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Birth-death processes: Markov processes involving transitions, with known rules,  within 
an ensemble of microscopic states

Numerous examples in physics, chemistry and astrochemistry, population biology, 
epidemiology, cell biochemistry etc…

Chemical reactions
recombination, 

dissociation, desorption…

Population dynamics
birth, death, 

emigration/immigration, 
competition etc.

Introduction

Atomic processes and 
quantum optics
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Extinction and meta-stability
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What does the rate equation predict?

System stays at  n=Ω forever

a two-step birth-
death process

(chemical reactions 2A      B,  A + C      2A + D; population dynamics…)

a natural large 
parameter



- existence of absorbing state at n=0 
- Particle discreteness brings fluctuations, ultimately driving the system to absorbing state

Fluctuations work against deterministic effect         extinction time exponentially large

the stable (attracting) fixed point of the rate equation becomes meta-stable

Interesting to calculate:
- quasi-stationary distribution
- extinction time statistics

In the master equation formulation this result breaks down at long times
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A particular case of a general 
gain-loss master equation

Master equation

Wnm – transition matrix 

Master equations are rarely soluble analytically
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– Fokker-Planck (FP) approximation - good for “typical behavior”, fails for extreme 
statistics (Gaveau, Moreau, and Toth 1996, Doering, Sargsyan, and Sander 2005)

– Eikonal approximations: in the master equation (Dykman et. al. 1994), or in the PDE for 
the generating function (Elgart and Kamenev 2004) – significantly improve over FP, 
give new insight (optimal paths), but miss pre-exponents

No general and self-contained analytical method to accurately calculate 
complete (incl. time-dependent) statistics, even for univariate problems

Existing methods of dealing with single- and 
multi-step birth-death systems

Recent work by Kessler and Shnerb (2007) on branching-annihilation: WKB 
approximation etc. to quasi-stationary master equation

Here comes the spectral method

Can one go beyond the optimal path approximation?
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Step 1: employing the generating function
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The mean extinction time

Master equation collapses into a single PDE
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Second boundary condition follows from demand that all 
probabilities be non-negative and normalizable to unity

Back to branching-annihilation example

In this example it emerges at the singular point x=-1 of the corresponding ODE, see later. 
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or we should rather say that the PDE is 
degenerate at x=1, so no BC is needed
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Steady state equation

G bounded at x=-1

Step 2: steady state
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Step 3: expanding in eigenfunctions

1222

22

)1()1(2)(

0)()()()1(

−ΩΩ−

ΩΩ−

−+=

=+⎥⎦
⎤

⎢⎣
⎡ +

xxexw

xxwE
dx

xdxe
dx
d

x

kk
kx ϕϕ

self-adjoint form

Solving the whole set of self-adjoint ODEs with the homogenous BCs yields a 
complete orthogonal set                           by virtue of Sturm-Liouville theory{ }∞
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Step 4: projecting the initial condition and reconstructing G(x,t)
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We obtained an exact mapping between solving the original, time-dependent 
master equation and finding the eigenvalues and eigenfunctions of a linear 

differential operator

ak determined by the 
initial condition
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This eqn. can be transformed into a zero-energy Schrödinger eqn.
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Highly lying states can be accurately calculated via WKB approx. (Assaf and Meerson 2006)

Mean extinction time 
exponentially large in Ω

for

Solving for the eigenvalues and eigenfunctions



Ground state problem

We solve the ODE separately in two different regions
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The unknowns  E1 and C are found by asymptote matching in the common region

bulk 
boundary layer 

common region
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Ground state calculation: a matched asymptotic expansion
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Average and variance of distribution
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slowly decaying (quasi-stationary) distribution

Kummer confluent hypergeometric function. 
(Actually, one must use the Ω>>1 asymptote 
of this result, see Assaf and Meerson 2007)

agrees with Turner and Malek-Mansour (1978);
exponent agrees with Elgart and Kamenev (2004)
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Comparison with Fokker-Planck approximation

Assume n>>1 and expand in Taylor series up to the second order in 1/Ω
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Extinction time (spectral method)  ~  Exp[Ω(2-2ln 2)]

Extinction time (Fokker-Planck)    ~  Exp{Ω [(3/2)ln 3-1]}
includes an exponentially large error

analytical extinction probability (dashed blue)

numerical solution of PDE for G(x,t) (solid red)



Different definitions related to 
quasi-stationarity/metastability

1. Quasi-stationary distribution = amplitude Pn
(0) of long-time asymptote of the time-

dependent pdf

2. Stationary distribution obtained by assuming zero flux to n=0 

Definitions 1 and 2 are different

In the branching-annihilation example def. 2 gives the same result as def. 1 in the 
leading order in 1/Ω. Sub-leading terms might be different.  In the SIS problem 
def. 2 gives a different result already in the leading order, Nåsell 2001. It might 
be meaningless to pursue to a high accuracy while using def. 2. 
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Is spectral method generalizable to two and more 
species?

Generating function for two species
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(x1,x2). This BC must follow from the boundedness and non-
negativeness of the probabilities, and is yet unknown.
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The eikonal approaches circumvent the need for the explicit BC.

The master equation transforms to



Conclusions

• We developed a simple spectral approach for univariate birth-death 
processes that employs the generating function technique in conjunction 
with Sturm-Liouville theory

• The spectral approach yields accurate rare-event statistics for single-
step and multiple-step processes,  where other methods in general fail
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