Extinction - 2 Case Studies

David Kessler Nadav Shnerb

Bar-Ilan Univ.

Part I: Lifetime of a Branching-Annihilation Process Part II: Distribution of Epidemic Sizes near Threshold

Extinction Rates - A Real-Space WKB Treatment

David Kessler Nadav Shnerb

Bar-Ilan Univ.

A commentary / extension of Elgart-Kamenev (and Freidlin-Wentzell) Parallel to Assaf and Meerson

J. Stat. Phys., (2007)

Basic Processes:

$$\begin{array}{cccc} A & \stackrel{\alpha}{\to} & 2A \\ A + A & \stackrel{\beta}{\to} & 0 \end{array}$$

Rate Equation:

$$\dot{n} = \alpha n - \beta n(n-1)$$

- Logistic Growth
- Stable state at $n = 1 + \alpha/\beta$
- Unstable state at n = 0

Stochastic Process Different:

- State at $n = 1 + \alpha/\beta$ meta-stable
- Absorbing state at n = 0

What is the extinction rate?

Consider the master equation:

$$\dot{P}_n = \alpha \left(-nP_n + (n-1)P_{n-1} \right) + \frac{\beta}{2} \left(-n(n-1)P_n + (n+2)(n-1)P_{n+2} \right)$$

Long-time behavior given by $-\Gamma_1$, negative eigenvalue closest to 0 For small β/α , Γ_1 is exponentially small \Rightarrow very slow decay Associated eigenvector called the quasi-stationary state $1/\Gamma_1$ is the mean first passage time for the quasi-stationary state For small β/α , the mean first passage time starting from *n* is essentially independent of *n* (unless *n* is very small), and equal to $1/\Gamma_1$ (implies all other eigenvalues much larger in magnitude)

David A. Kessler, Bar-Ilan Univ.

We want to compute Γ_1 for small β/α

Strategy: Since Γ_1 exponentially small, we can solve *stationary* master equation:

$$0 = \alpha \left(-nP_n + (n-1)P_{n-1} \right) + \frac{\beta}{2} \left(-n(n-1)P_n + (n+2)(n+1)P_{n+2} \right)$$

• Γ_1 determined by leakage to the absorbing state:

$$\Gamma_1 = \frac{\beta P_2}{\sum_n P_n}$$

Use Discrete WKB to solve master equation

Width of peak near $n = \alpha/\beta$ is $O((\alpha/\beta)^{1/2}) \gg 1$

Approximating Finite-Differences by Derivatives should be good!

Define
$$y \equiv \sqrt{\beta/\alpha}(n - \alpha/\beta)$$

Master equation reads:

$$0 = \left(\frac{3}{2}P'' + (yP)'\right) + \frac{1}{2}\sqrt{\frac{\beta}{\alpha}}\left(P''' + 5yP'' + 8P' + 4yP + 2y^2P\right) + O\left(\frac{\beta}{\alpha}\right)$$

Obtain Fokker-Planck with small corrections!

What is bad???

David A. Kessler, Bar-Ilan Univ.

$$y \equiv \sqrt{\frac{\beta}{\alpha}} \left(n - \frac{\alpha}{\beta} \right)$$

Leading order solution:

$$P_0(y) \sim e^{-y^2/3}$$

Behavior of correction for large y: $y^3 \sqrt{\beta/\alpha} P_0(y)$

Correction no longer small when $y \sim (\alpha/\beta)^{1/6}$ so that $n - \alpha/\beta \sim (\alpha/\beta)^{2/3}$

Can't use Fokker-Planck to get down to n's of order 1.

Can't calculate Γ_1 this way!!

Discrete WKB

WKB Ansatz: $x \equiv \beta n/\alpha$

$$P_n = \exp\left(\frac{\alpha}{\beta}S_0(x) + S_1(x) + \cdots\right)$$

To leading order: $P_{n+k} \approx e^{kS'_0(x)}P_n \equiv \Lambda^k P_n$, where $\Lambda(x) \equiv e^{S'_0(x)}$ Leading Order WKB equation:

$$0 = \alpha(-1 + \frac{1}{\Lambda}) + \frac{\alpha x}{2}(-1 + \Lambda^2)$$

Solution:

$$x = \frac{2}{\Lambda(\Lambda + 1)}$$

David A. Kessler, Bar-Ilan Univ.

Solution: $x = 2/(\Lambda(\Lambda + 1))$

Connection to Fokker-Planck:

- For $n \approx \alpha/\beta$, $x \approx 1$
- $\Lambda \approx 1 + \frac{2}{3}(1-x)$

•
$$S'_0 = \ln(\Lambda) \approx \frac{2}{3}(1-x) \Rightarrow S_0 \approx -\frac{1}{3}(1-x)^2$$

•
$$P \approx \exp(\frac{\alpha}{\beta}S_0) = e^{-y^2/3}$$

As $x \to 0$, $\Lambda \to \infty$

Scale of Γ_1 :

$$P_2/P_{\alpha/\beta} \approx \exp\left(\frac{\alpha}{\beta} \int_1^\infty \ln(\Lambda) \frac{dx}{d\Lambda} d\Lambda\right) = \exp\left(-\frac{\alpha}{\beta} \int_1^\infty \frac{x(\Lambda)}{\Lambda} d\Lambda\right)$$

David A. Kessler, Bar-Ilan Univ.

Connection to Elgart-Kamenev

$$\Gamma_1 \sim P_2 / P_{\alpha/\beta} \approx \exp\left(-\frac{\alpha}{\beta} \int_1^\infty \frac{x(\Lambda)}{\Lambda} d\Lambda\right)$$

Define coordinate $q = n\Lambda$, momentum $p = 1/\Lambda$

 $0 \leq q \leq lpha/eta$, $0 \leq p \leq 1$,

$$\Gamma_1 \sim \exp\left(-\int_0^1 q dp\right)$$

where

$$q(p) = \frac{2\alpha}{\beta} \frac{p}{1+p}$$

To complete the calculation, we need $S_1(x)$ as well. Answer:

$$Q(x) = Ae^{S_1(x)} = A\frac{\sqrt{\Lambda}(\Lambda+1)^2}{\sqrt{2\Lambda+1}}$$

This works as long as $n \gg 1$. Have to solve small-n problem separately.

For small n, P_n grows rapidly with n.

Leads to approximate master equation:

$$0 = \alpha(-nP_n + (n-1)P_{n-1}) + \frac{\beta}{2}(-n(n-1)P_n + (n+2)(n+1)P_{n+2})$$

Solution:

$$P_n \approx \left(\frac{\alpha}{\beta}\right)^{(n-1)/2} \frac{1}{n\Gamma((n+1)/2)} P_1$$

David A. Kessler, Bar-Ilan Univ.

Matching this to WKB solution yields $A = P_1 \sqrt{\frac{\beta^3}{4\pi\alpha^3}}$

Final Answer:

$$\Gamma_1 = \sqrt{\frac{\alpha^3}{4\pi\beta}} e^{-2\alpha(1-\ln(2))/\beta}$$

Numerics

Quasistationary Distribution

Numerics

Decay Rate

Numerics

Decay Rate

Conclusion

Models with same rate equations yield very different extinction rates, i.e. different ΔS_0 .

• For 'parity' model with $A \xrightarrow{\alpha/2} 3A$,

$$\Gamma_1 \approx \sqrt{\frac{\alpha^3}{2\pi\beta}} e^{-\alpha/2\beta}$$

In ecology, for example, will never know 'real' model, extinction rate unknowable.

- Leigh (1981) knew the difference between the true extinction rate and the Fokker-Planck value "equivalent to that accruing from mistaking K" (carrying capacity = metastable population)
- Implication is that since we don't (can't) know K precisely, what does the exact answer matter?

Situation may be better for environmental stochasticity, where distribution is power-law and Fokker-Planck equation is valid.

And now for

something completely

different!

SIR Infection Model Near Threshold

David Kessler Nadav Shnerb

Bar-Ilan Univ.

http://arxiv.org/pdf/q-bio.PE/0701024 PRE (to appear) Note added yesterday: Reproduces A. Martin-Löf, J. Appl. Prob. **35**, 671-682 (1998).

Definition of SIR Model

One of the basic models of infection - Kermack and McKendrick (1927)

Well-Mixed Population of N persons - divided into 3 classes

- S \equiv Susceptible Healthy, Infectible
- I \equiv Infected Sick, Infectious
- R \equiv Recovered (Removed) Non-Infectious, Non-Infectible

Fundamental Processes:

 $\begin{array}{ccc} (S,I,R) & \stackrel{\alpha SI/N}{\rightarrow} & (S-1,I+1, R) & \text{Infection} \\ (S,I,R) & \stackrel{1}{\rightarrow} & (S,I-1,R+1) & \text{Recovery} \end{array}$

2 Parameters, α = infectivity, N

Standard Question: Start with 1 Infected, (N-1,1,0). Process ends when last Infected recovers, (N-n,0,n). What is epidemic size, n?

First-Pass: Rate Equations

The SIR Equations: (Kermack and McKendrick, 1927)

$$\dot{S} = -\frac{\alpha}{N}SI$$
$$\dot{I} = +\frac{\alpha}{N}SI - I$$
$$\dot{R} = I$$

N is conserved \Rightarrow Do not need to track R(t).

S decreases monotonically with time \Rightarrow Sufficient to consider I(S):

$$\frac{dI}{dS} = -1 + \frac{N}{\alpha S}$$

Solution is immediate: $I = N - S + \frac{N}{\alpha} \ln \frac{S}{N-1}$

David A. Kessler, Bar-Ilan Univ.

Rate Equations (Cont'd)

$$\frac{dI}{dS} = -1 + \frac{N}{\alpha S}$$
$$I = N - S + \frac{N}{\alpha} \ln \frac{S}{N - 1}$$

Two cases:

- $\alpha < \frac{N}{N-1} \approx 1$: I decreases monotonically to 0, i.e. infection immediately dies out.
- $\alpha > 1$: I first increases, then decreases to 0.

$$n = N - S|_{I=0} = rN$$

$$\begin{array}{ll} \mbox{where} & e^{-\alpha r}+r=1\\ \\ r\sim 2(\alpha-1) \mbox{ as } \alpha\rightarrow 1^+ \mbox{,} & r\sim 1-e^{-\alpha} \mbox{ as } \alpha\rightarrow\infty. \end{array}$$

Threshold at $\alpha = 1$.

In principle, we could write down a master equation (or Fokker-Planck equation) for P(S, I). Not stationary. Even to do WKB we would have to solve the semi-classical rate equations - not trivial.

Better idea: Do what we did to rate equations - eliminate time.

Define $T \equiv$ number of transitions. In each transition, I changes by ± 1 , Random Walk.

S is given by T and I:

•
$$I = 1 + T_{+} - T_{-} = 1 + 2T_{+} - T \Rightarrow T_{+} = \frac{1}{2}(I + T - 1)$$

•
$$S = N - 1 - T_{+} = N - \frac{1}{2}(I + T + 1)$$

Transition probabilities:

$$p_{-} = \frac{1}{1 + \alpha S/N} = \frac{1}{1 + \alpha - \alpha (I + T + 1)/(2N)}$$

$$p_{+} = 1 - p_{-}$$

David A. Kessler, Bar-Ilan Univ.

Stochastic Model, Infinite N Limit

$$p_{-} = \frac{1}{1 + \alpha S/N} = \frac{1}{1 + \alpha - \alpha (I + T + 1)/(2N)}$$

$$p_{+} = 1 - p_{-}$$

In initial stages, $I+T+1 \ll N \Rightarrow$ Simple Biased Random Walk, with Trap at Origin

For $\alpha < 1$:

- Walk biased toward origin.
- Avg. number of steps to hit origin from 1:

$$0 = 1 + \bar{T}\left(\frac{\alpha}{1+\alpha} - \frac{1}{1+\alpha}\right) \Rightarrow \bar{T} = \frac{1+\alpha}{1-\alpha}$$

Finite, so neglect of (I + T + 1)/N is always good.

- $\bar{n} = \frac{1}{2}(\bar{T} + 1) = \frac{1}{1-\alpha}$, Classic Result (Harris, 1989)
- Diverges as $\alpha \to 1$.

David A. Kessler, Bar-Ilan Univ.

Stochastic Model, Infinite N Limit (Cont'd)

For $\alpha > 1$:

- Cannot use rate equations until *I* is macroscopic.
- Finite chance that *I* dies out before this.
- During this time, we can again neglect (I + T + 1)/N
- \bullet Random Walk biased toward ∞
- Probability of being absorbed at origin = $1/\alpha$.
- If *I* escapes early extinction, then rate eqn. prediction is reliable. (Watson, 1980)
- Thus,

$$\bar{n} = \left(1 - \frac{1}{\alpha}\right) rN$$

• Always far from naive rate equation answer.

•
$$\bar{n} \sim 2(\alpha - 1)^2 N$$
 as $\alpha \to 1^+$.

Threshold Region

Clearly, both results $\alpha < 1$ $(n \to \infty)$, $\alpha > 1$ $(n \to 0)$ break down at threshold, $\alpha = 1$.

How wide is threshold region? (Ben-Naim and Krapivsky, 2004)

Define $\alpha - 1 \equiv \delta$. $\bar{n} \sim O(1/\delta) \qquad \alpha < 1$ $\bar{n} \sim O(\delta^2 N) \qquad \alpha > 1$ $\Rightarrow \qquad \delta \sim N^{-1/3} \qquad \bar{n} \sim N^{1/3}$ To analyze threshold region, we have to include (I+T+1)/N term in $p_\pm.$

However, term is nevertheless small in threshold region, so

$$p_{\pm} \approx \frac{1}{2} \mp \frac{1}{8N} (T + I - 2\delta N)$$

Extra drift is relevant for $T \sim \delta N \sim N^{2/3}$

For random walk, $I \sim T^{1/2}$, so I term in drift is still irrelevant.

We are left with a random walk with a drift that increases linearly in "time".

Solution at Threshold

Look at threshold ($\delta = 0$) case first.

Solution without drift:

$$P(T = 2k+1) = 2^{-2k-1} \left(\binom{2k}{k} - \binom{2k}{k+1} \right) \sim \frac{1}{\sqrt{4\pi k^3}} \quad (k \to \infty)$$

How does drift modify this result at long times? Pass to Fokker-Planck equation:

$$\frac{\partial P}{\partial T} = \frac{1}{2} \frac{\partial^2 P}{\partial I^2} + \frac{T}{4N} \frac{\partial P}{\partial I}$$

Not separable!

Solution at Threshold (Cont'd)

Trick: Define

$$P \equiv e^{-IT/4N - T^3/(96N^2)}\psi$$

Then,

$$\frac{\partial \psi}{\partial T} = \frac{1}{2} \frac{\partial^2 \psi}{\partial I^2} + \frac{I}{4N} \psi.$$

Boundary Conditions: $\psi(0,T) = 0$, $\psi(I,0) = \delta(I-1)$, $\psi(L,T) = 0$ (regularization)

After rescaling I by $a \equiv (2N)^{1/3}$ and T by $2a^2$, we get

$$\frac{\partial \psi}{\partial T} = \frac{\partial^2 \psi}{\partial I^2} + I\psi$$

with $\psi(I,0) = \delta(I-1/a)/a$.

Eigenfunctions satisfy Airy equation!

Properties at Threshold

$$P(n) = \frac{e^{-n^3/(12N^2)}}{\pi^2 a^3} \int_{-\infty}^{\infty} \frac{dE}{\mathsf{Ai}^2(E) + \mathsf{Bi}^2(E)} e^{En/a^2}$$

Asymptotics for small *n*:

• Dominated by large negative E, where ${\rm Ai}^2(E)+{\rm Bi}^2(E)\approx (-E)^{-1/2}/\pi$ $P(n)\approx \frac{1}{\sqrt{4\pi}n^{3/2}}$

Asymptotics for large *n*:

• Dominated by $\mathrm{Bi}(E)$ giving maximum at $E\sim n^2$

$$P(n) \approx \frac{1}{8\sqrt{\pi}N^2} n^{3/2} e^{-n^3/(16N^2)}$$

- Strongly suppressed for $n \gg N^{2/3}$
- Suppression found numerically by Ben-Naim & Krapivsky

Properties at Threshold

David A. Kessler, Bar-Ilan Univ.

Solution near Threshold

Return to $\delta \neq 0$.

Same Trick works:

$$P \equiv e^{-\frac{I(T-2\delta N)}{4N} - \frac{(T-2\delta N)^3 - (2\delta N)^3}{96N^2}}\psi$$

so that

$$P_{\delta}(n) = e^{(n^2 \delta N - n \delta^2 N^2)/(3N^2)} P_{\delta=0}(n)$$

For large δ , this generates a second peak at $n \approx 2\delta N$, the "classical" rate equation answer.

Solution near Threshold

David A. Kessler, Bar-Ilan Univ.

Consider $\bar{n}(\delta)$.

Asymptotics for large, negative δ :

• Dominated by small *n*'s:

$$\bar{n} \approx \int_0^\infty dn \, n \, e^{-n\delta^2/4} \frac{1}{2\sqrt{\pi}n^{3/2}} = -1/\delta$$

• Matches on to subcritical result.

Asymptotics for large, positive δ :

• Dominated by second, classical peak

$$\bar{n} \approx 2\delta^2 N$$

• Matches on to supercritical result.

Properties near Threshold

THANK YOU

Does this work?

 $\alpha < 1$

Calculated using exact 1-D master equation Works as long as α not to close to threshold.

David A. Kessler, Bar-Ilan Univ.

Does this work? (cont'd)

Hard to see, but again fails as $\alpha \rightarrow 1$.

Does this work? (cont'd)

Blow up region near $\alpha = 1$

Again, N-dependent boundary layer near threshold

Solution at Threshold (Cont'd)

Flux of ψ to origin is:

$$\mathcal{F}_{\psi} = \frac{1}{2} \frac{\partial \psi}{\partial I} \Big|_{I=0} = \frac{1}{2a} \sum_{n} \phi'_{n}(0) \phi'_{n}(\frac{1}{a}) e^{E_{n}T}$$
$$\approx \frac{1}{2a^{2}} \sum_{n} (\phi'_{n}(0))^{2} e^{E_{n}T}$$
(1)

Eigenfunctions:

$$\phi_n(I) = A_n \mathsf{Ai}(-x + E_n) + B_n \mathsf{Bi}(-x + E_n)$$

Boundary condition $\phi_n(0) = 0$ gives:

$$B_n = -A_n \mathsf{Ai}(E_n) / \mathsf{Bi}(E_n)$$

SO,

$$\phi'_n(0) = -\frac{A_n}{\mathsf{Bi}(E_n)} Wr(\mathsf{Ai},\mathsf{Bi}) = -\frac{A_n}{\pi \mathsf{Bi}(E_n)}$$

David A. Kessler, Bar-Ilan Univ.

 A_n given by normalization:

$$1 = \int_{0}^{L} \phi_{n}^{2}(I) dI = \left[\phi_{n}^{\prime 2} + (x - E)\phi_{n}^{2}\right]_{0}^{L}$$
$$= \left[\left(\phi_{n}^{\prime}(L)\right)^{2} - \left(\phi_{n}^{\prime}(0)\right)^{2}\right] \approx \frac{(A_{n}^{2} + B_{n}^{2})L^{1/2}}{\pi}$$

Change sum over n to integral over E. Density of states:

$$\frac{dn}{dE} \approx \frac{L^{1/2}}{\pi}$$

Now, take away the cutoff L and undo the rescalings:

$$P(n) = \frac{e^{-n^3/(12N^2)}}{\pi^2 a^3} \int_{-\infty}^{\infty} \frac{dE}{\mathsf{Ai}^2(E) + \mathsf{Bi}^2(E)} e^{En/a^2}$$

David A. Kessler, Bar-Ilan Univ.

(2)