Extinction - 2 Case Studies

David Kessler
Nadav Shnerb
Bar-Ilan Univ.

Part I: Lifetime of a Branching-Annihilation Process
Part II: Distribution of Epidemic Sizes near Threshold
Extinction Rates - A Real-Space WKB Treatment

David Kessler
Nadav Shnerb
Bar-Ilan Univ.

A commentary / extension of Elgart–Kamenev (and Freidlin–Wentzell)
Parallel to Assaf and Meerson

Basic Birth-Death Process

Basic Processes:

\[A \xrightarrow{\alpha} 2A \]
\[A + A \xrightarrow{\beta} 0 \]

Rate Equation:

\[\dot{n} = \alpha n - \beta n(n - 1) \]

- Logistic Growth
- Stable state at \(n = 1 + \alpha/\beta \)
- Unstable state at \(n = 0 \)

Stochastic Process Different:
- State at \(n = 1 + \alpha/\beta \) meta-stable
- Absorbing state at \(n = 0 \)

What is the extinction rate?
Consider the master equation:

\[\dot{P}_n = \alpha (-nP_n + (n-1)P_{n-1}) + \frac{\beta}{2} (-n(n-1)P_n + (n+2)(n-1)P_{n+2}) \]

Long-time behavior given by \(-\Gamma_1\), negative eigenvalue closest to 0

For small \(\beta/\alpha\), \(\Gamma_1\) is exponentially small \(\Rightarrow\) very slow decay

Associated eigenvector called the quasi-stationary state

\(1/\Gamma_1\) is the mean first passage time for the quasi-stationary state

For small \(\beta/\alpha\), the mean first passage time starting from \(n\) is essentially independent of \(n\) (unless \(n\) is very small), and equal to \(1/\Gamma_1\) (implies all other eigenvalues much larger in magnitude)
We want to compute Γ_1 for small β/α.

Strategy: Since Γ_1 exponentially small, we can solve *stationary* master equation:

$$0 = \alpha (-nP_n + (n - 1)P_{n-1}) + \frac{\beta}{2} (-n(n - 1)P_n + (n + 2)(n + 1)P_{n+2})$$

- Γ_1 determined by leakage to the absorbing state:

$$\Gamma_1 = \frac{\beta P_2}{\sum_n P_n}$$

Use Discrete WKB to solve master equation
Why not Fokker-Planck?

Width of peak near \(n = \alpha/\beta \) is \(O((\alpha/\beta)^{1/2}) \gg 1 \)

Approximating Finite-Differences by Derivatives should be good!

Define \(y \equiv \sqrt{\beta/\alpha}(n - \alpha/\beta) \)

Master equation reads:

\[
0 = \left(\frac{3}{2} P'' + (yP)' \right) + \frac{1}{2} \sqrt{\frac{\beta}{\alpha}} \left(P''' + 5yP'' + 8P' + 4yP + 2y^2 P \right) + O \left(\frac{\beta}{\alpha} \right)
\]

Obtain Fokker-Planck with small corrections!

What is bad???
Why not Fokker-Planck?

\[y \equiv \sqrt{\frac{\beta}{\alpha}} \left(n - \frac{\alpha}{\beta} \right) \]

Leading order solution:

\[P_0(y) \sim e^{-y^2/3} \]

Behavior of correction for large \(y \): \(y^3 \sqrt{\beta/\alpha} P_0(y) \)

Correction no longer small when \(y \sim (\alpha/\beta)^{1/6} \) so that \(n - \alpha/\beta \sim (\alpha/\beta)^{2/3} \)

Can’t use Fokker-Planck to get down to \(n \)’s of order 1.

Can’t calculate \(\Gamma_1 \) this way!!
Discrete WKB

WKB Ansatz: \(x \equiv \beta n / \alpha \)

\[
P_n = \exp \left(\frac{\alpha}{\beta} S_0(x) + S_1(x) + \cdots \right)
\]

To leading order: \(P_{n+k} \approx e^{kS_0'(x)} P_n \equiv \Lambda^k P_n \), where \(\Lambda(x) \equiv e^{S_0'(x)} \)

Leading Order WKB equation:

\[
0 = \alpha (-1 + \frac{1}{\Lambda}) + \frac{\alpha x}{2} (-1 + \Lambda^2)
\]

Solution:

\[
x = \frac{2}{\Lambda (\Lambda + 1)}
\]
Discrete WKB

Solution: \(x = 2/\left(\Lambda(\Lambda + 1)\right) \)

Connection to Fokker-Planck:

- For \(n \approx \alpha/\beta, \ x \approx 1 \)
- \(\Lambda \approx 1 + \frac{2}{3}(1 - x) \)
- \(S'_0 = \ln(\Lambda) \approx \frac{2}{3}(1 - x) \Rightarrow S_0 \approx -\frac{1}{3}(1 - x)^2 \)
- \(P \approx \exp\left(\frac{\alpha}{\beta}S_0\right) = e^{-y^2/3} \)

As \(x \to 0, \ \Lambda \to \infty \)

Scale of \(\Gamma_1 \):

\[
P_2/P_{\alpha/\beta} \approx \exp\left(\frac{\alpha}{\beta} \int_1^\infty \ln(\Lambda) \frac{dx}{d\Lambda} d\Lambda\right) = \exp\left(-\frac{\alpha}{\beta} \int_1^\infty \frac{x(\Lambda)}{\Lambda} d\Lambda\right)
\]
Connection to Elgart-Kamenev

\[\Gamma_1 \sim P_2/P_{\alpha/\beta} \approx \exp \left(-\frac{\alpha}{\beta} \int_1^{\infty} \frac{x(\Lambda)}{\Lambda} d\Lambda \right) \]

Define coordinate \(q = n\Lambda \), momentum \(p = 1/\Lambda \)

\[0 \leq q \leq \alpha/\beta, \; 0 \leq p \leq 1, \]

\[\Gamma_1 \sim \exp \left(-\int_0^1 qdp \right) \]

where

\[q(p) = \frac{2\alpha}{\beta} \frac{p}{1 + p} \]

Metastable State

Extinction State

David A. Kessler, Bar-Ilan Univ.

Large Deviations

06.6.2007
To complete the calculation, we need $S_1(x)$ as well.

Answer:

$$Q(x) = Ae^{S_1(x)} = A \frac{\sqrt{\Lambda}(\Lambda + 1)^2}{\sqrt{2\Lambda + 1}}$$

This works as long as $n \gg 1$. Have to solve small-n problem separately.

For small n, P_n grows rapidly with n.

Leads to approximate master equation:

$$0 = \alpha (-nP_n + (n - 1)P_{n-1}) + \frac{\beta}{2} (-n(n - 1)P_n + (n + 2)(n + 1)P_{n+2})$$

Solution:

$$P_n \approx \left(\frac{\alpha}{\beta} \right)^{(n-1)/2} \frac{1}{n\Gamma((n + 1)/2)} P_1$$
Matching this to WKB solution yields \(A = P_1 \sqrt{\frac{\beta^3}{4\pi \alpha^3}} \)

Final Answer:

\[
\Gamma_1 = \sqrt{\frac{\alpha^3}{4\pi \beta}} e^{-2\alpha(1-\ln(2))}/\beta
\]
Quasistationary Distribution

The graph shows the quasistationary distribution for different approximations: Exact, WKB, Fokker-Planck, and Approx. Recursion. The x-axis represents n, and the y-axis represents P_n / P_2. The data points are plotted on a logarithmic scale.
Decay Rate

Decay Rate (Γ)

$1 / \beta$

10^{0}
10^{-6}
10^{-12}
10^{-18}
10^{-24}
10^{-30}

0 20 40 60 80 100

- Exact
- Small β Approximation

David A. Kessler, Bar-Ilan Univ.
Large Deviations
06.6.2007
Numerics

Decay Rate

$\Gamma / e \Delta S$

$1 / \beta$

Exact

WKB

David A. Kessler, Bar-Ilan Univ.
Large Deviations
06.6.2007
Conclusion

Models with same rate equations yield very different extinction rates, i.e. different ΔS_0.

- For 'parity' model with $A \overset{\alpha/2}{\rightarrow} 3A$,

$$\Gamma_1 \approx \sqrt{\frac{\alpha^3}{2\pi\beta}}e^{-\alpha/2\beta}$$

In ecology, for example, will never know 'real' model, extinction rate unknowable.

- Leigh (1981) knew the difference between the true extinction rate and the Fokker-Planck value — "equivalent to that accruing from mistaking K" (carrying capacity = metastable population)
- Implication is that since we don’t (can’t) know K precisely, what does the exact answer matter?

Situation may be better for environmental stochasticity, where distribution is power-law and Fokker-Planck equation is valid.
And now for something completely different!
SIR Infection Model Near Threshold

David Kessler
Nadav Shnerb

Bar-Ilan Univ.

PRE (to appear)

Definition of SIR Model

One of the basic models of infection - Kermack and McKendrick (1927)

Well-Mixed Population of N persons - divided into 3 classes
- $S \equiv$ Susceptible - Healthy, Infectible
- $I \equiv$ Infected - Sick, Infectious
- $R \equiv$ Recovered (Removed) - Non-Infectious, Non-Infectible

Fundamental Processes:

$$(S, I, R) \xrightarrow{\alpha S I / N} (S - 1, I + 1, R) \quad \text{Infection}$$

$$(S, I, R) \xrightarrow{1} (S, I - 1, R + 1) \quad \text{Recovery}$$

2 Parameters, α = infectivity, N

Standard Question: Start with 1 Infected, $(N - 1, 1, 0)$. Process ends when last Infected recovers, $(N - n, 0, n)$.

What is epidemic size, n?
The SIR Equations: (Kermack and McKendrick, 1927)

\[\begin{align*}
\dot{S} &= -\frac{\alpha}{N} SI \\
\dot{I} &= +\frac{\alpha}{N} SI - I \\
\dot{R} &= I
\end{align*}\]

\(N\) is conserved \(\Rightarrow\) Do not need to track \(R(t)\).

\(S\) decreases monotonically with time \(\Rightarrow\) Sufficient to consider \(I(S)\):

\[\frac{dI}{dS} = -1 + \frac{N}{\alpha S}\]

Solution is immediate: \(I = N - S + \frac{N}{\alpha} \ln \frac{S}{N-1}\)
Rate Equations (Cont’d)

\[
\frac{dI}{dS} = -1 + \frac{N}{\alpha S} \\
I = N - S + \frac{N}{\alpha} \ln \frac{S}{N - 1}
\]

Two cases:
- \(\alpha < \frac{N}{N-1} \approx 1\): I decreases monotonically to 0, i.e. infection immediately dies out.
- \(\alpha > 1\): I first increases, then decreases to 0.

\[
n = N - S|_{I=0} = rN
\]

where
\[
e^{-\alpha r} + r = 1
\]
\[
r \sim 2(\alpha - 1) \text{ as } \alpha \to 1^+,
\quad r \sim 1 - e^{-\alpha} \text{ as } \alpha \to \infty.
\]

Threshold at \(\alpha = 1\).
In principle, we could write down a master equation (or Fokker-Planck equation) for $P(S,I)$. Not stationary. Even to do WKB we would have to solve the semi-classical rate equations - not trivial.

Better idea: Do what we did to rate equations - eliminate time.

Define $T \equiv \text{number of transitions}$. In each transition, I changes by ± 1, Random Walk.

S is given by T and I:
- $I = 1 + T_+ - T_- = 1 + 2T_+ - T \Rightarrow T_+ = \frac{1}{2}(I + T - 1)$
- $S = N - 1 - T_+ = N - \frac{1}{2}(I + T + 1)$

Transition probabilities:

\[
p_- = \frac{1}{1 + \alpha S/N} = \frac{1}{1 + \alpha - \alpha(I + T + 1)/(2N)}
\]

\[
p_+ = 1 - p_-
\]
Stochastic Model, Infinite N Limit

\[p_- = \frac{1}{1 + \alpha S/N} = \frac{1}{1 + \alpha - \alpha (I + T + 1)/(2N)} \]

\[p_+ = 1 - p_- \]

In initial stages, \(I + T + 1 \ll N \Rightarrow \) Simple Biased Random Walk, with Trap at Origin

For \(\alpha < 1 \):

- Walk biased toward origin.
- Avg. number of steps to hit origin from 1:

\[0 = 1 + \bar{T} \left(\frac{\alpha}{1 + \alpha} - \frac{1}{1 + \alpha} \right) \Rightarrow \bar{T} = \frac{1 + \alpha}{1 - \alpha} \]

Finite, so neglect of \((I + T + 1)/N \) is always good.

- \(\bar{n} = \frac{1}{2}(\bar{T} + 1) = \frac{1}{1 - \alpha} \), Classic Result (Harris, 1989)
- Diverges as \(\alpha \to 1 \).
For $\alpha > 1$:

- Cannot use rate equations until I is macroscopic.
- Finite chance that I dies out before this.
- During this time, we can again neglect $(I + T + 1)/N$.
- Random Walk biased toward ∞.
- Probability of being absorbed at origin = $1/\alpha$.
- If I escapes early extinction, then rate eqn. prediction is reliable. (Watson, 1980)

Thus,

$$\bar{n} = \left(1 - \frac{1}{\alpha} \right) rN$$

- Always far from naive rate equation answer.
- $\bar{n} \sim 2(\alpha - 1)^2 N$ as $\alpha \to 1^+$.
Clearly, both results $\alpha < 1 \ (n \rightarrow \infty)$, $\alpha > 1 \ (n \rightarrow 0)$ break down at threshold, $\alpha = 1$.

How wide is threshold region? (Ben-Naim and Krapivsky, 2004)

Define $\alpha - 1 \equiv \delta$.

$\bar{n} \sim O(1/\delta) \quad \alpha < 1$

$\bar{n} \sim O(\delta^2 N) \quad \alpha > 1$

$\Rightarrow \quad \delta \sim N^{-1/3} \quad \bar{n} \sim N^{1/3}$
Solution of Threshold Region

To analyze threshold region, we have to include \((I + T + 1)/N\) term in \(p_\pm\).

However, term is nevertheless small in threshold region, so

\[p_\pm \approx \frac{1}{2} \mp \frac{1}{8N}(T + I - 2\delta N) \]

Extra drift is relevant for \(T \sim \delta N \sim N^{2/3}\)

For random walk, \(I \sim T^{1/2}\), so \(I\) term in drift is still irrelevant.

We are left with a random walk with a drift that increases linearly in "time".
Look at threshold \((\delta = 0)\) case first.

Solution without drift:

\[
P(T = 2k + 1) = 2^{-2k-1} \left(\binom{2k}{k} - \binom{2k}{k+1} \right) \sim \frac{1}{\sqrt{4\pi k^3}} \quad (k \to \infty)
\]

How does drift modify this result at long times?

Pass to Fokker-Planck equation:

\[
\frac{\partial P}{\partial T} = \frac{1}{2} \frac{\partial^2 P}{\partial I^2} + \frac{T}{4N} \frac{\partial P}{\partial I}
\]

Not separable!
Solution at Threshold (Cont’d)

Trick: Define

\[P = e^{-IT/4N - T^3/(96N^2)} \psi \]

Then,

\[\frac{\partial \psi}{\partial T} = \frac{1}{2} \frac{\partial^2 \psi}{\partial I^2} + \frac{I}{4N} \psi. \]

Boundary Conditions: \(\psi(0, T) = 0, \quad \psi(I, 0) = \delta(I - 1), \quad \psi(L, T) = 0 \)
(regularization)

After rescaling \(I \) by \(a \equiv (2N)^{1/3} \) and \(T \) by \(2a^2 \), we get

\[\frac{\partial \psi}{\partial T} = \frac{\partial^2 \psi}{\partial I^2} + I \psi \]

with \(\psi(I, 0) = \delta(I - 1/a)/a. \)

Eigenfunctions satisfy Airy equation!
Properties at Threshold

\[P(n) = \frac{e^{-n^3/(12N^2)}}{\pi^2 a^3} \int_{-\infty}^{\infty} \frac{dE}{\text{Ai}^2(E) + \text{Bi}^2(E)} e^{En/a^2} \]

Asymptotics for small \(n \):
- Dominated by large negative \(E \), where \(\text{Ai}^2(E) + \text{Bi}^2(E) \approx (-E)^{-1/2} / \pi \)
 \[P(n) \approx \frac{1}{\sqrt{4\pi n^{3/2}}} \]

Asymptotics for large \(n \):
- Dominated by \(\text{Bi}(E) \) giving maximum at \(E \sim n^2 \)
 \[P(n) \approx \frac{1}{8\sqrt{\pi} N^2} n^{3/2} e^{-n^3/(16N^2)} \]
 - Strongly suppressed for \(n \gg N^{2/3} \)
 - Suppression found numerically by Ben-Naim & Krapivsky
Properties at Threshold

David A. Kessler, Bar-Ilan Univ.

Large Deviations

06.6.2007
Solution near Threshold

Return to $\delta \neq 0$.

Same Trick works:

$$P \equiv e^{-\frac{I(T-2\delta N)}{4N} - \frac{(T-2\delta N)^3-(2\delta N)^3}{96N^2}} \psi$$

so that

$$P_\delta(n) = e^{(n^2\delta N-n\delta^2 N^2)/(3N^2)} P_{\delta=0}(n)$$

For large δ, this generates a second peak at $n \approx 2\delta N$, the "classical" rate equation answer.
Solution near Threshold

n / N

$P(n)$

$\delta = -1$
$\delta = 0$
$\delta = 1$
$\delta = 4$

David A. Kessler, Bar-Ilan Univ.

Large Deviations

06.6.2007
Consider $\bar{n}(\delta)$.

Asymptotics for large, negative δ:
- Dominated by small n's:
 $$\bar{n} \approx \int_0^\infty dn \ n e^{-n\delta^2/4} \frac{1}{2\sqrt{\pi}n^{3/2}} = -1/\delta$$
 - Matches on to subcritical result.

Asymptotics for large, positive δ:
- Dominated by second, classical peak
 $$\bar{n} \approx 2\delta^2 N$$
 - Matches on to supercritical result.
Properties near Threshold

$$\frac{n}{N^{1/3}}$$

- $N = 10^3$
- $N = 10^4$
- $N = 10^5$

Large N

David A. Kessler, Bar-Ilan Univ.

Large Deviations

06.6.2007
THANK YOU
Does this work?

Calculated using exact 1-D master equation
Works as long as α not to close to threshold.
Does this work? (cont’d)

Hard to see, but again fails as $\alpha \to 1$.

David A. Kessler, Bar-Ilan Univ.
Large Deviations
06.6.2007
Blow up region near $\alpha = 1$

Again, N-dependent boundary layer near threshold
Flux of ψ to origin is:

$$F_\psi = \frac{1}{2} \frac{\partial \psi}{\partial I} \bigg|_{I=0} = \frac{1}{2a} \sum_n \phi'_n(0) \phi'_n(\frac{1}{a}) e^{E_n T}$$

$$\approx \frac{1}{2a^2} \sum_n (\phi'_n(0))^2 e^{E_n T}$$

(1)

Eigenfunctions:

$$\phi_n(I) = A_n \text{Ai}(-x + E_n) + B_n \text{Bi}(-x + E_n)$$

Boundary condition $\phi_n(0) = 0$ gives:

$$B_n = -\frac{A_n \text{Ai}(E_n)}{\text{Bi}(E_n)}$$

so,

$$\phi'_n(0) = -\frac{A_n}{\text{Bi}(E_n)} W_{r}(\text{Ai},\text{Bi}) = -\frac{A_n}{\pi \text{Bi}(E_n)}$$
Solution at Threshold (Cont’d)

\(A_n \) given by normalization:

\[
1 = \int_0^L \phi_n^2(I) dI = \left[\phi_n' + (x - E) \phi_n \right]_0^L \\
= \left[(\phi_n'(L))^2 - (\phi_n'(0))^2 \right] \approx \frac{(A_n^2 + B_n^2) L^{1/2}}{\pi} \tag{2}
\]

Change sum over \(n \) to integral over \(E \). Density of states:

\[
\frac{dn}{dE} \approx \frac{L^{1/2}}{\pi}
\]

Now, take away the cutoff \(L \) and undo the rescalings:

\[
P(n) = e^{-n^3/(12N^2)} \frac{\pi^2 a^3}{\int_{-\infty}^{\infty} \frac{dE}{\text{Ai}^2(E) + \text{Bi}^2(E)} e^{En/a^2}}
\]