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Textbook description of cycles
using population-based models (PBM)

 

 

Lotka-Volterra system
   V – prey density
   P – predator density

Neutral cycles which depend on initial conditions – thus not biologically robust

+ logistic growth of prey

Cycles disappear – replaced by damped oscillations to constant steady-state

+ predator satiation (non-linear functional response)

Cycles reappear – as “limit cycles”

Bottom line: predator satiation (or handling time) is “responsible for cycles”
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But cycles are so much more intuitive than this! What’s missing?



Other mechanisms for cycling

e.g. environmental forcing, spatial coupling, new nonlinear interactions

Nisbet and Gurney (1982), Aparicio and Solari (2001), 
Bjornstad and Grenfell (2001), Pascual, Mazzega, and Levin (2001)



An individual-based model (IBM)

 

 

It’s hard to think clearly in terms of continuous densities – let’s go back to a more
fundamental description in terms of individuals:

Three types of “objects”: prey (V), predators (P), and empty spaces (E)
Constraint: total number of objects is fixed at N

Interactions:

prey birth V + E → V + V

prey death        V → E
(not due to predation)

predation P + V → P + E   or   P + V → P + P

predator death         P → E

Implement as a stochastic process on a computer … and compare with mean-
field theory – which is the LV equation with logistic prey reproduction



Simulation results from the IBM

 

 

Blue – solution of LV equation, Purple – average over replicates
Red – one single replicate (N=3200)

f1=P – number density of predators, f2=V – number density of prey



Observations are striking, but not new

The observation of large cycles in IBMs of predator-prey (or host-pathogen)
systems has been previously reported – the authors were perplexed, since
the IBM should behave, for large populations, in accordance with the PBM.

e.g. Renshaw (1991), Rai and Singh (2000)

Bartlett (1960) commented on the possibility that noise could induce cycles
in disease models (SIR), but did not uncover the mechanism.



Fluctuations about the steady-stated are amplified (or resonated)

 

 

We construct a mathematical description of the system using the language of master equations.

The fundamental object is Q(m,n,t) – the probability that at time t there are m prey and n predators.

From the master equation one can derive mean-field equations of motion for the average number densities of
predators and prey – these are identical to the LV equations.

One can then take fluctuations into account for large N by expanding around mean field theory via

↔ van Kampen expansion

(for large N the fluctuations will have an amplitude of 1/√ N).

Naively, these fluctuations will be negligible for large N – but they’re not!

The equations for x and y have the form                                                     where a, b, c, d and the noise
                                                                                                                     terms are known functions of the

                                                                                                              death/birth/predation rates.
      (note – noise terms are correlated)

Eliminating y we find an equation for x of the form

This is exactly analogous to a damped pendulum with a random forcing – the pendulum will oscillate at (almost)
  natural frequency ω0 , since the noise has a flat frequency spectrum – i.e. the noise will automatically resonate

the pendulum.

Oscillation amplitude scales as R/√N , where R is resonant enhancement at ω0
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(cf – Chubynsky’s Moscow-Kiev Bus paradigm).



Power spectra

 

 

The power spectrum shows a resonant peak at a frequency equal to the cycle frequency.
Blue line – theory, red line – simulation  

predators

prey

R ~ 30



Results directly map to SI disease dynamics

 

 

The Volterra predator-prey model is essentially identical to the classic SI model of
disease dynamics, and so all of our results carry across:

Three types of “objects”: susceptibles (S), infecteds (I), and empty spaces (E)
Constraint: total number of objects is fixed at N

Interactions:

susceptible birth S + E → S + S

susceptible death        S → E
(not due to infection)

infection  I + S → I + I

infected death         I → E

These interaction rules are identical to the simplest predator-prey system:
prey ↔ susceptible,  predator ↔ infected



Some details on the mathematics
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van Kampen expansion

zeroth order first order

Interested in cases where eigenvalues
of A are complex with negative real parts
- i.e. damped transient oscillations

FP → SDE

solve exactly for 
power spectra etc



Biochemical oscillations

 

 

The mean field equations (i.e. chemical rate equations) for each of these
reaction networks have no sustained cycling behavior for any combination
of parameter values – they are “thoroughly boring.” 

Self regulation 
of gene 
expression

Key step in
glycolysis



Calculational strategy

 

 



“Bath model” representation of reactions

 

 

M – mRNA
P – protein

S1 – ATP
S2 – ADP
A – PFK/ADP
B – PFK/ADP/ATP



mRNA-protein feedback

 

 

N ~ 20,000



mRNA-protein feedback

 

 
λ=100

λ=10

±1/√N

Explicit demonstration of amplified size of oscillations



mRNA-protein feedback

 

 

Power spectrum for mRNA concentration – theory and simulation



Selkov’s model of glycolysis

 

 

N ~ 4,000

R ~ 150



Summary

 

 
We have presented a new mechanism for oscillations in populations of small to

intermediate size.

The essential criterion is that the mean-field (or infinite population) dynamics
exhibit damped oscillations (at a frequency ω0).

In a finite population, stochastic events, such as birth, death, or infection, in the
form of white internal noise will automatically resonate the system at the
frequency ω0 and produce large sustained oscillations.

The amplitude of the oscillations scales as R / √N
R – enhanced resonance factor (exactly calculable using vK expansion)
N – number of individual “agents” in population

We have discussed this mechanism in the context of
predator-prey systems
the closely related SI disease system
biochemical oscillations (self-regulation of gene expression, and glycolysis)

This mechanism is very general
there are many further applications in biology, and other areas



Is this effect known or named?

“Stochastic resonance” would be a perfect name for this effect, but this 
term is already in wide-spread use for a different effect:

external periodic signal applied to a non-linear system, and then
a resonant periodic output being obtained using optimized noise level

The term “coherence resonance” was introduced in the late ’90’s to describe
 i) periodic output of an excitable system in the subcritical region of a 
Hopf bifurcation, which is induced by internal noise 
ii) noise-enhanced temporal periodicity of a bursting signal

the term has also attracted more widespread usage
the term “self-induced stochastic resonance” has also been used 

to describe similar phenomena

The effect described here occurs in systems which have no bifurcation points.
These systems are “boring” from a deterministic viewpoint, as they
have no sustained oscillatory behavior throughout their parameter space. 

The mechanism for noise-induced oscillations is extremely simple 
and can be analyzed exactly using the van Kampen expansion.


