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Overview
Quasi-stationarity and persistence
The SIS model:

Asymptotic approximations of QSD
Uniform results

The classic endemic model

Birth-death process, with origin absorbing
State space: S={0,1,2,. . . ,N}
Transition rates: λn and µn, with λ0 = µ0 = 0
Generator: A
p = (p0, p1, . . . , pN)
Master equation: p′ = pA

Partition the state space and condition the state probabili-
ties

S = S0 ∪ SQ, S0 = {0}, SQ = {1, 2, . . . , N}
p = (p0, pQ), pQ = (p1, . . . , pN)
p′0 = µ1p1

p′Q = pQAQ

qQ(t) = pQ(t)/(1− p0(t))

QSD = stationary conditional distribution on SQ

The stationary distribution of qQ is denoted q
q is an eigenvector of AQ: qAQ = −µ1q1q
The original process has degenerate stationary distribution: p0 = 1

The original process with pQ(0) = q
pQ(t) = q exp(−µ1q1t)
p0(t) = 1− exp(−µ1q1t)
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Can use this case to derive ODE for pgf GQ(x) of q from PDE of pgf
G(x, t) of p(t)

Two auxiliary processes with nondegenerate stationary dis-
tributions

X(0): replace µ1 by 0
X(1): replace µn by µn−1

The stationary distributions p(0) and p(1) are known functions of λn

and µn

A recursion relation for q involves p(0) and p(1)

Time to extinction τ
P{τ < t} = p0(t)
Persistence: Time to exctinction from QSD, τQ, has exponential dis-

tribution with expectation EτQ = 1/µ1q1

Time to extinction from state 1, τ1, has expectation Eτ1 = 1/µ1p
(0)
1

Logistic models
Verhulst model has density dependence in both birth rate and death

rate: λn = λ(1− α1n/N)n, µn = µ(1 + α2n/N)n, R0 = λ/µ
Special case: Logistic epidemic (aka SIS model, with recovered indi-

viduals susceptible): λn = λ(1− n/N)n, µn = µn

The deterministic SIS model
X ′ = µ(R0 − 1−R0X/N)X
The model has a threshold at R0 = 1: X(t) → K = (1− 1/R0)N if

R0 > 1 and X(t) → 0 if R0 < 1
The counterpart to the threshold in the stochastic model is sought

The SIS model
Asymptotic approximations of QSD as N → ∞ show qualitatively

different behaviors in three parameter regions: R0 > 1, R0 < 1, and
transition region near R0 = 1, where ρ = (R0 − 1)

√
N is constant

Uniform approximations across the three regions are found for Eτ1,
EτQ, EX(0), EX(1), EX(Q)

The classic endemic model
Famous model for measles since the 1950’s
SIR model: recovered individuals are immune
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S ′ = µN − βSI/N − µS
I ′ = βSI/N − (γ + µ)I
α = (γ + µ)/µ, R0 = β/(γ + µ)

The classic endemic model
The stochastic version of the model is bivariate: {S(t), I(t)}
The states (S, 0) are absorbing
QSD is denoted qsi

EτQ = 1/µαq·i

The classic endemic model
The marginal distribution q·i behaves in qualitatively different ways

in three parameter regions
With large α, the transition region is wide
q·i is close to geometric in a large part of the transition region

The classic endemic model
The persistence threshold is related to the critical community size
The large deviation problem of determining q·i for R0 > 1 is open

Persistence
Deterministic modellers use the term persistence to describe various

ways in which the solution of a deterministic model can avoid getting
close to zero

The deterministic persistence concept is at complete odds with the
stochastic one.

Persistence measured by time to extinction cannot be studied in the
deterministic framework
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The well-known expression for expected time to extinction from state
n is rewritten in terms of the stationary distributions p(0) and p(1) of
the two auxiliary processes:

Eτn =
1

µ1

n∑

k=1

1

p
(1)
k

N∑

j=k

p
(0)
j

p
(1)
1

p
(0)
1

.

The QSD obeys the following recursion relation. The similarity with
the above expression for Eτn is noted.

qn = p(0)
n

n∑

k=1

1

p
(1)
k

N∑

j=k

qj
p

(1)
1 q1

p
(0)
1

.

Notation that is used to express the uniform approximation results
for the SIS model is summarized as follows:

f1 = max

(
β1

ρ
,

1

R0

)
,

fQ = min

(
R0β

2
1

ρ2
, 1

)
,

ρ̃ = ρ min

(
β1

ρ
, 1

)
,

ρ = (R0 − 1)
√

N,

β1 = sgn(R0 − 1)
√

2N [log(R0 − 1)− 1 + 1/R0].

Definitions of the functions H1, H0, H that are needed to express
the uniform results for the SIS model are as follows:

H1(y) =
Φ(y)

φ(y)
,

φ(y) =
1√
2π

exp(−y2/2),

Φ(y) =

∫ y

−∞
φ(t)dt,

H(y) =
1

y + 1/H(y)

∫ y

−1/H(y)

H1(t)dt,

Ha(y) = − log |y| − 1

2y2
+

3

4y4
− 5

2y6
,

H0(y) =

{
Ha(y), if y ≤ −3,

Ha(−3) +
∫ y

−3
H1(t)dt, if y > −3.
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Uniform approximations for the expected times to extinction from
the state 1 and from the quasi-stationary distribution for the SIS model:

Eτ1 ≈ 1

µ
f1

[
log

√
N + H0(ρ̃)

]
,

EτQ ≈ 1

µ
fQH(ρ̃)

√
N.

Uniform approximations for expectations of the stationary distribu-
tions of the two auxiliary processes and of the qsd for the SIS model:

EX(1) ∼ min

(
1

R0

, 1

)
1 + ρH1(ρ)

H1(ρ)

√
N,

EX(0) ≈ min

(
1

R0

, R0

)
H1(ρ)

log
√

N + H0(ρ)

√
N,

EX(Q) ≈ min

(
1

R0

, 1

)
H1(ρ)−H1(−1/H(ρ))

1 + ρH(ρ)

√
N.

Approximations of EτQ for the SIS model in different parameter re-
gions:

EτQ ≈ 1

µ
fQH(ρ̃)

√
N,

EτQ ≈ 1

µ

R0β
2
1

ρ2
H(β1)

√
N, R0 ≥ 1,

EτQ ≈ 1

µ

√
2π

N

R0

(R0 − 1)2
exp(β2

1/2), R0 > 1,

EτQ ≈ 1

µ
H(ρ)

√
N, R0 ≤ 1,

EτQ ≈ 1

µ

1

1−R0

, R0 < 1,

EτQ ≈ 1

µ
H(ρ)

√
N, ρ = O(1).
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Figure 1. The quasi-stationary distribution and the ex-
pected time to extinction from the state n are shown for
the SIS model for several values of R0.
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Figure 2. The quasi-stationary distribution and the
stationary distributions of the two auxiliary processes are
shown for the SIS model for several values of R0.
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Figure 3. Uniform approximations of the expectations
of the QSD and of the stationary distributions of the
two auxiliary processes for the SIS model are shown as
functions of R0.
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Figure 4. Uniform approximations of the expectations
of the time to extinction from the state 1 and from the
quasi-stationary distribution for the SIS model are shown
as functions of R0.


