Brief Update on Ttbar without MET

\[L = 100 \text{ pb}^{-1} \]

<table>
<thead>
<tr>
<th></th>
<th>S/B</th>
<th>A(\varepsilon)(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sel A</td>
<td>3</td>
<td>5.5</td>
</tr>
<tr>
<td>Sel B</td>
<td>4.7</td>
<td>2.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S/B</th>
<th>A(\varepsilon)(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sel A</td>
<td>2.36</td>
<td>5.99</td>
</tr>
<tr>
<td>Sel B</td>
<td>3.27</td>
<td>2.92</td>
</tr>
</tbody>
</table>

With MET cut

No MET Cut

The MET cut of 20 GeV doesn’t seem to make all that much difference.
We should be able to obtain a top rich sample without which we can then look at to commission The MET observable.

Preliminary!
The G2-MSSM at the LHC

Bobby S. Acharya

Abdus Salam ICTP and INFN Trieste

Based Upon

• Work done with the MCTP, Ann Arbor
 • K. Bobkov, P. Grajek, G. Kane, P. Kumar, J. Shao

• Two earlier foundational papers:
 • “M Theory Solution to the Hierarchy Problem”, PRL 97, 191601, 2006
 • “Explaining the Electroweak Scale and Stabilising Moduli in M theory” hep-th/0701034

• Mostly taken from
 • “The G2-MSSM”, arXiv 0801.0478
 • “The G2-MSSM at the LHC”, to appear
Outline of Talk

• Introducing the “G2-MSSM” – a supersymmetric particle physics model essentially derived from M theory.

• Mass Spectrum of the G2-MSSM

• The G2-MSSM at the LHC – unique and reasonably identifiable set of signatures

• Compare ATLAS and CMS detection of the G2-MSSM
Introducing the G2-MSSM

- In the two earlier papers we explained how to stabilise all moduli whilst generating the hierarchy between M_W and M_{pl}, preserving Grand Unification
- M theory vacua without FLUX.
- G2-manifold - xtra dimensions + SUSY
- Strong Dynamics both generates a small scale and a potential for all moduli
- Unique de Sitter vacuum

- Can calculate most of the spectrum BSM
\[W^{np} = A_1 e^{ib_1 f_1} + A_2 e^{ib_2 f_2} . \quad f_k = \sum_{i=1}^{N} N^k i z_i = \frac{\theta_k}{2\pi} + i \frac{4\pi}{g_k^2} \]

\[K = -3 \ln(4\pi^{1/3} V_X) , \quad (1) \]

where the volume of the G_2 holonomy manifold as a function of the N scalar moduli s_i is (in 11d units)

\[V_X = \prod_{i=1}^{N} s_i^a , \quad \text{with} \quad \sum_{i=1}^{N} a_i = 7/3 . \quad (2) \]

\[V = \frac{1}{48\pi V_X^2} \left[\sum_{k=1}^{2} \sum_{i=1}^{N} a_i v_i^k (v_i^k b_k + 3) b_k A_k^2 e^{-2b_k v^k \cdot \vec{a}} + 3 \sum_{k=1}^{2} A_k^2 e^{-2b_k v^k \cdot \vec{a}} \right. \]

\[\left. -2 \sum_{i=1}^{N} a_i \prod_{k=1}^{2} v_i^k b_k A_k e^{-b_k v^k \cdot \vec{a}} - 3 \left(2 + \sum_{k=1}^{2} b_k v^k \cdot \vec{a} \right) \prod_{j=1}^{2} A_j e^{-b_j v^j \cdot \vec{a}} \right] \]
\[
(m_{3/2})^{(1,2)}_0 = m_p 2^{1/2} \pi^3 \left(7 + \sqrt{17}\right)^{7/4} (N_1 N_2)^{7/4} A_2 P \left| \frac{P - Q}{P Q} \right| \left(\frac{A_2 P}{A_1 Q} \right)^{-\frac{p}{P - Q}} \left(\frac{P Q}{P \ln A_2 \frac{P}{A_1 \frac{Q}{P}} \right)^{-\frac{7}{2}}
\]

\[
\sim m_p 2.97 \times 10^3 (N_1 N_2)^{7/4} A_2 P \left| \frac{P - Q}{P Q} \right| \left(\frac{A_2 P}{A_1 Q} \right)^{-\frac{p}{P - Q}} \left(\frac{P Q}{P \ln A_2 \frac{P}{A_1 \frac{Q}{P}} \right)^{-\frac{7}{2}}
\]

(162)

\[
M_{1/2} \approx -\frac{e^{-i\gamma w}}{P \ln \left(\frac{A_1 Q}{A_2 P} \right)} \left(1 + \frac{2}{\phi_0^2 (Q - P)} + \frac{7}{\phi_0^2 \ln \left(\frac{A_1 Q}{A_2 P} \right)} \right) \times m_{3/2},
\]

\[
M_{1/2} \approx -\frac{e^{-i\gamma w}}{84} \left(1 + \frac{2}{3\phi_0^2} + \frac{7}{84\phi_0^2} \right) \times m_{3/2}
\]

\[
\approx -e^{-i\gamma w} 0.024 \times m_{3/2}.
\]
Introducing the G2-MSSM

• The Spectrum is determined by the particular G2 manifold, X.
 • Many qualitative features don’t depend on detailed properties of X:
• Heavy Squarks/Sleptons, Light Gauginos.
• Particular X’s give values for “microscopic” constants
 • (eg rank of gauge groups, and other integers) which determine the detailed spectrum.
• These constants can be varied within reason:
 • Unification + the SUGRA approximation. Typical.
• This defines the G2-MSSM
G2-MSSM Spectrum

- **At GUT scale:**
 - universal scalar masses - large eg 50 TeV
 - unified tree level gaugino masses - small eg 300 GeV
 - Large Higgsino mass eg 50 TeV
 - one loop gaugino masses partly cancel against suppressed tree contribution (unlike AMSB)

- **At the TeV scale:**
 - Right Handed Top Squark is the lightest Squark (several TeV)
 - Significant threshold corrections to Wino and Bino masses from the large Higgsino mass

- **LSP and Dark Matter:**
 - LSP usually Wino, but can also be Bino
 - For the Wino, non-thermal production dominates.
Comments on EWSB

• Although a hierarchy is both generated and stabilised, the usual “Little Hierarchy Problem remains”
 – We don’t solve this problem
 – Just assume that the microscopic constants (ie the G2 Manifold) are such that both
 • Radiative EWSB occurs and
 • M_Z is 91.1876 GeV ± 0.0021 GeV

 – Just applying Giudice-Masiero without this additional fine tuning would give $M_Z = O$(few TeV).

• TanBeta turns out to be order ONE.
Spectrum at the LHC

Microscopic Constants

Light Gluino, Neutralinos
Charginos, Higgs

Stop Right Lightest Squark

Heavy Squarks/Sleptons

<table>
<thead>
<tr>
<th>parameter</th>
<th>Point 1</th>
<th>Point 2</th>
<th>Point 3</th>
<th>Point 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>-6</td>
<td>-6</td>
<td>-6</td>
<td>-7</td>
</tr>
<tr>
<td>$Q-P$</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>P_{eff}</td>
<td>75</td>
<td>83</td>
<td>73</td>
<td>70</td>
</tr>
<tr>
<td>V_τ</td>
<td>90</td>
<td>21.6</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>C_2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>α_{uni}^{-1}</td>
<td>26.1</td>
<td>26.4</td>
<td>26.5</td>
<td>26.1</td>
</tr>
<tr>
<td>Z_{eff}</td>
<td>1.94</td>
<td>1.66</td>
<td>1.92</td>
<td>2.08</td>
</tr>
<tr>
<td>$m_{3/2}$</td>
<td>19266</td>
<td>35262</td>
<td>30032</td>
<td>16261</td>
</tr>
<tr>
<td>$\tan \beta$</td>
<td>1.40</td>
<td>1.45</td>
<td>1.39</td>
<td>1.39</td>
</tr>
<tr>
<td>μ</td>
<td>26488</td>
<td>45751</td>
<td>41585</td>
<td>22708</td>
</tr>
<tr>
<td>m_0</td>
<td>638.0</td>
<td>732.0</td>
<td>1048</td>
<td>734.5</td>
</tr>
<tr>
<td>$m_{\chi_1^0}$</td>
<td>116.0</td>
<td>110.6</td>
<td>224.7</td>
<td>157.2</td>
</tr>
<tr>
<td>$m_{\chi_2^0}$</td>
<td>152.5</td>
<td>228.2</td>
<td>258.2</td>
<td>157.7</td>
</tr>
<tr>
<td>$m_{\chi_1^+}$</td>
<td>116.2</td>
<td>110.7</td>
<td>224.9</td>
<td>157.4</td>
</tr>
<tr>
<td>$m_{1/2}$</td>
<td>4.07</td>
<td>25712</td>
<td>21870</td>
<td>11752</td>
</tr>
<tr>
<td>$m_{\tilde{g}}$</td>
<td>13974</td>
<td>25712</td>
<td>21870</td>
<td>11752</td>
</tr>
<tr>
<td>$m_{\tilde{q}}$</td>
<td>19252</td>
<td>35230</td>
<td>30011</td>
<td>16251</td>
</tr>
<tr>
<td>$m_{\tilde{e}}$</td>
<td>19267</td>
<td>35263</td>
<td>30033</td>
<td>16262</td>
</tr>
<tr>
<td>$m_{\tilde{t}_1}$</td>
<td>19267</td>
<td>35263</td>
<td>30033</td>
<td>16261</td>
</tr>
<tr>
<td>$m_{\tilde{t}_2}$</td>
<td>19259</td>
<td>35246</td>
<td>30021</td>
<td>16251</td>
</tr>
<tr>
<td>$m_{\tilde{b}_1}$</td>
<td>19263</td>
<td>35254</td>
<td>30027</td>
<td>16258</td>
</tr>
<tr>
<td>$m_{\tilde{b}_2}$</td>
<td>117.5</td>
<td>120.7</td>
<td>118.8</td>
<td>115.5</td>
</tr>
<tr>
<td>m_A</td>
<td>40218</td>
<td>70182</td>
<td>63191</td>
<td>34388</td>
</tr>
<tr>
<td>A_t</td>
<td>2015</td>
<td>6199</td>
<td>3380</td>
<td>1427</td>
</tr>
<tr>
<td>A_b</td>
<td>798</td>
<td>1635</td>
<td>1199</td>
<td>665</td>
</tr>
<tr>
<td>A_t</td>
<td>466</td>
<td>988</td>
<td>714</td>
<td>382</td>
</tr>
</tbody>
</table>
G2-MSSM at the LHC

• X-sections

• Event topologies

• Discovery strategy
<table>
<thead>
<tr>
<th>P_{eff}</th>
<th>V_7</th>
<th>δ</th>
<th>$\sigma(\tilde{C}_1\tilde{N}_1)$</th>
<th>$\sigma(\tilde{C}_1\tilde{C}_1)$</th>
<th>$\sigma(\tilde{g}\tilde{g})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>560</td>
<td>-3</td>
<td>15.6</td>
<td>7.9</td>
<td>4.8</td>
</tr>
<tr>
<td>70</td>
<td>600</td>
<td>-6</td>
<td>3.9</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>72</td>
<td>300</td>
<td>-6</td>
<td>1.4</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>75</td>
<td>110</td>
<td>-6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.02</td>
</tr>
<tr>
<td>75</td>
<td>190</td>
<td>-6</td>
<td>10.5</td>
<td>5.5</td>
<td>4.1</td>
</tr>
<tr>
<td>75</td>
<td>250</td>
<td>-9</td>
<td>12.2</td>
<td>6.2</td>
<td>???</td>
</tr>
<tr>
<td>77</td>
<td>190</td>
<td>-6</td>
<td>15.6</td>
<td>7.9</td>
<td>5.5</td>
</tr>
<tr>
<td>80</td>
<td>52</td>
<td>-6</td>
<td>15.5</td>
<td>8.0</td>
<td>3.8</td>
</tr>
<tr>
<td>82</td>
<td>70</td>
<td>-9</td>
<td>13.8</td>
<td>7.05</td>
<td>7.8</td>
</tr>
</tbody>
</table>

TABLE II: Production Cross Section for $\tilde{C}_1\tilde{N}_1$, $\tilde{C}_1\tilde{C}_1$, and $\tilde{g}\tilde{g}$ pair production (units are in pb)
• Gluino Pair Production:
• 6 W’s + 4 b-jets!!
• Should be many ways to find these events!!
The Meta-Stable Chargino

- The Lightest Chargino and N_1 (lightest neutralino) have the same mass at tree level (they are both W-ino’s and there’s little mixing).

- Their masses get small 1-loop corrections and the mass difference is between one and two PION masses. (Similar to some AMSB models, but the combined set of signatures different).

- The Chargino decays into N_1 and a “W”
- The “W” decays either into a soft PION or lepton

- The Chargino decays inside the detector (few cm’s)
IN C.M.S.

Select:
- Muon
- Electron
- Neutral Hadron
- Charged Hadron
- Photon

Short track stubs.
With only these partons the C-N and C-C events will not Trigger.

The Big Question is: Are some events with short track Stubs Triggered on???
CMS has pixels at 4, 7, 10 cm. Next layer at 20 cm.
Discovery and Triggers

- **Gluino pair production:**
 - Many hard jets and missing Energy. Trigger often.
 - Order 10^4 events at $L = 10$ fb$^{-1}$. (few per hour if this is one LHC year)
 - Many b-jets and W-bosons originating from tops.

- **Chargino Production channels:**
 - More events (10^5 at 10fb$^{-1}$), but do they trigger?
 - Naively difficult since there are no quarks/leptons/photons in the main process
 - Since the main signature is the short Track Stub, the events have to be triggered and searched for later, "offline".
 - **We find that often there is initial state radiation which produces a jet with a PT > 35 GeV. This really helps for Triggering.**
Comparing CMS/ATLAS

- **CMS Triggering Charginos:**
 - With current low L (10^{32}) triggers, CMS has a pure Missing ET trigger of 65 GeV, which triggers these events more than 10% of the time :))
 - However, this is only for the first 100 pb-1 or so and there will be a few hundred events.
 - Latest Trigger menus (after September 07) ?
 - At Higher L (10^{33}) this moves to 91 GeV and very few events will pass this :((
 - The ID has layers at 4cm, 7cm, 10cm and 20cm
 - The “C” in CMS is a very good thing for these phenomena!
Comparing CMS/ATLAS

- **ATLAS Triggering Charginos:**
 - Low L \((10^{32})\) trigger menu has a jet45GeV+MET50GeV trigger which keeps > 10% of evts :))
 - ATLAS ID has pixel layers at 5cm, 9cm and 12cm with the first SCT layer at 30cm
 - In ATLAS the **only** information about the direct Chargino production will be from the pixel detector, unlike CMS, which will sometimes have more than three hits.

- **Overall, both CMS and ATLAS have plus and minus points.**
 - Clearly needs more serious Detector sim. Study.
 - Underway (in both CMS and ATLAS).
Conclusions

• The G2-MSSM is a well motivated phenomenological model
• It has a very distinctive set of signatures
• If we discover evidence for events with many tops, W’s, b-jets we should also start looking for short track stubs in monojet + EtMiss events
• Though non-trivial, it seems possible and challenging to find these in the CMS and ATLAS detectors