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Basic Birth-Death Process

Basic Processes:

A
α→ 2A

A+A
β→ 0

Rate Equation:
ṅ = αn− βn(n− 1)

• Logistic Growth

• Stable state at n = 1 + α/β

• Unstable state at n = 0

Stochastic Process Different:
• State at n = 1 + α/β meta-stable

• Absorbing state at n = 0

What is the extinction rate?
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Quasi-stationary State

Consider the master equation:

Ṗn = α (−nPn + (n− 1)Pn−1) +
β

2
(−n(n− 1)Pn + (n+ 2)(n− 1)Pn+2)

Long-time behavior given by −Γ1, negative eigenvalue closest to 0

For small β/α, Γ1 is exponentially small ⇒ very slow decay

Associated eigenvector called the quasi-stationary state

1/Γ1 is the mean first passage time for the quasi-stationary state

For small β/α, the mean first passage time starting from n is
essentially independent of n (unless n is very small), and equal
to 1/Γ1 (implies all other eigenvalues much larger in magnitude)
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Small β/α

We want to compute Γ1 for small β/α

Strategy: Since Γ1 exponentially small, we can solve stationary master
equation:

0 = α (−nPn + (n− 1)Pn−1) +
β

2
(−n(n− 1)Pn + (n+ 2)(n+ 1)Pn+2)

• Γ1 determined by leakage to the absorbing state:

Γ1 =
βP2P
n Pn

Use Discrete WKB to solve master equation
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Why not Fokker-Planck?

Width of peak near n = α/β is O((α/β)1/2)� 1

Approximating Finite-Differences by Derivatives should be good!

Define y ≡
√
β/α(n− α/β)

Master equation reads:

0 =
(

3
2
P ′′ + (yP )′

)
+

1
2

√
β

α

(
P ′′′ + 5yP ′′ + 8P ′ + 4yP + 2y2P

)
+O

(
β

α

)

Obtain Fokker-Planck with small corrections!

What is bad???
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Why not Fokker-Planck?

y ≡
√
β

α

(
n− α

β

)
Leading order solution:

P0(y) ∼ e−y
2/3

Behavior of correction for large y: y3
√
β/αP0(y)

Correction no longer small when y ∼ (α/β)1/6 so that n−α/β ∼ (α/β)2/3

Can’t use Fokker-Planck to get down to n’s of order 1.

Can’t calculate Γ1 this way!!
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Discrete WKB

WKB Ansatz: x ≡ βn/α

Pn = exp
(
α

β
S0(x) + S1(x) + · · ·

)

To leading order: Pn+k ≈ ekS
′
0(x)Pn ≡ ΛkPn, where Λ(x) ≡ eS′0(x)

Leading Order WKB equation:

0 = α(−1 +
1
Λ

) +
αx

2
(−1 + Λ2)

Solution:
x =

2
Λ(Λ + 1)
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Discrete WKB

Solution: x = 2/(Λ(Λ + 1))

Connection to Fokker-Planck:
• For n ≈ α/β, x ≈ 1

• Λ ≈ 1 + 2
3(1− x)

• S′0 = ln(Λ) ≈ 2
3(1− x)⇒ S0 ≈ −1

3(1− x)2

• P ≈ exp(αβS0) = e−y
2/3

As x→ 0, Λ→∞

Scale of Γ1:

P2/Pα/β ≈ exp
(
α

β

∫ ∞
1

ln(Λ)
dx

dΛ
dΛ
)

= exp
(
−α
β

∫ ∞
1

x(Λ)
Λ

dΛ
)
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Connection to Elgart-Kamenev

Γ1 ∼ P2/Pα/β ≈ exp
(
−α
β

∫ ∞
1

x(Λ)
Λ

dΛ
)

Define coordinate q = nΛ, momentum p = 1/Λ

0 ≤ q ≤ α/β, 0 ≤ p ≤ 1,

Γ1 ∼ exp
(
−
∫ 1

0

qdp

)

where
q(p) =

2α
β

p

1 + p

0 0.5 1
p

0

0.5

1

(β
/α

) q

Metastable State

Extinction State
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Physical Optics

To complete the calculation, we need S1(x) as well.

Answer:

Q(x) = AeS1(x) = A

√
Λ(Λ + 1)2

√
2Λ + 1

This works as long as n � 1. Have to solve small-n problem
separately.

For small n, Pn grows rapidly with n.

Leads to approximate master equation:

0 = α(−nPn + (n− 1)Pn−1) +
β

2
(−n(n− 1)Pn + (n+ 2)(n+ 1)Pn+2)

Solution:

Pn ≈
(
α

β

)(n−1)/2 1
nΓ((n+ 1)/2)

P1
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Physical Optics

Matching this to WKB solution yields A = P1

√
β3

4πα3

Final Answer:

Γ1 =

√
α3

4πβ
e−2α(1−ln(2))/β
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Numerics

Quasistationary Distribution
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Numerics

Decay Rate

0 20 40 60 80 100

1 / β
10

-30

10
-24

10
-18

10
-12

10
-6

10
0

D
ec

ay
 R

at
e 

 (
 Γ

 )

Exact
Small β Approximation

David A. Kessler, Bar-Ilan Univ. Large Deviations 06.6.2007



Numerics

Decay Rate
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Conclusion

Models with same rate equations yield very different extinction rates,
i.e. different ∆S0.
• For ’parity’ model with A

α/2→ 3A,

Γ1 ≈

s
α3

2πβ
e
−α/2β

In ecology, for example, will never know ’real’ model, extinction
rate unknowable.
• Leigh (1981) knew the difference between the true extinction rate and the

Fokker-Planck value − "equivalent to that accruing from mistaking K" (carrying
capacity = metastable population)

• Implication is that since we don’t (can’t) know K precisely, what does the
exact answer matter?

Situation may be better for environmental stochasticity, where
distribution is power-law and Fokker-Planck equation is valid.
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And now for 
something completely 

different!
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Definition of SIR Model

One of the basic models of infection - Kermack and McKendrick (1927)

Well-Mixed Population of N persons - divided into 3 classes
• S ≡ Susceptible - Healthy, Infectible

• I ≡ Infected - Sick, Infectious

• R ≡ Recovered (Removed) - Non-Infectious, Non-Infectible

Fundamental Processes:

(S, I,R)
αSI/N→ (S − 1, I + 1, R ) Infection

(S, I,R) 1→ ( S , I − 1, R+ 1) Recovery

2 Parameters, α = infectivity, N

Standard Question: Start with 1 Infected, (N − 1, 1, 0). Process ends
when last Infected recovers, (N − n, 0, n).

What is epidemic size, n?
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First-Pass: Rate Equations

The SIR Equations: (Kermack and McKendrick, 1927)

Ṡ = − α
N
SI

İ = +
α

N
SI − I

Ṙ = I

N is conserved ⇒ Do not need to track R(t).

S decreases monotonically with time ⇒ Sufficient to consider I(S):

dI

dS
= −1 +

N

αS

Solution is immediate: I = N − S + N
α ln S

N−1
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Rate Equations (Cont’d)

dI

dS
= −1 +

N

αS

I = N − S +
N

α
ln

S

N − 1

Two cases:
• α < N

N−1 ≈ 1: I decreases monotonically to 0, i.e. infection immediately dies
out.

• α > 1: I first increases, then decreases to 0.

n = N − S|I=0 = rN

where e
−αr

+ r = 1

r ∼ 2(α− 1) as α→ 1+, r ∼ 1− e−α as α→∞.

Threshold at α = 1.
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Stochastic Model, Mapping to Random Walk

In principle, we could write down a master equation (or Fokker-
Planck equation) for P (S, I). Not stationary. Even to do WKB we
would have to solve the semi-classical rate equations - not trivial.

Better idea: Do what we did to rate equations - eliminate time.

Define T ≡ number of transitions. In each transition, I changes by
±1, Random Walk.

S is given by T and I:
• I = 1 + T+ − T− = 1 + 2T+ − T ⇒ T+ = 1

2(I + T − 1)

• S = N − 1− T+ = N − 1
2(I + T + 1)

Transition probabilities:

p− =
1

1 + αS/N
=

1
1 + α− α(I + T + 1)/(2N)

p+ = 1− p−
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Stochastic Model, Infinite N Limit

p− =
1

1 + αS/N
=

1
1 + α− α(I + T + 1)/(2N)

p+ = 1− p−

In initial stages, I + T + 1 � N ⇒ Simple Biased Random Walk, with
Trap at Origin

For α < 1:
• Walk biased toward origin.

• Avg. number of steps to hit origin from 1:

0 = 1 + T̄

„
α

1 + α
−

1

1 + α

«
⇒ T̄ =

1 + α

1− α

Finite, so neglect of (I + T + 1)/N is always good.

• n̄ = 1
2(T̄ + 1) = 1

1−α, Classic Result (Harris, 1989)

• Diverges as α→ 1.
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Stochastic Model, Infinite N Limit (Cont’d)

For α > 1:
• Cannot use rate equations until I is macroscopic.

• Finite chance that I dies out before this.

• During this time, we can again neglect (I + T + 1)/N

• Random Walk biased toward ∞
• Probability of being absorbed at origin = 1/α.

• If I escapes early extinction, then rate eqn. prediction is reliable. (Watson,
1980)

• Thus,

n̄ =

„
1−

1

α

«
rN

• Always far from naive rate equation answer.

• n̄ ∼ 2(α− 1)2N as α→ 1+.

David A. Kessler, Bar-Ilan Univ. Large Deviations 06.6.2007



Threshold Region

Clearly, both results α < 1 (n → ∞), α > 1 (n → 0) break down at
threshold, α = 1.

How wide is threshold region? (Ben-Naim and Krapivsky, 2004)

Define α− 1 ≡ δ.

n̄ ∼ O(1/δ) α < 1

n̄ ∼ O(δ2N) α > 1

⇒ δ ∼ N−1/3 n̄ ∼ N1/3
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Solution of Threshold Region

To analyze threshold region, we have to include (I + T + 1)/N term
in p±.

However, term is nevertheless small in threshold region, so

p± ≈
1
2
∓ 1

8N
(T + I − 2δN)

Extra drift is relevant for T ∼ δN ∼ N2/3

For random walk, I ∼ T 1/2, so I term in drift is still irrelevant.

We are left with a random walk with a drift that increases linearly
in "time".

David A. Kessler, Bar-Ilan Univ. Large Deviations 06.6.2007



Solution at Threshold

Look at threshold (δ = 0) case first.

Solution without drift:

P (T = 2k + 1) = 2−2k−1

((
2k
k

)
−
(

2k
k + 1

))
∼ 1√

4πk3
(k →∞)

How does drift modify this result at long times?

Pass to Fokker-Planck equation:

∂P

∂T
=

1
2
∂2P

∂I2
+

T

4N
∂P

∂I

Not separable!
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Solution at Threshold (Cont’d)

Trick: Define
P ≡ e−IT/4N−T

3/(96N2)ψ

Then,
∂ψ

∂T
=

1
2
∂2ψ

∂I2
+

I

4N
ψ.

Boundary Conditions: ψ(0, T ) = 0, ψ(I, 0) = δ(I − 1), ψ(L, T ) = 0
(regularization)

After rescaling I by a ≡ (2N)1/3 and T by 2a2, we get

∂ψ

∂T
=
∂2ψ

∂I2
+ Iψ

with ψ(I, 0) = δ(I − 1/a)/a.

Eigenfunctions satisfy Airy equation!
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Properties at Threshold

P (n) =
e−n

3/(12N2)

π2a3

∫ ∞
−∞

dE

Ai2(E) + Bi2(E)
eEn/a

2

Asymptotics for small n:
• Dominated by large negative E, where Ai2(E) + Bi2(E) ≈ (−E)−1/2/π

P (n) ≈ 1√
4πn3/2

Asymptotics for large n:
• Dominated by Bi(E) giving maximum at E ∼ n2

P (n) ≈
1

8
√
πN2

n
3/2
e
−n3/(16N2)

• Strongly suppressed for n� N2/3

• Suppression found numerically by Ben-Naim & Krapivsky
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Properties at Threshold

0.01 0.1 1 10

n / N
2/3

10
-8

10
-6

10
-4

10
-2

10
0

10
2

N
 P

(n
)

Large N, Exact
Small n
Large n

N = 103

David A. Kessler, Bar-Ilan Univ. Large Deviations 06.6.2007



Solution near Threshold

Return to δ 6= 0.

Same Trick works:

P ≡ e−
I(T−2δN)

4N −(T−2δN)3−(2δN)3

96N2 ψ

so that
Pδ(n) = e(n2δN−nδ2N2)/(3N2)Pδ=0(n)

For large δ, this generates a second peak at n ≈ 2δN, the "classical"
rate equation answer.
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Solution near Threshold
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Properties near Threshold

Consider n̄(δ).

Asymptotics for large, negative δ:
• Dominated by small n’s:

n̄ ≈
Z ∞

0

dnn e
−nδ2/4 1

2
√
πn3/2

= −1/δ

• Matches on to subcritical result.

Asymptotics for large, positive δ:
• Dominated by second, classical peak

n̄ ≈ 2δ
2
N

• Matches on to supercritical result.
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Properties near Threshold
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THANK YOU
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Does this work?

α < 1
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Calculated using exact 1-D master equation

Works as long as α not to close to threshold.
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Does this work? (cont’d)

α > 1
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Hard to see, but again fails as α→ 1.
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Does this work? (cont’d)

Blow up region near α = 1
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Again, N-dependent boundary layer near threshold
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Solution at Threshold (Cont’d)

Flux of ψ to origin is:

Fψ =
1
2
∂ψ

∂I

∣∣∣∣
I=0

=
1
2a

∑
n

φ′n(0)φ′n(
1
a

)eEnT

≈ 1
2a2

∑
n

(φ′n(0))2eEnT (1)

Eigenfunctions:

φn(I) = AnAi(−x+ En) +BnBi(−x+ En)

Boundary condition φn(0) = 0 gives:

Bn = −AnAi(En)/Bi(En)

so,

φ′n(0) = − An
Bi(En)

Wr(Ai,Bi) = − An
πBi(En)
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Solution at Threshold (Cont’d)

An given by normalization:

1 =
∫ L

0

φ2
n(I)dI =

[
φ′2n + (x− E)φ2

n

]L
0

=
[
(φ′n(L))2 − (φ′n(0))2

]
≈ (A2

n +B2
n)L1/2

π
(2)

Change sum over n to integral over E. Density of states:

dn

dE
≈ L1/2

π

Now, take away the cutoff L and undo the rescalings:

P (n) =
e−n

3/(12N2)

π2a3

∫ ∞
−∞

dE

Ai2(E) + Bi2(E)
eEn/a

2
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