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Limit Theorems

Let X1, X2, · · · be independent and identically distributed random
variables defined on a probability space (Ω,A, P ). Thus,

P [Xk ∈ Bk, k = 1, ..., n] =
n∏

k=1

P [X1 ∈ Bk]

for Borel sets Bk ⊆ IR. Suppose that Xk have a finite mean and
(not necessarily finite) variance

E(Xk) = µ and σ2 = E[(Xk − µ)2],

and let
Sn = X1 + · · · + Xn.

The Law of Large Numbers.

lim
n→∞

Sn

n
= µ w.p.1.

The Central Limit Theorem. If 0 < σ2 < ∞, then

lim
n→∞

P

[
Sn − nµ

σ
√

n
≤ z

]
=

1√
2π

∫ z

−∞
e−

1
2 x2

dx = Φ(z),

The Law of the Iterated Logarithm. If σ2 < ∞, then

lim sup
n→∞

Sn − nµ√
2n log log(n)

= σ w.p.1.

Note: Physical interpretation of µ and σ.



Corollary For large n,

P

[
|Sn − nµ

σ
√

n
| ≤ 3

]
≈ 1√

2π

∫ 3

−3
e−

1
2 x2

dx = .9974 ≈ 1.

Corollary. If 0 < σ2 < ∞, then

P

[
lim sup

n→∞
|Sn − nµ

σ
√

n
| > 3

]
= 1.

Remarks

• A single n versus for some n

• Statistical Paradox

A Statistical Paradox

Recall: X1, X2, · · · are i.i.d. with mean µ and variance σ2.

An Hypothesis: µ = µ0 and σ = σ0.

A Test: Reject if

|Sn − nµ0

σ0
√

n
| > 3.

Then
P0[Reject] < .01.

Optional Stopping. Now let N be the smallest n ≥ 1 for which
|Sn − nµ0| > 3σ0

√
n. Then

N < ∞ w.p.1 and P0[Reject] = 1.

Example: ESP

Question: To Bayes or not to Bayes.

Stationary Processes

Def. A sequence · · ·X−1, X0, X1, · · · is stationary iff

P [(Xn+1, · · · , Xn+m) ∈ B]

is independent of n for all Borel sets B ⊆ IRm for all m.

Sequence Space: Let X = (· · · , X−1, X0, X1, · · · ), and

Q(B) = P [X ∈ B]

for Borel sets B ⊆ IRZ ; and let θ be the shift operator

θ(· · ·x−1, x0, x1, · · · ) = (· · · , x0, x1, x2, · · · ).

Then the sequence is stationary iff Q◦ θ−1 = Q.

Ergodicity: A stationary sequence is ergodic if Q(A) = 0 or 1
whenever θ−1(A) = A.

Examples

Let · · ·X−1, X0, X1, · · · be independent and identically distributed;
and let ψ : RZ → IR be measurable. Then

Yk = ψ(· · ·Xk−1, Xk, Xk+1, · · · )

is stationary and ergodic.



Martingale Differences

Let · · ·X−1, X0, X1, · · · be a sequence of random variables and
Fk = σ{· · ·Xk−1, Xk}. The random variables are martingale
differences if

E|Xk| < ∞ and E(Xk|Fk−1) = 0 w.p.1

for all k in which case Mn = X1 + · · · + Xn is called a martingale.

Example: If · · ·X−1, X0, X1, · · · are independent and identically
distributed (IID) with E(Xk) = 0, then they form martingale
differences.

The CLT and LIL: The CLT and LIL are valid for stationary
sequences of martingale differences in which case µ = 0.

Notation: ‖Y ‖ =
√

E(Y 2).

A CCLT For Stationary Sequences

Let · · ·X−1, X0, X1, · · · be a statonary, ergodic sequence with
E(Xk) = 0 and E(X2

k) < ∞; let Fk = σ{· · ·Xk−1, Xk}; and let
Sn = X1 + · · · + Xn. If

∞∑

n=1

n− 3
2 ‖E(Sn|F0)‖ < ∞, (†)

then
σ2 = lim

n→∞

1
n

E(S2
n) (∗)

exists (finite), and

lim
n→∞

P

[
Sn√

n
≤ z|F0

]
= Φ(

z

σ
) (∗∗)

in probability for all z. Conversely if (*) and (**), then

‖E(Sn|F0)‖ = o(
√

n).

About the Condition:
∑∞

n=1 n− 3
2 ‖E(Sn|F0)‖ < ∞.

• Limits the dependence.

• Solely in terms of ‖E(Sn|F0)‖.

• Best Possible.

• Compare with strong mixing.

Examples: Bernoulli shifts; Hasting Metroplis; linear proceses.

Refs: Maxwell and W (2000), Ann. Prob.

Peligrad and Utev (2005) Ann. Prob.

About the Proof

In the proof it is shown that

Sn = Mn + Rn,

where Mn and Rn are Fn-measurable, Mn is the sum of a
stationary sequence of martingale differences, and ‖Rn‖ = o(

√
n).

Connection to LIL: If

Rn = o[
√

n log log(n)] w.p.1,

then the LIL would hold for Sn.



Slow Variation

A function % : (0,∞) → (0,∞) varies slowly at ∞ iff

lim
t→∞

%(tx)
%(t)

= 1

for all 0 < x < ∞.

Notation: Let

%∗(n) =
n∑

j=1

1
j%(j)

.

Example: If %(n) = log(n + 1), then %∗(n) ∼ log log(n).

A Law of the Iterated Logarithm

Let · · ·X−1, X0, X1, · · · be a stationary, ergodic sequence with
E(Xk) = 0 and E(X2

k) < ∞; let Fk = σ{· · ·Xk−1, Xk}; and let
Sn = X1 + · · · + Xn. If % : (0,∞) → (0,∞) is a non-decreasing,
slowly varying function, for which

∞∑

n=1

n− 3
2 log(n)

√
%(n)‖E(Sn|F0)‖ < ∞, (†)

then

lim
n→∞

Rn√
n%∗(n)

= 0 w.p.1.

Corollary 1. If (†) holds with %(n) = log(n + 1),
∞∑

n=1

n− 3
2 log

3
2 (n)‖E(Sn|F0)‖ < ∞, (†)

then

lim
n→∞

Rn√
n log log(n)

= 0 w.p.1,

and

lim sup
n→∞

Sn√
2n log log(n)

= σ w.p.1.

Corollary 2. If
∞∑

n=1

n− 3
2 log(n)

√
%(n)‖E(Sn|F0)‖ < ∞, (†)

for some % for which 1/[n%(n)] is summable, then

lim
n→∞

Rn√
n

= 0 w.p.1,

and there is convergence w.p.1 in the Conditional Central Limit
Theorem. That is,

lim
n→∞

P

[
Sn√

n
≤ z|F0

]
= Φ(

z

σ
) w.p.1. (∗)



The Functional Version

Brownian Motion. Let IB denote standard Brownian motion.
Thus, IB(t), 0 ≤ t ≤ 1, is a stochastic process with

• independent increments;

• continuous sample paths

• IB(0) = 0

• IB(t) − IB(s) is normally distributed with mean 0 and
variance t − s.

Sample Versions. Let X1, X2, · · · be random variables,
Sn = X1 + · · · + Xn, and let IBn be a continuous piecewise linear
function for which

IBn(
k

n
) =

1√
n

Sk, k = 0, 1, · · · , n.

Strassen’s LIL

Let C[0, 1] be the set of continuous functions f : [0, 1] → IR, and let
K ⊆ C[0, 1] be the set of absolutely continuous f for which

∫ 1

0
f ′(t)2dt ≤ 1.

If X1, X2, · · · are i.i.d. with mean 0 and variance one, then the set
of limit points of

IBn√
2n log log(n)

, n ≥ 3,

is K w.p.1..

Corollary 3. Let · · ·X−1, X0, X1, · · · is be stationary process with
mean 0 and finite variance. If

∞∑

n=1

n− 3
2 log

3
2 (n)‖E(Sn|F0)‖ < ∞, (†)

then w.p.1 the set of limit points of IBn/
√

2n log log(n), n ≥ 3, is
σK, where

σ2 = lim
n→∞

1
n

E(S2
n).

Proof. Follow from Strassen’s Theorem (for martingale
differences) and Rn = o[

√
2n log log(n)].

About the Proof
Markov Chains

There is no loss of generality in supposing that

Xk = g(Wk),

where · · ·W−1, W0, W1 · · · is a stationary Markov chain with values
in a measurable space W, for we may let

Wk = (· · · , Xk−1, Xk).

Let π and Q denote the stationary distribution and transition
function of the chain,

π{B} = P [Wk ∈ B]

and
Q(w; B) = P [Wn+1 ∈ B|Wn = w].



Some Operators

Let

Qf(w) =
∫

W
f(z)Q(w; dz) = E[f(Wn+1)|Wn = w] a.e.

for f ∈ L1(π). Then,

E(Xk|W0) = Qkg(W0)

and

E(Sn|W1) =
n∑

k=1

Qk−1g(W1) = Vng(W1).

More Operators

Next, let θ denote the shift operator, Wn◦ θ = Wn+1 and

Tf = f ◦ θ.

Next, let

βk =
c

k

∞∑

n=k

1√
n3%(n)

∼ 2c√
k3%(k)

where c is so chosen that β1 + β2 + · · · = 1, and

B(z) =
∞∑

k=1

βkzk.

Then B(z) is continuous in |z| ≤ 1 and analytic in |z| < 1.

The Operator Norm. If S : L2(P ) → L2(P ) is a continuous
linear transformation, let

‖S‖op = sup
‖Y ‖≤1

‖SY ‖.

The Operator B(T ). Since βk are summable,

B(T ) =
∞∑

k=1

βkT k

converges in the operator norm. Let

A(z) =
1

1 − B(z)
=

∞∑

k=0

αkzk.

Then A is continuous in |z| ≤ 1 .= z. A major problem is to make
sense of A(T ).

About the Martingale

Recall that Xk = g(Wk), where g ∈ L2(π) and
∫
W gdπ = 0, and let

hε =
∞∑

k=1

Qk−1g

(1 + ε)k

and Hε(w0, w1) = hε(w1) − Qhε(w0). Then, from MW(2000),

H = lim
ε→0

Hε

exists in an L2 space, Mn = H(W0, W1) + · · · + H(Wn−1, Wn), and

Rn =
n∑

k=1

ξ0◦ θk.

with ξ0 = g(W0) − H(W−1, W0).



About the Proof

First Step: Show ξ0 ∈ [I − B(T )]L2(P ); that is ξ0 = η0 − B(T )η0

for some η0 ∈ L2(P ).

• Bound ‖Rn‖.

• Fourier anlysis of B(eit).

Second Step: Show that

lim
n→∞

1√
n%∗(n)

n∑

k=1

ξ◦ θk = 0 w.p.1

for any ξ ∈ [I − B(T )]L2(P ). Uses a version of the Dominated
Ergodic Theorem.

Some Details

First Step. Recall

A(z) =
1

1 − B(z)
=

∞∑

k=0

αkzk.

To make sense of A(T )ξ0, we need to bound αk. From
βk ∼ 2c/

√
k3%(k), we get

B(eit) ∼ κ0

√
t

%(t)

as t → 0. Thus

A(eit) ∼
√
%(t)

κ0

√
t

and

αk − αk+1 = O[

√
%(n)
n3

]

Second Step. Let Yk be stationary and

Y ∗ = sup
n≥1

|Y1 + · · · + Yn

n
|.

Then the Dominated Ergodic Theorem states:

‖Y ∗‖p ≤
(

p

p − 1

)
‖Y1‖p

for p > 1. Also
E[

√
Y ∗] ≤ 2E[

√
|Y1|].

Questions: The Iceberg

To what extent does the the theory of random walks extend to
stationary, ergodic sequences?

• Law of Large Numbers: Yes

• Central Limit Theorem: Sn = Mn + Rn.

• Law of the Iterated Logarithm: Sn = Mn + Rn.

• When is Sn = Mn + Rn?

• Local Limit Theorems, etc. ...: Bits and pieces,

• Renewal Theorem: Partially in Lalley (1985, PTRF).

• Spitzer’s Identity for Ladder Heights: Operator versions.


