New gamma ray and positron contributions

to supersymmetric dark matter annihilations

Joakim Edsjö Stockholm University edsjo@physto.se

in collaboration with T. Bringmann and L. Bergström

arXiv: 0710.3169, JHEP 01 (2008) 049 + work in progress

Stockholm University

June 3, 2008 @ Dark Side deux

Outline

- Neutralinos as dark matter
- New gamma ray signatures from halo annihilation:

Internal Bremsstrahlung (final state radiation)

New positron signatures

The neutralino as a WIMP

 Many ways to break supersymmetry exists. Will choose a phenomenological low-energy MSSM as one example and mSUGRA as another.

The neutralino:

$$\tilde{\chi}_1^0 = N_{11}\tilde{B} + N_{12}\tilde{W}^3 + N_{13}\tilde{H}_1^0 + N_{14}\tilde{H}_2^0$$

The neutralino can be the lightest supersymmetric particle (LSP). If Rparity is conserved, it is stable.

The gaugino fraction

$$Z_g = |N_{11}|^2 + |N_{12}|^2$$

The MSSM-7 parameters

• In phenomenologically motivated MSSM we fix parameters (typically 7) at the electro-weak scale

μ	Higgsino mass parameter
M_2	Gaugino mass parameter
m_A	Mass of CP-odd Higgs boson
aneta	Ratio of Higgs vacuum expectation values
m_0	Scalar mass parameter
A_b	Trilinear coupling, bottom sector
A_t	Trilinear coupling, top sector

The neutralino in mSUGRA

 Fix mass parameters (typically 5) at GUT scale and run RGEs to low energy scale

$\operatorname{sgn}(\mu)$	Sign of Higgsino mass parameter
$m_{1/2}$	Gaugino mass parameter (at GUT scale)
aneta	Ratio of Higgs vacuum expectation values
m_0	Scalar mass parameter (at GUT scale)
A	Trilinear coupling (at GUT scale)

Interesting regions:

- stau coannihilation region
- funnel region
- focus point region
- stop coannihilation region

P. Gondolo, J. Edsjö, P. Ullio, L. Bergström, M. Schelke and E.A. Baltz

4.2 coming

Version 4.1 available now

- MSSM or mSUGRA
- Masses and couplings
- Relic density
- Lab constraints
- Rates: neutrino telescopes
- Rates: gamma rays
- Rates: antiprotons, positrons, antideuterons
- Rates: direct detection

ournal of Cosmology and Astroparticle Physics

JCAP 06 (2004) 004 [astro-ph/0406204]

DarkSUSY: computing supersymmetric dark-matter properties numerically

P Gondolo¹, J Edsjö², P Ullio³, L Bergström², M Schelke² and E A Baltz⁴

www.physto.se/~edsjo/darksusy

Uses FeynHiggs, HDecay and Isasugra. v4.2 will also use galprop and include final state radiation and neutrino oscillations.

Calculational flowchart

- Select model parameters
- Calculate masses etc
- Check accelerator constraints
- Calculate the relic density
- Check if the relic density is cosmologically OK
- Calculate fluxes, rates, etc
- Calculation done with

DarkSUSY 4.1 available on <u>www.physto.se/~edsjo/darksusy</u> JCAP 06 (2004) 004 [astro-ph/0406204]

The relic density

 $\Omega_{\chi}h^2 = 0.1113^{+0.0044}_{-0.0061}$

from WMAP+SDSS LRG D. Spergel et al., astro-ph/0603449

Why gamma rays?

- Rather high rates
- No attenuation (except from very close to dense sources)
- Point directly back to the source
- No diffusion model uncertainties as for charged particles
- There can be clear spectral signatures to look for

Annihilation in the halo

- Gamma rays can be searched for with e.g. Air Cherenkov Telescopes (ACTs) or GLAST (launch June 7, 2008).
- Signal depends strongly on the halo profile,

 $\Phi \propto \int_{\text{line of sight}} \rho^2 dl$

Annihilation to gamma rays

Monochromatic

At loop-level, annihilation can occur to

$$\gamma \gamma \Rightarrow E_{\gamma} = m_{\chi}$$

 $Z\gamma \Rightarrow E_{\gamma} = m_{\chi} - \frac{m_Z^2}{4m_{\chi}}$

Features

- directionality no propagation uncertainties
- low fluxes, but clear signature
- strong halo profile dependence
- Continuous
 WIMP annihilation can also produce a continuum of gamma rays

$$\chi\chi \to \cdots \to \pi^0 \to \gamma\gamma$$

Features (compared to lines)

- lower energy
- more gammas / annihilation
- rather high fluxes
- not a very clear signature

Gamma ray fluxes from the halo

Typical gamma ray spectrum

Gamma lines – rates in GLAST

NFW halo profile, $\Delta \Omega \approx 1 \text{ sr}$

GLAST launch, June 7, 2008

Internal Bremsstrahlung

 Whenever charged final states are present, photons can also be produced in internal bremsstrahlung processes

Internal Bremsstrahlung

- Bremsstrahlung effects for DM annihilation pointed out by Bergström, PLB 225 (1989) 372.
- Studied recently by e.g.
 - Beacom et al, arXiv: astro-ph/0409403
 MeV dark matter
 - Bergström et al, PRL 95 (2005) 241301.
 Ann. of gauginos / Higgsinos to W⁺W⁻
 - Birkedal et al, arXiv: hep-ph/0507194.
 Universal forms derived
 - Bergström et al, PRL 94 (2005) 131301. UED models.
- I will here report on a more general study for SUSY neutralinos

Contributions to the gamma flux

• We can write the contributions to the gamma flux as

$$\frac{dN^{\gamma,\text{tot}}}{dx} = \sum_{f} B_{f} \left(\frac{dN_{f}^{\gamma,\text{sec}}}{dx} + \frac{dN_{f}^{\gamma,\text{IB}}}{dx} + \frac{dN_{f}^{\gamma,\text{line}}}{dx} \right)$$

How large are these different contributions?

How big are these contributions for neutralinos?

 For Majorana fermion dark matter (e.g. neutralinos), annihilation to fermion-antifermion pairs is helicity suppressed at v→0

 $\sigma_{f\bar{f}} \propto \frac{m_f^2}{m_\chi^2}$

- However, when internal bremsstrahlung photons are added, the helicity suppression no longer holds. The cross section can then increase, even though we are punished by an additional factor of α
- These photons can in many cases dominate at high energies

Gamma ray spectrum including IB photons I

Gamma ray spectrum including IB photons II

Gamma ray spectrum including IB photons III

Gamma ray spectrum including IB photons IV

Example of experimental smearing

• W⁺W⁻ channel via χ^{\pm} exchange

More quantitative...

• Let's focus on the high energy part by redefining

$$S = \int_{0.6m_{\chi}}^{m_{\chi}} \frac{dN^{\gamma}}{dE} dE \frac{(\sigma v)}{10^{-29} cm^3 s^{-1}} \left(\frac{m_{\chi}}{100 GeV}\right)^{-2}$$

and divide S into the different parts

 $S = S_{\rm IB} + S_{\rm sec.} + S_{\rm lines}$

Internal Bremsstrahlung

When is it important?

MSSM and mSUGRA scans

All models OK with WMAP and accelerator constraints. $IB>0.6m_{\chi}$

IB can be more important than the lines

IB/sec. for mSUGRA

So, what about the positrons?

L. Bergström, T. Bringmann and J. Edsjö, work in progress

- Annihilations to e⁺e⁻ is helicity suppressed for Majorana fermion WIMPs (e.g. neutralinos)
- Hence, direct annihilation to e⁺e⁻ is never important
- BUT, internal bremsstrahlung of photons cause the cross section for annihilation into e⁺e⁻γ to increase. Can it be enhanced enough to be of importance or e⁺ searches?

When is the effect large?

- Typically, the e⁺e⁻γ cross section can be large when the selectrons are light
- This can happen e.g. in the stau coannihilation region in mSUGRA
- In MSSM-7, it only happens when essentially all sfermions are light (and typically the slectron is not that light in these cases). However, this is just an artefact of how MSSM-7 is parameterized. Hence, introduce...

MSSM-9

 In order to get light selectrons and allow more freedom for the neutralino composition, we introduce MSSM-9 with two more parameters:

μ	Higgsino mass parameter	
M_1	Gaugino mass parameter	New
M_2	Gaugino mass parameter	
m_A	Mass of CP-odd Higgs boson	
$\tan\beta$	Ratio of Higgs vacuum expectation values	
m_0	Scalar mass parameter	
$m_{ ilde{e}}$	Selectron mass parameter (not mass directly)	New
A_b	Trilinear coupling, bottom sector	
A_t	Trilinear coupling, top sector	

$$\mathcal{M}_{\widetilde{e}}^2 = egin{pmatrix} \mathbf{M}_L^2 + \mathbf{m}_e \mathbf{m}_e^\dagger + D_{LL}^e \mathbf{1} & -\mathbf{m}_e^\dagger (\mathbf{A}_E^\dagger + \mu^* an eta) \ -(\mathbf{A}_E + \mu an eta) \mathbf{m}_e & \mathbf{M}_E^2 + \mathbf{m}_e^\dagger \mathbf{m}_e + D_{RR}^e \mathbf{1} \end{pmatrix},$$

Example mSUGRA e⁺ spectrum

Very nice spectral feature!

Enhancement factors at 0.9m_X

It is possible to get huge enhancement factors

Absolute fluxes

- IB enhances the positron fluxes significantly for some models
- The models that get large enhancements had low fluxes to start with
- Even after enhancement, the fluxes are not very high, BUT they have a nice spectral feature! University

Spectrum after propagation

Nice features, but a boost factor of 5000...

Conclusions

- Gamma rays from dark matter annihilation can have distinct spectral features, either from the monochromatic lines or from internal bremsstrahlung effects
- Searches with e.g. GLAST (launch June 7, I 1:45am) and Air Cherenkov Telescopes will be very interesting
- Positron enhancements can also be significant and provide a nice spectral feature that distinguish them from the background. The absolute fluxes are not that high though.

Vark maitter candidates

- Dark matter direct searches
- Dark matter indirect searches
- Connections with accelerator searches

Last call for abstracts:

· Halo models and structure formation

IDM 2003

7th International Workshop on Identification of Dark Matter

- Gravitational lensing
- Neutrino physics
- Cosmology and dark energy

tdm2003.albanova.se 18-22 August 2003 AlbaNova, Stockholm, Sweden

International Advisory Committee

Dan Akerib (CWRU) Elena Aprile (Columbia) Rita Bernabei (Rome) Gianfranco Bertone (IAP, Paris) Karl van Bibber (LLNL) Elliott Bloom (SLAC) David Cline (UCLA) Katie Freese (Michigan) Rick Gaitskell (Brown) Anne Green (Nottingham) Henk Hoekstra (UVic) Dan Hooper (FNAL) Marc Kamionkowski (Caltech) Stavros Katsanevas (IN2P3) Vitaly Kudryavtsev (Sheffield) Manfred Lindner (MPI, Heidelberg) Bela Majorovits (MPI, Munich) Ben Moore (ETH) Aldo Morselli (Rome) Robert C. Nichol (Portstmouth) Georg Raffelt (MPI, Munich) Leszek Roszkowski (Sheffield) Bernard Sadoulet (Berkeley) Pierre Salati (Annecy) Neil Spooner (Sheffield) Max Tegmark (MIT) Dan Tovey (Sheffield) Piero Ullio (SISSA) Simon White (MPI, Garching)

Local Organizing Committee

L. Bergström (Stockholm University)
J. Conrad (Stockholm University)
J. Edsjö (Stockholm University)
S. Hofmann (Nordita, Stockholm)
P-O. Hulth (Stockholm University)
E. Mörtsell (Stockholm University)
T. Ohlsson (Royal Institute of Technology, Stockholm)
M. Pearce (Royal Institute of Technology, Stockholm)