Extinction - 2 Case Studies

David Kessler Nadav Shnerb

Bar-Ilan Univ.

Part I: Lifetime of a Branching-Annihilation Process Part II: Distribution of Epidemic Sizes near Threshold

Extinction Rates - A Real-Space WKB Treatment

David Kessler Nadav Shnerb

Bar-Ilan Univ.

A commentary / extension of Elgart-Kamenev (and Freidlin-Wentzell) Parallel to Assaf and Meerson
J. Stat. Phys., (2007)

Basic Birth-Death Process

Basic Processes:

$$
\begin{array}{ccc}
A & \xrightarrow{\alpha} & 2 A \\
A+A & \xrightarrow{\beta} & 0
\end{array}
$$

Rate Equation:

$$
\dot{n}=\alpha n-\beta n(n-1)
$$

- Logistic Growth
- Stable state at $n=1+\alpha / \beta$
- Unstable state at $n=0$

Stochastic Process Different:

- State at $n=1+\alpha / \beta$ meta-stable
- Absorbing state at $n=0$

What is the extinction rate?

Quasi-stationary State

Consider the master equation:

$$
\dot{P}_{n}=\alpha\left(-n P_{n}+(n-1) P_{n-1}\right)+\frac{\beta}{2}\left(-n(n-1) P_{n}+(n+2)(n-1) P_{n+2}\right)
$$

Long-time behavior given by $-\Gamma_{1}$, negative eigenvalue closest to 0
For small $\beta / \alpha, \Gamma_{1}$ is exponentially small \Rightarrow very slow decay
Associated eigenvector called the quasi-stationary state
$1 / \Gamma_{1}$ is the mean first passage time for the quasi-stationary state
For small β / α, the mean first passage time starting from n is essentially independent of n (unless n is very small), and equal to $1 / \Gamma_{1}$ (implies all other eigenvalues much larger in magnitude)

Small β / α

We want to compute Γ_{1} for small β / α
Strategy: Since Γ_{1} exponentially small, we can solve stationary master equation:

$$
0=\alpha\left(-n P_{n}+(n-1) P_{n-1}\right)+\frac{\beta}{2}\left(-n(n-1) P_{n}+(n+2)(n+1) P_{n+2}\right)
$$

- Γ_{1} determined by leakage to the absorbing state:

$$
\Gamma_{1}=\frac{\beta P_{2}}{\sum_{n} P_{n}}
$$

Use Discrete WKB to solve master equation

Why not Fokker-Planck?

Width of peak near $n=\alpha / \beta$ is $O\left((\alpha / \beta)^{1 / 2}\right) \gg 1$
Approximating Finite-Differences by Derivatives should be good!
Define $y \equiv \sqrt{\beta / \alpha}(n-\alpha / \beta)$
Master equation reads:

$$
0=\left(\frac{3}{2} P^{\prime \prime}+(y P)^{\prime}\right)+\frac{1}{2} \sqrt{\frac{\beta}{\alpha}}\left(P^{\prime \prime \prime}+5 y P^{\prime \prime}+8 P^{\prime}+4 y P+2 y^{2} P\right)+O\left(\frac{\beta}{\alpha}\right)
$$

Obtain Fokker-Planck with small corrections!
What is bad???

Why not Fokker-Planck?

$$
y \equiv \sqrt{\frac{\beta}{\alpha}}\left(n-\frac{\alpha}{\beta}\right)
$$

Leading order solution:

$$
P_{0}(y) \sim e^{-y^{2} / 3}
$$

Behavior of correction for large $y: y^{3} \sqrt{\beta / \alpha} P_{0}(y)$
Correction no longer small when $y \sim(\alpha / \beta)^{1 / 6}$ so that $n-\alpha / \beta \sim(\alpha / \beta)^{2 / 3}$
Can't use Fokker-Planck to get down to n 's of order 1 .
Can't calculate Γ_{1} this way!!

Discrete WKB

WKB Ansatz: $x \equiv \beta n / \alpha$

$$
P_{n}=\exp \left(\frac{\alpha}{\beta} S_{0}(x)+S_{1}(x)+\cdots\right)
$$

To leading order: $P_{n+k} \approx e^{k S_{0}^{\prime}(x)} P_{n} \equiv \Lambda^{k} P_{n}$, where $\Lambda(x) \equiv e^{S_{0}^{\prime}(x)}$
Leading Order WKB equation:

$$
0=\alpha\left(-1+\frac{1}{\Lambda}\right)+\frac{\alpha x}{2}\left(-1+\Lambda^{2}\right)
$$

Solution:

$$
x=\frac{2}{\Lambda(\Lambda+1)}
$$

Discrete WKB

Solution: $x=2 /(\Lambda(\Lambda+1))$

Connection to Fokker-Planck:

- For $n \approx \alpha / \beta, x \approx 1$
- $\Lambda \approx 1+\frac{2}{3}(1-x)$
- $S_{0}^{\prime}=\ln (\Lambda) \approx \frac{2}{3}(1-x) \Rightarrow S_{0} \approx-\frac{1}{3}(1-x)^{2}$
- $P \approx \exp \left(\frac{\alpha}{\beta} S_{0}\right)=e^{-y^{2} / 3}$

As $x \rightarrow 0, \Lambda \rightarrow \infty$
Scale of Γ_{1} :

$$
P_{2} / P_{\alpha / \beta} \approx \exp \left(\frac{\alpha}{\beta} \int_{1}^{\infty} \ln (\Lambda) \frac{d x}{d \Lambda} d \Lambda\right)=\exp \left(-\frac{\alpha}{\beta} \int_{1}^{\infty} \frac{x(\Lambda)}{\Lambda} d \Lambda\right)
$$

Connection to Elgart-Kamenev

$$
\Gamma_{1} \sim P_{2} / P_{\alpha / \beta} \approx \exp \left(-\frac{\alpha}{\beta} \int_{1}^{\infty} \frac{x(\Lambda)}{\Lambda} d \Lambda\right)
$$

Define coordinate $q=n \Lambda$, momentum $p=1 / \Lambda$
$0 \leq q \leq \alpha / \beta, \quad 0 \leq p \leq 1$,

$$
\Gamma_{1} \sim \exp \left(-\int_{0}^{1} q d p\right)
$$

where

$$
q(p)=\frac{2 \alpha}{\beta} \frac{p}{1+p}
$$

Physical Optics

To complete the calculation, we need $S_{1}(x)$ as well.
Answer:

$$
Q(x)=A e^{S_{1}(x)}=A \frac{\sqrt{\Lambda}(\Lambda+1)^{2}}{\sqrt{2 \Lambda+1}}
$$

This works as long as $n \gg 1$. Have to solve small- n problem separately.
For small n, P_{n} grows rapidly with n.
Leads to approximate master equation:

$$
0=\alpha\left(-n P_{n}+(n-1) P_{n-1}\right)+\frac{\beta}{2}\left(-n(n-1) P_{n}+(n+2)(n+1) P_{n+2}\right)
$$

Solution:

$$
P_{n} \approx\left(\frac{\alpha}{\beta}\right)^{(n-1) / 2} \frac{1}{n \Gamma((n+1) / 2)} P_{1}
$$

Physical Optics

Matching this to WKB solution yields $A=P_{1} \sqrt{\frac{\beta^{3}}{4 \pi \alpha^{3}}}$
Final Answer:

$$
\Gamma_{1}=\sqrt{\frac{\alpha^{3}}{4 \pi \beta}} e^{-2 \alpha(1-\ln (2)) / \beta}
$$

Quasistationary Distribution

Numerics

Decay Rate

Numerics

Decay Rate

Conclusion

Models with same rate equations yield very different extinction rates, i.e. different ΔS_{0}.

- For 'parity' model with $A \xrightarrow{\alpha / 2} 3 A$,

$$
\Gamma_{1} \approx \sqrt{\frac{\alpha^{3}}{2 \pi \beta}} e^{-\alpha / 2 \beta}
$$

In ecology, for example, will never know 'real' model, extinction rate unknowable.

- Leigh (1981) knew the difference between the true extinction rate and the Fokker-Planck value - "equivalent to that accruing from mistaking K " (carrying capacity = metastable population)
- Implication is that since we don't (can't) know K precisely, what does the exact answer matter?

Situation may be better for environmental stochasticity, where distribution is power-law and Fokker-Planck equation is valid.

And nom for samething campletely different!

SIR Infection Model Near Threshold

David Kessler Nadav Shnerb

Bar-Ilan Univ.

http://arxiv.org/pdf/q-bio.PE/0701024
PRE (to appear)
Note added yesterday: Reproduces A. Martin-Löf, J. Appl. Prob. 35,
671-682 (1998).

Definition of SIR Model

One of the basic models of infection - Kermack and McKendrick (1927)
Well-Mixed Population of N persons - divided into 3 classes

- $S \equiv$ Susceptible - Healthy, Infectible
- I \equiv Infected - Sick, Infectious
- $\mathrm{R} \equiv$ Recovered (Removed) - Non-Infectious, Non-Infectible

Fundamental Processes:

$$
\begin{array}{llll}
(S, I, R) & \xrightarrow[\rightarrow]{\alpha S I / N} & (S-1, I+1, \quad R) & \text { Infection } \\
(S, I, R) & \xrightarrow{1} & (S, I-1, R+1) & \text { Recovery }
\end{array}
$$

2 Parameters, $\alpha=$ infectivity, N
Standard Question: Start with 1 Infected, ($N-1,1,0$). Process ends when last Infected recovers, $(N-n, 0, n)$.

What is epidemic size, n ?

First-Pass: Rate Equations

The SIR Equations: (Kermack and McKendrick, 1927)

$$
\begin{aligned}
\dot{S} & =-\frac{\alpha}{N} S I \\
\dot{I} & =+\frac{\alpha}{N} S I-I \\
\dot{R} & =I
\end{aligned}
$$

N is conserved \Rightarrow Do not need to track $R(t)$.
S decreases monotonically with time \Rightarrow Sufficient to consider $I(S)$:

$$
\frac{d I}{d S}=-1+\frac{N}{\alpha S}
$$

Solution is immediate: $I=N-S+\frac{N}{\alpha} \ln \frac{S}{N-1}$

Rate Equations (Cont'd)

$$
\begin{aligned}
\frac{d I}{d S} & =-1+\frac{N}{\alpha S} \\
I & =N-S+\frac{N}{\alpha} \ln \frac{S}{N-1}
\end{aligned}
$$

Two cases:

- $\alpha<\frac{N}{N-1} \approx 1$: I decreases monotonically to 0 , i.e. infection immediately dies out.
- $\alpha>1$: l first increases, then decreases to 0 .

$$
\begin{aligned}
& n=N-\left.S\right|_{I=0}=r N \\
& \text { where } \left.\quad \begin{array}{rl}
& e^{-\alpha r}+r
\end{array}\right) \\
& r \sim 2(\alpha-1) \text { as } \alpha \rightarrow 1^{+}, \quad r
\end{aligned}
$$

Threshold at $\alpha=1$.

Stochastic Model, Mapping to Random Walk

In principle, we could write down a master equation (or FokkerPlanck equation) for $P(S, I)$. Not stationary. Even to do WKB we would have to solve the semi-classical rate equations - not trivial.

Better idea: Do what we did to rate equations - eliminate time.
Define $T \equiv$ number of transitions. In each transition, I changes by ± 1, Random Walk.
S is given by T and I :

- $I=1+T_{+}-T_{-}=1+2 T_{+}-T \Rightarrow T_{+}=\frac{1}{2}(I+T-1)$
- $S=N-1-T_{+}=N-\frac{1}{2}(I+T+1)$

Transition probabilities:

$$
\begin{aligned}
& p_{-}=\frac{1}{1+\alpha S / N}=\frac{1}{1+\alpha-\alpha(I+T+1) /(2 N)} \\
& p_{+}=1-p_{-}
\end{aligned}
$$

Stochastic Model, Infinite N Limit

$$
\begin{aligned}
& p_{-}=\frac{1}{1+\alpha S / N}=\frac{1}{1+\alpha-\alpha(I+T+1) /(2 N)} \\
& p_{+}=1-p_{-}
\end{aligned}
$$

In initial stages, $I+T+1 \ll N \Rightarrow$ Simple Biased Random Walk, with Trap at Origin

For $\alpha<1$:

- Walk biased toward origin.
- Avg. number of steps to hit origin from 1:

$$
0=1+\bar{T}\left(\frac{\alpha}{1+\alpha}-\frac{1}{1+\alpha}\right) \Rightarrow \bar{T}=\frac{1+\alpha}{1-\alpha}
$$

Finite, so neglect of $(I+T+1) / N$ is always good.

- $\bar{n}=\frac{1}{2}(\bar{T}+1)=\frac{1}{1-\alpha}$, Classic Result (Harris, 1989)
- Diverges as $\alpha \rightarrow 1$.

Stochastic Model, Infinite N Limit (Cont'd)

For $\alpha>1$:

- Cannot use rate equations until I is macroscopic.
- Finite chance that I dies out before this.
- During this time, we can again neglect $(I+T+1) / N$
- Random Walk biased toward ∞
- Probability of being absorbed at origin $=1 / \alpha$.
- If I escapes early extinction, then rate eqn. prediction is reliable. (Watson, 1980)
- Thus,

$$
\bar{n}=\left(1-\frac{1}{\alpha}\right) r N
$$

- Always far from naive rate equation answer.
- $\bar{n} \sim 2(\alpha-1)^{2} N$ as $\alpha \rightarrow 1^{+}$.

Threshold Region

Clearly, both results $\alpha<1(n \rightarrow \infty), \alpha>1(n \rightarrow 0)$ break down at threshold, $\alpha=1$.

How wide is threshold region? (Ben-Naim and Krapivsky, 2004) Define $\alpha-1 \equiv \delta$.

$$
\begin{aligned}
\bar{n} \sim O(1 / \delta) & \alpha<1 \\
\bar{n} \sim O\left(\delta^{2} N\right) & \alpha>1 \\
& \\
\quad \Rightarrow & \\
& \delta \sim N^{-1 / 3} \quad \bar{n} \sim N^{1 / 3}
\end{aligned}
$$

Solution of Threshold Region

To analyze threshold region, we have to include $(I+T+1) / N$ term in $p_{ \pm}$.

However, term is nevertheless small in threshold region, so

$$
p_{ \pm} \approx \frac{1}{2} \mp \frac{1}{8 N}(T+I-2 \delta N)
$$

Extra drift is relevant for $T \sim \delta N \sim N^{2 / 3}$
For random walk, $I \sim T^{1 / 2}$, so I term in drift is still irrelevant.
We are left with a random walk with a drift that increases linearly in "time".

Solution at Threshold

Look at threshold ($\delta=0$) case first.
Solution without drift:

$$
P(T=2 k+1)=2^{-2 k-1}\left(\binom{2 k}{k}-\binom{2 k}{k+1}\right) \sim \frac{1}{\sqrt{4 \pi k^{3}}} \quad(k \rightarrow \infty)
$$

How does drift modify this result at long times?
Pass to Fokker-Planck equation:

$$
\frac{\partial P}{\partial T}=\frac{1}{2} \frac{\partial^{2} P}{\partial I^{2}}+\frac{T}{4 N} \frac{\partial P}{\partial I}
$$

Not separable!

Solution at Threshold (Cont'd)

Trick: Define

$$
P \equiv e^{-I T / 4 N-T^{3} /\left(96 N^{2}\right)} \psi
$$

Then,

$$
\frac{\partial \psi}{\partial T}=\frac{1}{2} \frac{\partial^{2} \psi}{\partial I^{2}}+\frac{I}{4 N} \psi
$$

Boundary Conditions: $\quad \psi(0, T)=0, \quad \psi(I, 0)=\delta(I-1), \quad \psi(L, T)=0$ (regularization)

After rescaling I by $a \equiv(2 N)^{1 / 3}$ and T by $2 a^{2}$, we get

$$
\frac{\partial \psi}{\partial T}=\frac{\partial^{2} \psi}{\partial I^{2}}+I \psi
$$

with $\psi(I, 0)=\delta(I-1 / a) / a$.
Eigenfunctions satisfy Airy equation!

Properties at Threshold

$$
P(n)=\frac{e^{-n^{3} /\left(12 N^{2}\right)}}{\pi^{2} a^{3}} \int_{-\infty}^{\infty} \frac{d E}{\mathrm{Ai}^{2}(E)+\mathrm{Bi}^{2}(E)} e^{E n / a^{2}}
$$

Asymptotics for small n :

- Dominated by large negative E, where $\mathrm{Ai}^{2}(E)+\mathrm{Bi}^{2}(E) \approx(-E)^{-1 / 2} / \pi$

$$
P(n) \approx \frac{1}{\sqrt{4 \pi} n^{3 / 2}}
$$

Asymptotics for large n :

- Dominated by $\operatorname{Bi}(E)$ giving maximum at $E \sim n^{2}$

$$
P(n) \approx \frac{1}{8 \sqrt{\pi} N^{2}} n^{3 / 2} e^{-n^{3} /\left(16 N^{2}\right)}
$$

- Strongly suppressed for $n \gg N^{2 / 3}$
- Suppression found numerically by Ben-Naim \& Krapivsky

Properties at Threshold

Solution near Threshold

Return to $\delta \neq 0$.
Same Trick works:

$$
P \equiv e^{-\frac{I(T-2 \delta N)}{4 N}-\frac{(T-2 \delta N)^{3}-(2 \delta N)^{3}}{96 N^{2}}} \psi
$$

so that

$$
P_{\delta}(n)=e^{\left(n^{2} \delta N-n \delta^{2} N^{2}\right) /\left(3 N^{2}\right)} P_{\delta=0}(n)
$$

For large δ, this generates a second peak at $n \approx 2 \delta N$, the "classical" rate equation answer.

Solution near Threshold

Properties near Threshold

Consider $\bar{n}(\delta)$.

Asymptotics for large, negative δ :

- Dominated by small n 's:

$$
\bar{n} \approx \int_{0}^{\infty} d n n e^{-n \delta^{2} / 4} \frac{1}{2 \sqrt{\pi} n^{3 / 2}}=-1 / \delta
$$

- Matches on to subcritical result.

Asymptotics for large, positive δ :

- Dominated by second, classical peak

$$
\bar{n} \approx 2 \delta^{2} N
$$

- Matches on to supercritical result.

Properties near Threshold

THANK YOU

Does this work?

Calculated using exact 1-D master equation Works as long as α not to close to threshold.

Does this work? (cont'd)

Hard to see, but again fails as $\alpha \rightarrow 1$.

Does this work? (cont'd)

Blow up region near $\alpha=1$

Again, N-dependent boundary layer near threshold

Solution at Threshold (Cont'd)

Flux of ψ to origin is:

$$
\begin{align*}
\mathcal{F}_{\psi} & =\left.\frac{1}{2} \frac{\partial \psi}{\partial I}\right|_{I=0}=\frac{1}{2 a} \sum_{n} \phi_{n}^{\prime}(0) \phi_{n}^{\prime}\left(\frac{1}{a}\right) e^{E_{n} T} \\
& \approx \frac{1}{2 a^{2}} \sum_{n}\left(\phi_{n}^{\prime}(0)\right)^{2} e^{E_{n} T} \tag{1}
\end{align*}
$$

Eigenfunctions:

$$
\phi_{n}(I)=A_{n} \mathbf{A i}\left(-x+E_{n}\right)+B_{n} \mathbf{B i}\left(-x+E_{n}\right)
$$

Boundary condition $\phi_{n}(0)=0$ gives:

$$
B_{n}=-A_{n} \mathrm{~A} \mathbf{i}\left(E_{n}\right) / \mathrm{Bi}\left(E_{n}\right)
$$

SO,

$$
\phi_{n}^{\prime}(0)=-\frac{A_{n}}{\operatorname{Bi}\left(E_{n}\right)} W r(\mathbf{A i}, \mathrm{Bi})=-\frac{A_{n}}{\pi \operatorname{Bi}\left(E_{n}\right)}
$$

Solution at Threshold (Cont'd)

A_{n} given by normalization:

$$
\begin{align*}
1 & =\int_{0}^{L} \phi_{n}^{2}(I) d I=\left[\phi_{n}^{\prime 2}+(x-E) \phi_{n}^{2}\right]_{0}^{L} \\
& =\left[\left(\phi_{n}^{\prime}(L)\right)^{2}-\left(\phi_{n}^{\prime}(0)\right)^{2}\right] \approx \frac{\left(A_{n}^{2}+B_{n}^{2}\right) L^{1 / 2}}{\pi} \tag{2}
\end{align*}
$$

Change sum over n to integral over E. Density of states:

$$
\frac{d n}{d E} \approx \frac{L^{1 / 2}}{\pi}
$$

Now, take away the cutoff L and undo the rescalings:

$$
P(n)=\frac{e^{-n^{3} /\left(12 N^{2}\right)}}{\pi^{2} a^{3}} \int_{-\infty}^{\infty} \frac{d E}{\mathrm{Ai}^{2}(E)+\mathrm{Bi}^{2}(E)} e^{E n / a^{2}}
$$

