
0, L; L2

)
(assumption for the lower

bounds) and uniformly bounded as operators on L2 by C > 1 independent of L,

limn→∞,ε→0ε log P
(
N
(

uε,0,n(L)
)
≥ R

)
≤ − R

8LC 2
(1),

Replacing C1
D by C2

D we obtain

limn→∞,ε→0ε log P
(
N
(

uε,Ψ
0
1,n(L)

)
− 4 < −R

)
≤ − R2

8LC 2(4 + R)
(2).

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Idea of the proof, case 0 as initial datum

Manipulations of the controlled equation

i
∂u

∂t
−∆u − λ|u|2σu = Φnh,

allow to obtain

‖S0(h)(t)‖2
L2−‖u0‖2

L2 = 2Re

(
−i

∫ t

0

∫
R

(
(Φnh)(s, x)Sa,0(h)(s, x)

)
dxds

)
.

and after some computations

R ≤ ‖Sa,0(h)(L)‖2
L2 ≤ 4T‖Φn‖2

Lc (L2,L2)

∫ L

0

‖h(s)‖2
L2 ds.

It allows to obtain lower bounds on the L2 norm of any control allowing
to get in the ”large deviation set”

With the - sign we obtain an upper bound which depends on the operator
norm of Φn

These operator norms are assumed to be uniformly bounded.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves
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Tails of the arrival time (w/ A. Debussche)

To be able to consider the arrival time we work in space of localized
functions. We introduce

Σ
1
2 =

{
f ∈ H1 : x 7→

√
|x |f (x) ∈ L2

}
,Σ =

{
f ∈ H1 : x 7→ xf (x) ∈ L2

}
,

‖f ‖2

Σ
1
2

= ‖f ‖2
H1 +

∥∥∥x 7→
√
|x |f (x)

∥∥∥2

L2
, ‖f ‖2

Σ = ‖f ‖2
H1 + ‖x 7→ xf (x)‖2

L2 .

We prove sample paths LDPs for paths in Σ
1
2

Theorem

If Φ is H.S. in Σ (additive case) or in Hs(R,R) with s > 3/2 (multiplicative

case) and u0 ∈ Σ, then solutions define r.v. in C([0, L]; Σ
1
2 ) and their laws

satisfy a LDP of speed ε and good rate function
I L
u0

(w) = 1
2

infh∈L2(0,L;L2): w=S(u0,h) ‖h‖2
L2(0,L;L2).

uniformly bounded operators with values in Σ incompatible with
convergence of Φnh to h in L1(0, L,Σ). In the limit we assume that in the
limit we have a colored noise say defined through Φ = (I −∆ + |x |2I )−1/2.
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Tails of the arrival time, lower bounds

For A, L > 0 and D ⊂ R∗+, we define the set of controls

HD
A,L = {h ∈ L2(0, L; L2), h(t, x) = λ(t)

(
x − 2

∫ t

0

∫ s

0
λ(σ)dσds

)
ΨA,λ(t, x),

with λ(t) = 3R̃(L−t)

8AL3 , R̃ ∈ D},

ΨA,λ(t, x) =
√

2Asech
(
A
(
x − 2

∫ t

0

∫ s

0
λ(σ)dσds

))
exp

(
2i
∫ t

0
λ(s)

∫ s

0

∫ σ
0
λ(τ)dτdσds

)
exp

[
−iA2t + i

∫ t

0

(∫ s

0
λ(σ)dσ

)2
ds − ix

∫ t

0
λ(s)ds + 2i

(∫ t

0
λ(s)ds

) (∫ t

0

∫ s

0
λ(σ)dσds

)]
.

Proposition

For L,A,R > 0 and D dense in [R,R + 1], (Φn)n∈N H.S. in Σ s.t. ∀h ∈ HD
L,A,

Φnh→ Φh in L1(0, L; Σ), then

limn→∞,ε→0ε log P
(
Y
(

uε,Ψ
0
A,n(L)

)
≥ R

)
≥ − CR2

128L3A
.
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Φnh→ Φh in L1(0, L; Σ), then

limn→∞,ε→0ε log P
(
Y
(

uε,Ψ
0
A,n(L)

)
≥ R

)
≥ − CR2

128L3A
.
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Idea of the proof of the lower bound I

We seek controls such that

i
du

dt
= ∆u + |u|2u + λ(t)xu

v1(t) = exp
(
i
(∫ t

0
λ(s)ds

)
x
)

u(t) is solution of

i
∂v1

∂t
=
∂2v1

∂x2
+ |v1|2v1 −

(∫ t

0

λ(s)ds

)2

v1 − 2i

(∫ t

0

λ(s)ds

)
∂v1

∂x

and v2(t) = exp
(
−i
∫ t

0

(∫ s

0
λ(τ)dτ

)2
ds
)

v1(t) (gauge transform) satisfies

i

(
∂v2

∂t
+ 2

(∫ t

0

λ(s)ds

)
∂v2

∂x

)
=
∂2v2

∂x2
+ |v2|2v2

Using the methods of characteristics

v3(t, x) = v2

(
t, x + 2

∫ t

0

∫ s

0

λ(u)duds

)
is a solution of the usual NLS equation with initial datum Ψ0

A.
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Idea of the proof of the lower bound II

It is even more convenient to work with

i
dv

dt
= ∆v + |v |2v + λ(t)

(
x − 2

∫ t

0

∫ s

0

λ(τ)dτds

)
v

⇒ We use yet another Gauge transform.

Then

inf

h∈L2(0,T ;L2): Y

(
S

Ψ0
A

WN
(h)(T )

)
≥R̃

‖h‖2
L2(0,T ;L2)

2
≤ inf
λ∈L2(0,T ;R),

∫ T
0

∫ t
0 λ(s)dsdt≥ R̃

8A

(
π2

6A

)∫ T

0

λ2(t)dt.

We finally pass to the limit with the sequence of operators and for large A
obtain a term of the order of the square of the norm of the gradient and
use that R̃ is arbitrary and such that R̃ > R

It is precisely the boundary condition in integral form that gives the factor
1/T 3.
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Tails of the arrival time, upper bounds

Proposition

∀L,A,R > 0 and D dense in [R,R + 1], (Φn)n∈N H.S. in Σ s.t.

∀h ∈ HD
L,A, Φnh→ h in L1(0, L; Σ) and uniformly bounded (norms

bounded by 1) then

limn→∞,ε→0ε log P
(
Y
(

uε,Ψ
0
A (L)

)
≥ R

)
≤ − R2

128L3(1 + 2
L

)2
(
A + R

8L+4

) .
Thus for R of the order of 1 and L large (in practice >> 1000) the upper

bound is of the order − R2

128L3A .
Such operators exist:

Φn =

(
I −∆ + |x |2I +

1

n
(−∆ + |x |2I )k

)−1/2

.
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Idea of the proof of the upper bound

For the upper bound we manipulate the controlled equation in order to
obtain bounds of the L2 norm of any control that allows to get to the
”large deviation set”.
Indeed we prove

Y(Sa,Ψ0
A(h)(t)) = 4Re

(∫ t

0

∫ s

0

∫
R Sa,Ψ0

A(h)(σ, x) (∂xΦh) (σ, x)dxdσds
)

−2Re
(
i
∫ t

0

∫
R xSa,Ψ0

A(h)(s, x) (Φh) (s, x)dxds
)
.

Then using R ≤ Y
(
Sa,Ψ0

A(h)(L)
)

we deduce a lower bound for

‖h‖2
L2(0,L;L2).
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Comparison with the results in the physics literature

The tails of the mass with 0 as initial datum are not Gaussian,
undistinguishable from exponential tails on a log-scale ;

The tails of the arrival time are undistinguishable from Gaussian
tails on the log-scale ;

On the log-scale the tails of the mass are of the order of exp
(
− c
εL

)
,

that of the arrival time of exp
(
− c
εL3

)
⇒ The tails of the arrival time are larger than that of the mass,
⇒ The fluctuation of the arrival time is the main process impairing
soliton optical communications

Gordon-Hauss effect: the variance of the arrival time is of the order
of L3, if the law were indeed Gaussian we obtain the same result.

In some articles the influence of the amplitude of the initial datum
is studied and the variance of the arrival time is of the order of AL3.
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Conclusion

Introducing inline control elements can alow to reduce exponentially
the fluctuations of the mass and especially that of the arrival time.
Optimizing the system with constraints on the cost would require an
optimization on two sets of controls. Some particular in line control
elements have been considered by physicists.

Sharp LD could allow to obtain the pre-exponential factors of the
tails.
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A stochastic KdV equation

We consider
du +

(
∂3

x u + ∂x(u2)
)

dt =
√
εdW

where Φ is H.S. from L2 to H1, u(0) = u0 ∈ H1.

Model for the evolution of weakly nonlinear shallow water waves with
random pressure

Existence of mild solutions in C([0,T ]; H1) and uniqueness in
XT ⊂ C

(
[0,T ]; H1

)
proved by de Bouard & Debussche 98’, they also

studied rougher noises and less regular solutions in other papers

The deterministic equation has soliton solutions of the form
ϕc(x − ct + x0) where c is the velocity, x0 ∈ R the initial phase and

ϕc(x , t) =
3c

2
sech2 (√cx/2

)
Solitons are stable (deterministic case) even for more general
nonlinearities: notion of orbital stability and some results regarding
asymptotic stability Pego & Weinstein 94’, Martel & Merle 01’ (either
weak convergence or CV in weighted Sobolev spaces)

Eric Gautier Large deviations for stochastic nonlinear dispersive waves
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Time scale for the solution to stay in the vincinity of the soliton

The phenomenon of persistence of the soliton has been observed
numerically in Debussche & Printems 99’

Goal: Verify the claim that starting from a soliton profile ϕc the solution
of the stochastic equation remains close to the deterministic soliton for
times of the order at most ε−1/3 but stays close to a randomly modulated
soliton for times of the order of ε−1

Joint work w/ A. de Bouard

We can prove easily a LDP for for the paths of the solutions of the SPDE
in C([0,T ]; H1), the rate function is again the minum energy of a control
that allows to reach the large deviation event.

The approximation by a randomly modulated soliton is the approximation
we did not use in the section on error in soliton transmission.

We denote by uε,u0 the solution with initial datum ϕc0 .
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soliton for times of the order of ε−1

Joint work w/ A. de Bouard

We can prove easily a LDP for for the paths of the solutions of the SPDE
in C([0,T ]; H1), the rate function is again the minum energy of a control
that allows to reach the large deviation event.

The approximation by a randomly modulated soliton is the approximation
we did not use in the section on error in soliton transmission.

We denote by uε,u0 the solution with initial datum ϕc0 .
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Time scale for the solution to stay in the vincinity of the soliton

Exit time of a neighborhood of the soliton defined by

τ̃ εα = inf
{

t ∈ [0,∞) : ‖uε,u0 (t, ·+ c0t)− ϕc0‖H1 > α
}

Proposition

For T > 0 and Φ =
(
(1 + x2)I − ∂2

x

)−1/2
, then, ∀0 < α < α0 : α0 is small

enough, ∃c(α, c0) s.t.

limε→0ε log P (τ̃ εα ≤ T ) ≥ −c(α, c0)

T 3
.

Idea of the proof: look for solutions of the controlled KdV equation of the form

ϕc(t)

(
x −

∫ t

0

c(s)

)
which implies

Φh(t, x) = c ′(t) ∂cϕc |c=c(t)

(
x −

∫ t

0

c(s)ds

)
the r.h.s is in the image of Φ for c close to c0.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves
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Proof II

The objective function is less than

c(α, c0)

∫ T

0

(
c ′(t)

)2
dt

and we check that the boundary condition implied by the rare event implies∫ T

0

(c0 − c(s))ds >
2

e
√

c0 − 2c(∞)α/3

(c(∞) is the constant in the constant in the Sobolev injection H1 ⊂ L∞)

Change of variable t = Tu and change of unknown function v(u) = c(Tu)

implies the scaling as 1/T 3.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Random modulations of solitons

Theorem

∃α0 > 0 : ∀α ∈ (0, α0] , ∃τ εα > 0 a.s. stopping time, ∃cε(t), xε(t)
semi-martingales defined a.s. for t ≤ τ εα with values in (0,∞) and R s.t. if we
set √

εηε(t) = uε,u0 (t, ·+ xε(t))− ϕcε(t)

then ∫
R
ηε(t, x)ϕc0 (x)dx =

∫
R
ηε(t, x)∂xϕc0 (x)dx = 0, ∀t ≤ τ εα a.s.

and for all t ≤ τ εα, ∥∥√εηε(t)
∥∥

H1 ≤ α, |cε(t)− c0| ≤ α.

Moreover, ∃C > 0 s.t. ∀T > 0, ∀α ≤ α0, ∃ε0 > 0 s.t. ∀ε < ε0,

P (τ εα ≤ T ) ≤
CεT‖Φ‖L0,1

2

α4
.
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Exit off neighborhood of randomly modulated soliton, upper bound

Proposition

∀T > 0, ∀α0 > 0 small enough, ∃C > 0 : ∀α < α0, ∃ε0 > 0 small enough s.t.
∀ε < ε0,

P (τ εα ≤ T ) ≤ exp

− α2

CεT‖Φ‖2

L0,1
2

 .

Idea of the proof: Work with the Lyapounov functional

Qc0 (u) = H(u) + c0N(u)

where

H(u) =
1

2

∫
R

(∂xu)2dx − 1

3

∫
R

u3dx , N(u) =
1

2

∫
R

u2dx

which is such that Q ′′c0
(ϕc0 ) = −∂x + (c0 − 2ϕc0 )I has no unstable eigenvalue

and a general null space spanned by ϕc0 and ∂xϕc0 .

Use the Itô formula for H (uε,u0 ) and N (uε,u0 ), smoothing and exponential tail

estimates.
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Exit off neighborhood of randomly modulated soliton, lower bound

Proposition

For T > 0, Φ =
(
(1 + x2)I − ∂2

x

)−1/2
and 0 < α < α0 small enough, ∃c(Φ, α)

s.t.

limε→0ε log P (τ εα ≤ T ) ≥ −c(Φ, α)

T
.

Idea of the proof: Let C be the mapping obtained using the implicit function
theorem (which gives the random modulations) then

P (τ εα ≤ T ) ≥ P (|C (uε,u0 (T ))− c0| > α)

thus,

limε→0ε
2 log P (τ εα ≤ T ) ≥ − inf

{
‖h‖2

L2(0,T ;L2)

2
, h : |C (Su0 (h)(T ))− c0| =

3

2
α

}
we minimize on the smaller set where controls lead to a solution of the form

ϕc(t)

(
x −

∫ t

0

c(s)

)
same as above but here boundary condition is c(0) = c0 and |c(T )− c0| = 3

2
α.
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Annex
Blow up times for stochastic NLS, eg additive noise

T −1((T ,∞]) = E∞
The LDP gives that

Proposition

For u0 ∈ H3, KerΦ∗ = {0} and T ≥ T (S(u0, 0)),

limε→0ε log P (T (uε,u0 ) > T ) ≥ −1

2
inf

h∈L2(0,∞;L2):T (S(h))>T

{
‖h‖2

L2(0,∞;L2)

}
∈ (−∞, 0].

Proposition

If T < T (S(u0, 0)) then

limε→0ε log P (T (uε,u0 ) ≤ T ) ≤ −1

2
inf

h∈L2(0,∞;L2):T (S(h))≤T

{
‖h‖2

L2(0,∞;L2)

}
< 0

Eric Gautier Large deviations for stochastic nonlinear dispersive waves
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Exit from a domain for weakly damped NLS equations

We add the term −αudt in the drift and consider subcritical
nonlinearities ;

We consider bounded measurable domains D, in L2 and H1, which
contain 0 in their interior s.t. ∀u0 ∈ D, ∀t ≥ 0, S(u0, 0)(t) ∈ D ;

Some references on the study of this problem for SPDEs:
Freidlin 88’, Da Prato & Zabczyk 92’, Chenal & Millet 97’

Main difficulty compared to the SDE setting: D is not compact

Main difficulties here:

Uniform continuity of the deterministic flow for bounded initial
data would require smoother initial data ;
No global smoothing properties of the semi-group ;
No compact embeddings in the Sobolev spaces on Rd ;
Non locally Lipschitz nonlinearities when d > 1.

But usual result holds: see AOP 07’.
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Exit for stochastic weakly damped NLS equations

Domains D are uniformly attracted to zero by S(., 0) ;

The first exit time off D is defined by
τ ε,u0 = inf {t ≥ 0 : u(t) ∈ Dc} .
We define

e = inf
{

I T
0 (w) : w(T ) ∈ D

c
, T > 0

}
,

and e = limρ→0 eρ

where eρ = inf
{

I T
u0

(w) : H̃ (u0) ≤ ρ, w(T ) ∈ (D−ρ)c , T > 0
}
,

with ρ > 0 small enough and D−ρ = D \ N (∂D, ρ) ;

When N is a closed subset of ∂D, we define

eN,ρ = inf
{

I T
u0

(w) : H̃ (u0) ≤ ρ, w(T ) ∈ (D \ N (N, ρ))c , T > 0
}
,

where ρ > 0 is small enough and

eN = lim
ρ→0

eN,ρ.
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τ ε,u0 = inf {t ≥ 0 : u(t) ∈ Dc} .
We define

e = inf
{

I T
0 (w) : w(T ) ∈ D

c
, T > 0

}
,

and e = limρ→0 eρ

where eρ = inf
{

I T
u0

(w) : H̃ (u0) ≤ ρ, w(T ) ∈ (D−ρ)c , T > 0
}
,

with ρ > 0 small enough and D−ρ = D \ N (∂D, ρ) ;

When N is a closed subset of ∂D, we define

eN,ρ = inf
{

I T
u0

(w) : H̃ (u0) ≤ ρ, w(T ) ∈ (D \ N (N, ρ))c , T > 0
}
,

where ρ > 0 is small enough and

eN = lim
ρ→0

eN,ρ.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Exit for stochastic weakly damped NLS equations

Domains D are uniformly attracted to zero by S(., 0) ;

The first exit time off D is defined by
τ ε,u0 = inf {t ≥ 0 : u(t) ∈ Dc} .
We define

e = inf
{

I T
0 (w) : w(T ) ∈ D

c
, T > 0

}
,

and e = limρ→0 eρ

where eρ = inf
{

I T
u0

(w) : H̃ (u0) ≤ ρ, w(T ) ∈ (D−ρ)c , T > 0
}
,

with ρ > 0 small enough and D−ρ = D \ N (∂D, ρ) ;

When N is a closed subset of ∂D, we define

eN,ρ = inf
{

I T
u0

(w) : H̃ (u0) ≤ ρ, w(T ) ∈ (D \ N (N, ρ))c , T > 0
}
,

where ρ > 0 is small enough and

eN = lim
ρ→0

eN,ρ.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

Exit for stochastic weakly damped NLS equations

Domains D are uniformly attracted to zero by S(., 0) ;

The first exit time off D is defined by
τ ε,u0 = inf {t ≥ 0 : u(t) ∈ Dc} .
We define

e = inf
{

I T
0 (w) : w(T ) ∈ D

c
, T > 0

}
,

and e = limρ→0 eρ

where eρ = inf
{

I T
u0

(w) : H̃ (u0) ≤ ρ, w(T ) ∈ (D−ρ)c , T > 0
}
,

with ρ > 0 small enough and D−ρ = D \ N (∂D, ρ) ;

When N is a closed subset of ∂D, we define

eN,ρ = inf
{

I T
u0

(w) : H̃ (u0) ≤ ρ, w(T ) ∈ (D \ N (N, ρ))c , T > 0
}
,

where ρ > 0 is small enough and

eN = lim
ρ→0

eN,ρ.

Eric Gautier Large deviations for stochastic nonlinear dispersive waves



Application for the stochastic NLS equations Application for a stochastic KdV equation Annex

First exit time

Theorem

∀u0 ∈ D, ∀δ > 0, ∃L > 0 :

limε→0ε log P
(
τ ε,u0 /∈

(
exp

(
e − δ
ε

)
, exp

(
e + δ

ε

)))
≤ −L, (1)

and ∀u0 ∈ D,

e ≤ limε→0ε log E (τ ε,u0 ) ≤ limε→0ε log E (τ ε,u0 ) ≤ e. (2)

Moreover, ∀δ > 0, ∃L > 0 :

limε→0ε log sup
u0∈D

P
(
τ ε,u0 ≥ exp

(
e + δ

ε

))
≤ −L, (3)

and
limε→0ε log sup

u0∈D
E (τ ε,u0 ) ≤ e. (4)
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Exit points

Theorem

If eN > e, then ∀u0 ∈ D, ∃L > 0 :

limε→0ε log P (u (τ ε,u0 ) ∈ N) ≤ −L.

Corollary

Let v∗ ∈ ∂D be s.t. ∀δ > 0 and N = {v ∈ ∂D : ‖v − v∗‖L2 ≥ δ} we have
eN > e, then

∀δ > 0, ∀u0 ∈ D, ∃L > 0 : limε→0ε log P
(
‖u (τ ε,u0 )− v∗‖L2 ≥ δ

)
≤ −L.
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