The Law of the Iterated Logarithm For a Stationary Process

> Michael Woodroofe The University of Michigan Joint work with Ou Zhao

Limit Theorems

Let X_1, X_2, \cdots be independent and identically distributed random variables defined on a probability space (Ω, \mathcal{A}, P) . Thus,

$$P[X_k \in B_k, k = 1, ..., n] = \prod_{k=1}^n P[X_1 \in B_k]$$

for Borel sets $B_k \subseteq \mathbb{R}$. Suppose that X_k have a finite mean and (not necessarily finite) variance

$$E(X_k) = \mu$$
 and $\sigma^2 = E[(X_k - \mu)^2],$

and let

$$S_n = X_1 + \dots + X_n.$$

Outline

Classical Limit Theorems.

Stationary Processes.

The Conditional Central Limit Theorem.

The Law of the Iterated Logarithm.

The Functional Version.

The Proof.

Questions.

The Law of Large Numbers.

$$\lim_{n \to \infty} \frac{S_n}{n} = \mu \ w.p.1.$$

The Central Limit Theorem. If $0 < \sigma^2 < \infty$, then

$$\lim_{n \to \infty} P\left[\frac{S_n - n\mu}{\sigma\sqrt{n}} \le z\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-\frac{1}{2}x^2} dx = \Phi(z),$$

The Law of the Iterated Logarithm. If $\sigma^2 < \infty$, then

$$\limsup_{n \to \infty} \frac{S_n - n\mu}{\sqrt{2n \log \log(n)}} = \sigma \ w.p.1.$$

Note: Physical interpretation of μ and σ .

Corollary For large n,

$$P\left[|\frac{S_n - n\mu}{\sigma\sqrt{n}}| \le 3\right] \approx \frac{1}{\sqrt{2\pi}} \int_{-3}^3 e^{-\frac{1}{2}x^2} dx = .9974 \approx 1.$$

Corollary. If $0 < \sigma^2 < \infty$, then

$$P\left[\limsup_{n\to\infty}\left|\frac{S_n-n\mu}{\sigma\sqrt{n}}\right|>3\right]=1.$$

Remarks

- A single n versus for some n
- Statistical Paradox

A Statistical Paradox

Recall: X_1, X_2, \cdots are i.i.d. with mean μ and variance σ^2 .

An Hypothesis: $\mu = \mu_0$ and $\sigma = \sigma_0$.

A Test: Reject if

$$\left|\frac{S_n - n\mu_0}{\sigma_0\sqrt{n}}\right| > 3.$$

Then

$$P_0[\text{Reject}] < .01.$$

Optional Stopping. Now let N be the smallest $n \ge 1$ for which $|S_n - n\mu_0| > 3\sigma_0\sqrt{n}$. Then

 $N < \infty w.p.1$ and $P_0[\text{Reject}] = 1.$

Example: ESP

Question: To Bayes or not to Bayes.

Stationary Processes

Def. A sequence $\cdots X_{-1}, X_0, X_1, \cdots$ is stationary iff

 $P\left[\left(X_{n+1},\cdots,X_{n+m}\right)\in B\right]$

is independent of n for all Borel sets $B \subseteq \mathbb{R}^m$ for all m.

Sequence Space: Let $\mathbf{X} = (\cdots, X_{-1}, X_0, X_1, \cdots)$, and

$$Q(B) = P[\mathbf{X} \in B]$$

for Borel sets $B \subseteq \mathbb{R}^Z$; and let θ be the shift operator

$$\theta(\cdots x_{-1}, x_0, x_1, \cdots) = (\cdots, x_0, x_1, x_2, \cdots).$$

Then the sequence is stationary iff $Q \circ \theta^{-1} = Q$.

Ergodicity: A stationary sequence is ergodic if Q(A) = 0 or 1 whenever $\theta^{-1}(A) = A$.

Examples

Let $\cdots X_{-1}, X_0, X_1, \cdots$ be independent and identically distributed; and let $\psi : \mathbb{R}^Z \to \mathbb{R}$ be measurable. Then

$$Y_k = \psi(\cdots X_{k-1}, X_k, X_{k+1}, \cdots)$$

is stationary and ergodic.

Martingale Differences

Let $\cdots X_{-1}, X_0, X_1, \cdots$ be a sequence of random variables and $\mathcal{F}_k = \sigma \{\cdots X_{k-1}, X_k\}$. The random variables are martingale differences if

 $E|X_k| < \infty$ and $E(X_k|\mathcal{F}_{k-1}) = 0 \ w.p.1$

for all k in which case $M_n = X_1 + \cdots + X_n$ is called a martingale.

Example: If $\cdots X_{-1}, X_0, X_1, \cdots$ are independent and identically distributed (IID) with $E(X_k) = 0$, then they form martingale differences.

The CLT and LIL: The CLT and LIL are valid for stationary sequences of martingale differences in which case $\mu = 0$.

Notation: $||Y|| = \sqrt{E(Y^2)}$.

About the Condition: $\sum_{n=1}^{\infty} n^{-\frac{3}{2}} \| E(S_n | \mathcal{F}_0) \| < \infty$.

- Limits the dependence.
- Solely in terms of $||E(S_n|\mathcal{F}_0)||$.
- Best Possible.
- Compare with strong mixing.

Examples: Bernoulli shifts; Hasting Metroplis; linear proceses.

Refs: Maxwell and W (2000), Ann. Prob.

Peligrad and Utev (2005) Ann. Prob.

A CCLT For Stationary Sequences

Let $\cdots X_{-1}, X_0, X_1, \cdots$ be a statonary, ergodic sequence with $E(X_k) = 0$ and $E(X_k^2) < \infty$; let $\mathcal{F}_k = \sigma\{\cdots X_{k-1}, X_k\}$; and let $S_n = X_1 + \cdots + X_n$. If

$$\sum_{n=1}^{\infty} n^{-\frac{3}{2}} \|E(S_n|\mathcal{F}_0)\| < \infty, \qquad (\dagger)$$

then

$$\sigma^2 = \lim_{n \to \infty} \frac{1}{n} E(S_n^2) \tag{(*)}$$

exists (finite), and

$$\lim_{n \to \infty} P\left[\frac{S_n}{\sqrt{n}} \le z |\mathcal{F}_0\right] = \Phi(\frac{z}{\sigma}) \tag{**}$$

in probability for all z. Conversely if (*) and (**), then

$$||E(S_n|\mathcal{F}_0)|| = o(\sqrt{n}).$$

About the Proof

In the proof it is shown that

$$S_n = M_n + R_n$$

where M_n and R_n are \mathcal{F}_n -measurable, M_n is the sum of a stationary sequence of martingale differences, and $||R_n|| = o(\sqrt{n})$.

Connection to LIL: If

$$R_n = o[\sqrt{n \log \log(n)}] \ w.p.1,$$

then the LIL would hold for S_n .

Slow Variation

A function $\ell: (0,\infty) \to (0,\infty)$ varies slowly at ∞ iff

$$\lim_{t \to \infty} \frac{\ell(tx)}{\ell(t)} = 1$$

for all $0 < x < \infty$.

Notation: Let

$$\ell^*(n) = \sum_{j=1}^n \frac{1}{j\ell(j)}$$

Example: If $\ell(n) = \log(n+1)$, then $\ell^*(n) \sim \log \log(n)$.

A Law of the Iterated Logarithm

Let $\cdots X_{-1}, X_0, X_1, \cdots$ be a stationary, ergodic sequence with $E(X_k) = 0$ and $E(X_k^2) < \infty$; let $\mathcal{F}_k = \sigma\{\cdots X_{k-1}, X_k\}$; and let $S_n = X_1 + \cdots + X_n$. If $\ell : (0, \infty) \to (0, \infty)$ is a non-decreasing, slowly varying function, for which

$$\sum_{n=1}^{\infty} n^{-\frac{3}{2}} \log(n) \sqrt{\ell(n)} \| E(S_n | \mathcal{F}_0) \| < \infty, \qquad (\dagger)$$

then

$$\lim_{n \to \infty} \frac{R_n}{\sqrt{n\ell^*(n)}} = 0 \ w.p.1.$$

Corollary 2. If

$$\sum_{n=1}^{\infty} n^{-\frac{3}{2}} \log(n) \sqrt{\ell(n)} \| E(S_n | \mathcal{F}_0) \| < \infty, \qquad (\dagger)$$

for some ℓ for which $1/[n\ell(n)]$ is summable, then

$$\lim_{n \to \infty} \frac{R_n}{\sqrt{n}} = 0 \ w.p.1,$$

and there is convergence w.p.1 in the Conditional Central Limit Theorem. That is,

$$\lim_{n \to \infty} P\left[\frac{S_n}{\sqrt{n}} \le z |\mathcal{F}_0\right] = \Phi(\frac{z}{\sigma}) \ w.p.1. \tag{*}$$

Corollary 1. If (\dagger) holds with $\ell(n) = \log(n+1)$,

$$\sum_{n=1}^{\infty} n^{-\frac{3}{2}} \log^{\frac{3}{2}}(n) \| E(S_n | \mathcal{F}_0) \| < \infty, \tag{\dagger}$$

then

$$\lim_{n \to \infty} \frac{R_n}{\sqrt{n \log \log(n)}} = 0 \ w.p.1$$

and

$$\limsup_{n \to \infty} \frac{S_n}{\sqrt{2n \log \log(n)}} = \sigma \ w.p.1.$$

The Functional Version

Brownian Motion. Let \mathbb{B} denote standard Brownian motion. Thus, $\mathbb{B}(t)$, $0 \le t \le 1$, is a stochastic process with

- independent increments;
- continuous sample paths
- $I\!B(0) = 0$

• $I\!\!B(t) - I\!\!B(s)$ is normally distributed with mean 0 and variance t - s.

Sample Versions. Let X_1, X_2, \cdots be random variables, $S_n = X_1 + \cdots + X_n$, and let $I\!B_n$ be a continuous piecewise linear function for which

$$\mathbb{B}_n(\frac{k}{n}) = \frac{1}{\sqrt{n}} S_k, \ k = 0, 1, \cdots, n.$$

Corollary 3. Let $\cdots X_{-1}, X_0, X_1, \cdots$ is be stationary process with mean 0 and finite variance. If

$$\sum_{n=1}^{\infty} n^{-\frac{3}{2}} \log^{\frac{3}{2}}(n) \| E(S_n | \mathcal{F}_0) \| < \infty, \tag{\dagger}$$

then w.p.1 the set of limit points of $\mathbb{B}_n/\sqrt{2n\log\log(n)}$, $n \ge 3$, is σK , where

$$\sigma^2 = \lim_{n \to \infty} \frac{1}{n} E(S_n^2).$$

Proof. Follow from Strassen's Theorem (for martingale differences) and $R_n = o[\sqrt{2n \log \log(n)}]$.

Strassen's LIL

Let C[0,1] be the set of continuous functions $f:[0,1] \to \mathbb{R}$, and let $K \subseteq C[0,1]$ be the set of absolutely continuous f for which

$$\int_0^1 f'(t)^2 dt \le 1$$

If X_1, X_2, \cdots are i.i.d. with mean 0 and variance one, then the set of limit points of

$$\frac{I\!B_n}{\sqrt{2n\log\log(n)}}, n \ge 3$$

is K w.p.1.

About the Proof Markov Chains

There is no loss of generality in supposing that

$$X_k = g(W_k),$$

where $\cdots W_{-1}, W_0, W_1 \cdots$ is a stationary Markov chain with values in a measurable space \mathcal{W} , for we may let

$$W_k = (\cdots, X_{k-1}, X_k).$$

Let π and Q denote the stationary distribution and transition function of the chain,

$$\pi\{B\} = P[W_k \in B]$$

and

$$Q(w;B) = P[W_{n+1} \in B | W_n = w].$$

$$Qf(w) = \int_{\mathcal{W}} f(z)Q(w;dz) = E[f(W_{n+1})|W_n = w] \ a.e.$$

Some Operators

for $f \in L^1(\pi)$. Then,

$$E(X_k|W_0) = Q^k g(W_0)$$

and

Let

$$E(S_n|W_1) = \sum_{k=1}^n Q^{k-1}g(W_1) = V_ng(W_1).$$

The Operator Norm. If $S: L^2(P) \to L^2(P)$ is a continuous linear transformation, let

$$||S||_{op} = \sup_{||Y|| \le 1} ||SY||.$$

The Operator B(T). Since β_k are summable,

$$B(T) = \sum_{k=1}^{\infty} \beta_k T^k$$

converges in the operator norm. Let

$$A(z) = \frac{1}{1 - B(z)} = \sum_{k=0}^{\infty} \alpha_k z^k$$

Then A is continuous in $|z| \leq 1 \neq z$. A major problem is to make sense of A(T).

More Operators

Next, let θ denote the shift operator, $W_n \circ \theta = W_{n+1}$ and

$$Tf = f \circ \theta.$$

Next, let

$$\beta_k = \frac{c}{k} \sum_{n=k}^{\infty} \frac{1}{\sqrt{n^3 \ell(n)}} \sim \frac{2c}{\sqrt{k^3 \ell(k)}}$$

where c is so chosen that $\beta_1 + \beta_2 + \cdots = 1$, and

$$B(z) = \sum_{k=1}^{\infty} \beta_k z^k$$

Then B(z) is continuous in $|z| \leq 1$ and analytic in |z| < 1.

About the Martingale

Recall that $X_k = g(W_k)$, where $g \in L^2(\pi)$ and $\int_{\mathcal{W}} g d\pi = 0$, and let

$$h_{\epsilon} = \sum_{k=1}^{\infty} \frac{Q^{k-1}g}{(1+\epsilon)^k}$$

and $H_{\epsilon}(w_0, w_1) = h_{\epsilon}(w_1) - Qh_{\epsilon}(w_0)$. Then, from MW(2000),

$$H = \lim_{\epsilon \to 0} H_{\epsilon}$$

exists in an L^2 space, $M_n = H(W_0, W_1) + \dots + H(W_{n-1}, W_n)$, and

$$R_n = \sum_{k=1}^n \xi_0 \circ \theta^k.$$

with $\xi_0 = g(W_0) - H(W_{-1}, W_0).$

Some Details

About the Proof

First Step: Show $\xi_0 \in [I - B(T)]L^2(P)$; that is $\xi_0 = \eta_0 - B(T)\eta_0$ for some $\eta_0 \in L^2(P)$.

- Bound $||R_n||$.
- Fourier analysis of $B(e^{it})$.

Second Step: Show that

$$\lim_{n \to \infty} \frac{1}{\sqrt{n\ell^*(n)}} \sum_{k=1}^n \xi \circ \theta^k = 0 \ w.p.1$$

for any $\xi \in [I - B(T)]L^2(P)$. Uses a version of the Dominated Ergodic Theorem.

Second Step. Let Y_k be stationary and

$$Y^* = \sup_{n \ge 1} |\frac{Y_1 + \dots + Y_n}{n}|$$

Then the Dominated Ergodic Theorem states:

$$||Y^*||_p \le \left(\frac{p}{p-1}\right) ||Y_1||_p$$

for p > 1. Also

$$E[\sqrt{Y^*}] \le 2E[\sqrt{|Y_1|}].$$

First Step. Recall

$$A(z) = \frac{1}{1 - B(z)} = \sum_{k=0}^{\infty} \alpha_k z^k.$$

To make sense of $A(T)\xi_0$, we need to bound α_k . From $\beta_k \sim 2c/\sqrt{k^3\ell(k)}$, we get

$$B(e^{it}) \sim \kappa_0 \sqrt{\frac{t}{\ell(t)}}$$

as $t \to 0$. Thus

and

$$\alpha_k - \alpha_{k+1} = O[\sqrt{\frac{\ell(n)}{n^3}}]$$

 $A(e^{it}) \sim \frac{\sqrt{\ell(t)}}{\kappa_0 \sqrt{t}}$

Questions: The Iceberg

To what extent does the theory of random walks extend to stationary, ergodic sequences?

- Law of Large Numbers: Yes
- Central Limit Theorem: $S_n = M_n + R_n$.
- Law of the Iterated Logarithm: $S_n = M_n + R_n$.
- When is $S_n = M_n + R_n$?
- Local Limit Theorems, etc. ...: Bits and pieces,
- Renewal Theorem: Partially in Lalley (1985, PTRF).
- Spitzer's Identity for Ladder Heights: Operator versions.