Early Spin Measurements at the LHC

Jing Shao

University of Michigan

Based on work in collaboration with
Gordon Kane, Alexey Petrov and Liantao Wang
work in progress

University of Michigan, January 11, 2008
Outline

● Introduction and Basic Idea

● An Example: Top at Tevatron

● Gluino at LHC

● Some Discussions

● Summary
Introduction and Basic idea

- Solving the hierarchy problem usually requires some SM partners to cancel the quadratic divergence in SM.
- A leading example is SUSY. Experimentally to confirm it, one wants to determine the spins of the new particles.
- The standard way to do this is through the spin correlation; Many studies in the literatures A. J. Barr; P. Meade, M. Reece; J. M. Smillie, B. R. Webber; L. T. Wang, I. Yavin,

This workshop – Talks of J. Lykken, S. Thomas and M. Graesser

May work for light sleptons or high statistics.
Introduction and Basic Idea

- What we are emphasizing is that a proper use of the rate information is extremely helpful in the early determination of the spin.

- The basic observation is that the cross sections of particles with different spin will differ significantly in many cases.

- Experimentally one will estimate the cross section and mass of the new particle. In most situations, this would immediately imply the spin.

- Method works best when one production mechanism dominants, e.g. color octets at LHC.
Introduction and Basic idea

- Initially test most reasonable hypotheses
 - color octet if $M \sim 1 \text{ TeV}$, $\sigma \gtrsim \text{ pb}$
 - no fine-tuned mass degeneracies that could confuse results. (Works even then, but more effort needed)

- Then later repeat with more alternatives
 - color triplet, etc
 - special mass splittings (return to this later in the talk)
Consider Simple Example: Top at Tevatron

- The cross section at Tevatron

- Large differences in the cross section between spin-$\frac{1}{2}$ and spin-0. \implies Spin of top was measured by $\sigma + M$.
Gluino at LHC

- The cross sections for gluino and other spin candidates

- These cross sections are essentially determined by the spin and color structure.
Some discussion

• There are uncertainties in the calculated cross section: higher order QCD corrections and scale dependence. However the ratios of the cross sections depend less on them.

• For example, consider the mass of a new color octet to be $M = 800\text{GeV}$. If we choose scales $\mu_F = \mu_R = M_Z$, then the cross section for the spin-$\frac{1}{2}$ and spin-1 are given by

$$\sigma_{pp\rightarrow\tilde{g}\tilde{g}} \approx 2.8\text{pb}, \quad \sigma_{pp\rightarrow g_Vg_V} \approx 24.1\text{pb}. \quad \text{ratio} \approx 8.5$$

• For scales $\mu_F = \mu_R = M$

$$\sigma_{pp\rightarrow\tilde{g}\tilde{g}} \approx 0.95\text{pb}, \quad \sigma_{pp\rightarrow g_Vg_V} \approx 7.79\text{pb}. \quad \text{ratio} \approx 8.2$$
Some discussion

- For the same production rate, particles with different spin must have different mass. However, determination of the mass may not be trivial.
- In special cases may need further efforts to untangle the degeneracy. Usually the mass difference ΔM between the color particle and the invisible particle can be determined, for example from the P_T distribution. After fixing both the rate and ΔM, can we find any observable differences in the kinematical distributions, e.g., H_t, E_T, m_{ij}, ΔR_{ij} ... ?
- Yes, in principle.
- Then we can fit these distributions to the data and resolve the “degeneracy”.
For example

- Fix the production rate and $\Delta M = 660 \text{ GeV}$:

 Gluino with $M_{\tilde{g}} = 800 \text{ GeV}$, KK gluon with $M_{g_V} = 1100 \text{ GeV}$.
 Both of them undergo 3-body decay into 2 jets plus E_T.

- The effective mass distribution

![Ht distribution graphs](attachment:image.png)

X-section = 2.833E+00(pb) AVG = 1.300E+03 RMS = 3.407E+02
Tot # Dets = 2999 Entries = 2995 Underbc = 5 Overs

X-section = 2.720E+00(pb) AVG = 1.508E+03 RMS = 3.781E+02
Tot # Dets = 2997 Entries = 2990 Underbc = 2 Overs
Continue

- Maybe ΔM can be adjusted so these peaks are closer? Probably can be dealt with also.
- Adjust LKP mass ($\Delta M = 560\text{GeV}$) in the KK gluon case such that H_t peak at the same position as the gluino case. We find differences in other distributions, e.g. ΔR and $\Delta \phi$ both give distinguishable distributions:
R(jet1,jet4)

![Graph showing distribution of DeltaR between jet1 and jet4](image)

Dphi(jet1,jet4)

![Graph showing distribution of DeltaPhi between jet1 and jet4](image)

Ht

![Graph showing distribution of Ht](image)

Missing ET

![Graph showing distribution of Missing ET](image)
Summary

- The cross section information can be used to determine the spin early at LHC. 100pb^{-1}? The result can be checked later by examining the spin correlation.
- It works well in most “worlds”, but may need more work for complicated situations. The detailed study is under-way.