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Limit theorems with asymptotic expansions for stochastic processes.

There is a vast riches of limit theorems for sums of independent random variables:
theorems about weak convergence, on large deviations, theorems with asymptotic expan-
sions, etc. We can try to obtain the same kinds of theorems for families of stochastic
processes.

If X1, X2, ..., Xn, ... is a sequence of independent identically distributed random
variables with expectation EXi = 0 and variance EX2

i = σ2, everybody knows the theorem
about weak convergence of the distribution of the random variable Zn = (X1+...+Xn)/

√
n:

Ef(Zn) → Ef(Z∞) (n →∞) (1)

for every bounded continuous function f , where Z∞ is normal with parameters (0, σ2);
or the same in terms of cumulative distribution functions:

FZn(x) = P{Zn ≤ x} → FZ∞(x) (n →∞), −∞ < x < ∞. (2)

If E |Xi|3 < ∞, under some mild condition we have:

FZn(x) = FZ∞(x)− γ3

6
√

n
F ′′′Z∞(x) + o(1/

√
n), (3)

where γ3 = EX3
i ; if EX4

i < ∞, under some stronger assumptions,

FZn(x) = FZ∞(x)− γ3

6
√

n
F ′′′Z∞(x)

+
1
n
· some combination of F

(4)
Z∞(x) and F

(6)
Z∞(x) + o(1/n);

(4)

etc.
For various families of stochastic processes ξε(t), t ∈ [0, T ], limit theorems about

weak convergence of their function-space distributions have been obtained:

Ef(ξε[0, T ]) → Ef(ξ0[0, T ]) (ε → 0) (5)

for every bounded continuous functional f(x[0, T ]) on the space of functions on the inter-
val [0, T ] (I show the interval in which the function is defined after the notation of the
function), where ξ0(t), t ∈ [0, T ], is the limiting process.

Example: Suppose ξε(t) is, for every ε > 0, a Markov process with frequent, small
jumps, making jumps of size ε · u according to the rate ε−1 · µt, x(du), and staying at the
same point between the jumps; that is, the process with generator

Lε
tf(x) = ε−1

∫
[f(x + εu)− f(x)] µt, x(du). (6)
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Let us introduce the notation αj(t, x) =
∫

uj µt, x(du).

When ε ↓ 0, the process ξε(t) with a certain initial value converges in probability
to the solution of the equation ẋ∗(t) = α1

(
t, x∗(t)

)
with the same initial condition (of

course, the restriction of this solution being unique has to be introduced). This can be
reformulated as a statement about weak convergence of the function-space distributions
of ξε[0, T ] to that of x∗[0, T ] (the function x∗(t) being non-random, the right-hand side
of (5) is nothing but F (x∗[0, T ])).

The rate of convergence of ξε(t) towards x∗(t) is ε1/2; that is (under some more
restrictions on µt, x(du)) there exists a limit of the function-space distribution of the process
ζε(t) =

(
ξε(t)− x∗(t)

)/
ε1/2:

Ef(ζε[0, T ]) → Ef(ζ0[0, T ]), (7)

the limiting process being the diffusion with generator

Lζ0

t f(x) = α1
2

(
t, x∗(t)

) · x · f ′(x) +
α2

(
t, x∗(t)

)

2
f ′′(x), (8)

where the subscript 2 denotes differentiation in the second argument; this diffusion is
Gaussian.

What form could asymptotic expansions be, making more precise the statement (5)
of weak convergence? In the case of sums of independent random variables formulas (3),
(4) suggest that the correction terms for the measure being the distribution of the random
variable Zn are – not measures, but rather countably additive set functions taking values
of both signs (signed measures). However, there is little hope of getting something like
this in the infinite-dimensional case.

Let us write the asymptotic expansion for Ef(Zn) corresponding to (3):

Ef(Zn) =
∫ ∞

−∞
f(x) dFZn(x)

=
∫ ∞

−∞
f(x) dFZ∞(x)− γ3

6
√

n

∫ ∞

−∞
f(x) dF ′′′Z∞(x) + o(1/

√
n)

(9)

(under some restrictions). If the function f(x) is three times continuously differentiable,
we can integrate the second integral three times by parts, and write:

Ef(Zn) =
∫ ∞

−∞
f(x) dFZ∞(x) +

γ3

6
√

n

∫ ∞

−∞
f ′′′(x) dFZ∞(x) + o(1/

√
n)

= E
[
f(Z∞) +

γ3

6
√

n
f ′′′(Z∞)

]
+ o(1/

√
n).

(10)

This suggests that we can look for families of stochastic processes for limit theorems
of the form

Ef(ξε[0, T ]) = E
[
f(ξ0[0, T ]) + k(ε) ·A1f(ξ0[0, T ])

]
+ o

(
k(ε)

)
, (11)
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or

Ef(ξε[0, T ]) = E
[
f(ξ0[0, T ])+k(ε)·A1f(ξ0[0, T ])+k(ε)2·A2f(ξ0[0, T ])

]
+o

(
k(ε)2

)
, (12)

etc., where k(ε) → 0 as ε → 0, and A1, A2, ... are linear operators acting on func-
tionals: in the cases most similar to the case of sums of independent random variables,
differential operators. These asymptotic expansions are likely to be obtained under some
differentiability conditions on the functional F (x[0, T ]).

In my papers: A refinement of the central limit theorem for stationary processes, Teor.
veroyatn. i primen., 1989, vol. 34, no. 3, pp. 451 – 464; Asymptotic expansions in limit the-
orems for stochastic processes. – I, Probability Theory and Related Fields, 1996, vol. 106,
pp. 331 – 350; II, 1999, vol. 113, pp. 255 – 271; III, 2004, vol. 128, pp. 63 – 81, I obtained some
results of this form – for Markov processes with frequent, small jumps, but also for some
families of non-Markov processes (but for which the non-Markovness disappears in some
sense in the limit).

In particular, a result of the form (11) is obtained for the process ζε(t) in the above
example, under the conditions of existence of the moment α3(t, x) and some smoothness
conditions (these conditions are, ultimately, imposed on the jump rate µt, x).

Let us introduce differentiability conditions for the functional f(x[0, T ]). We suppose
that it has three continuous Gâteaux derivatives: the first derivative in the direction
δ = δ[0, T ]

Df(x[0, T ])(δ) = lim
h→0

f(x[0, T ] + h · δ)− f(x[0, T ])
h

, (13)

the second derivative in the directions δ1, δ2:

D2f(x[0, T ])(δ1, δ2) = D
(
Df(x[0, T ])(δ1)

)
(δ2), (14)

etc.; and we suppose that the j-th derivative in the directions δ1, ..., δj is represented in
the form

Djf(x[0, T ])(δ1, ..., δj) =
∫
· · ·

∫

[0, T ]j

δ1(s1) · ... · δj(sj) Djf(x[0, T ]; ds1 ... dsj) (15)

of an integral over the j-dimensional cube [0, T ]j , where Djf(x[0, T ]; •) is a signed mea-
sure on [0, T ]j .

In typical examples, this signed measure, say, in the case of j = 2, consists of a
part that has a two-dimensional density over the square [0, T ]2, plus a part that has a
one-dimensional density on the sides {0} × [0, T ], {1} × [0, T ], [0, T ] × {0}, [0, T ] × {1}
and on the diagonal {(s, s) : s ∈ [0, T ]} of the square, plus charges concentrated at the
four vertices.

The factor k(ε) = ε1/2, and the linear operator A1 is the differential operator

A1f(x[0, T ]) =
3∑

j=1

∫

[0, T ]j
Γj

1(x[0, T ]; s1, ..., sj) Djf(x[0, T ]; ds1 ... dsj), (16)
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Γ1
1(x[0, T ]; s1) =

1
2

∫ s1

0

α1
22

(
t, x∗(t)

)
x(t)2 exp

{∫ s1

0

α1
2

(
v, x∗(v)

)
dv

}
dt, (17)

Γ2
1(x[0, T ]; s1, s2) =

1
2

∫ min(s1, s2)

0

α2
2

(
t, x∗(t)

)
x(t) exp

{ 2∑

i=1

∫ si

0

α1
2

(
v, x∗(v)

)
dv

}
dt,

(18)

Γ3
1(x[0, T ]; s1, s2, s3) =

1
6

∫ min(s1, s2, s3)

0

α3
(
t, x∗(t)

)
exp

{ 3∑

i=1

∫ si

0

α1
2

(
v, x∗(v)

)
dv

}
dt.

(19)
Another kind of asymptotic expansions appears in the case when the “tails” of the

jump distribution µt, x (not exactly a distribution: the total measure µt, x(−∞, ∞) may
be not equal to 1) do not decrease fast enough, and have power asymptotics.

Let us first consider again sums of independent random variables. If, say, FXi(x) =
P{Xi ≤ x} = c−|x|−2.8+o(|x|−3.4) as x → −∞, FXi(x) = 1−c+x−2.8+o(x−3.4) (x →∞),
the asymptotic expansion for FZn(x) has the form

FZn(x) = FZ∞(x) +
1

n0.4
G(x)− γ̃3

6
√

n
F ′′′Z∞(x) + o(1/n0.7), (20)

where G(x) is a function depending on c+ and c−, G(−∞) = G(∞) = 0, and γ̃3 is a
constant: not the moment, because it does not exist: what we can call a pseudomoment:

γ̃3 =
∫ 0

−∞
x3 d

(
FXi(x)− c−|x|−2.8

)
+

∫ ∞

0

x3 d
(
FXi(x) + c+x−2.8

)
(21)

(in some papers, some different quantities are called pseudomoments). The result can be
found (or almost can be found) in the paper: H.Cramér, On asymptotic expansions for
sums of independent random variables with a limiting stable distribution, Sankhyā, 1963,
A25, pp. 13 – 24.

A corresponding result for the stochastic process ζε(t) of our example. Suppose,
for simplicity, that the jump distribution µt, x does not depend on t, x: µt, x ≡ µ, and
is concentrated on the right half-line (µ(−∞, 0] = 0), so that ξε(t) is a process with
independent increments with positive jumps only. Suppose this distribution has power
“tails”:

µ(u, ∞) = c+ · u−2.8 + o(u−3.4) (u →∞). (22)

Then

Ef(ζε[0, T ]) = E
[
f(ζε[0, T ]) + ε0.4A0f(ζε[0, T ]) + ε0.5A1f(ζε[0, T ])

]
+ o(ε0.7), (23)

where A0 is an integro-differential operator:

A0f(x[0, T ]) = c+

∫ T

0

dt

∫ ∞

0

[
f(x[0, T ] + v · I[t, T ])− f(x[0, T ])− vDf(x[0, T ])(I[t, T ])

− v2

2
D2f(x[0, T ])(I[t, T ], I[t, T ])

]
d(−v−2.8)

(24)
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(I[t, T ] is the indicator function of the interval [t, T ]), and A1 is a third-order differential
operator, as in the case of finite third moment. (The results for stochastic processes are
more transparent than Cramér’s result for cumulative distribution functions: adding the
summand v · I[t, T ] means making the sample function make a jump of size v at time
t ∈ (0, T ].)

Also we can get an asymptotic expansion for the original process ξε(t) itself, with the
limiting process x∗(t) = x0+α1· t non-random; in this expansion we’ll have no expectations
in the right-hand side, but rather the values of the functionals at the function x∗[0, T ]:

Ef(ξε[0, T ]) = f(x∗[0, T ]) + ε ·A−1f(x∗[0, T ]) + ε1.8 ·A0f(x∗[0, T ])
+ ε2 ·A1f(x∗[0, T ]) + o(ε2.4),

(25)

where A−1 is a second-order differential operator.
Now, in my abstract I promised to speak also of large deviations.
Suppose for a family ξε(t), 0 ≤ t ≤ T , of stochastic processes a law-of-large-numbers

result holds: ξε(t) converges in probability to a non-random function x∗(t). The results
on large deviations are those about the asymptotics of probabilities P{ξε[0, T ] ∈ A} for
sets A at a positive distance from x∗[0, T ]. Here belong also results about asymptotics of
the expectations Efε(ξε[0, T ]) for families of functionals fε(x[0, T ]) if an essential part
of the expectation is due to sample functions ξε[0, T ] that are far from x∗[0, T ].

There are two opposite types of large-deviation results, which are clearly seen in the
example of families of Markov processes with frequent, small jumps: those in which the
probability of a large deviation is due mainly to sample functions ξε[0, T ] that are close to
some smooth functions φ(t), 0 ≤ t ≤ T (and the asymptotics in this case is exponential);
and those in which the probabilities of large deviations are due mainly to sample functions
with one or more large jumps. Possible are also results that are intermediate between these
two types.

Large-deviation results of the first type have been extensively studied, while the second
type has attracted but little interest. I think that results of this type are worth study-
ing. Some results were obtained by a student of mine: V.V.Godovan’chuk, Asymptotic
probabilities of large deviations due to large jumps of a Markov process, Teor. veroyatn.
i primen., 1981, vol. 26, no. 2, pp. 314 – 327.

Under some different conditions, such results can be obtained from limit theorems
with asymptotic expansions of the type (22).

If the functional f(x[0, T ]) is equal to 0 in some neighborhood of the (limiting)
function x∗[0, T ], the problem of finding the asymptotics of Ef(ξε[0, T ]) is one about
large deviations. For such functionals f(x[0, T ]), A−1f(x[0, T ]), A1f(x[0, T ]) = 0 (A−1

and A1 being differential operators), and formula (25) turns into

Ef(ξε[0, T ]) = ε1.8 · c+

∫ ∞

0

dt

∫ ∞

0

f(x∗[0, T ] + v · I[t, T ]) d(−v−2.8) + o(ε2.4). (26)

I am sorry a little for having formulated no result precisely, and even not mentioning
what kind of metric we are considering in our function space. True, for the Gâteaux
derivatives this metric is not important.
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