Traps for precision measurement

Long coherence times = good.
Traps for precision measurement

Magnetic trap (Ioffe-Pritchard) for neutrals

Force = $\nabla (|B| \mu)$
Traps for precision measurement

Magnetic trap (Ioffe-Pritchard) for neutrals

Force = \text{grad} (|B| \mu)

Trappable, B-field insensitive transitions exist, in most species.
Traps for precision measurement

Electrostatic trap (Ioffe-Pritchard) for neutrals

Force = \(\text{grad (}|E| \ d(E)|) \)

Weak, for atoms.
Strongish, for molecules.
Traps for precision measurement

Electrostatic trap (Ioffe-Pritchard) for neutrals

Force = \(\text{grad} (|E| \ d(E)) \)

Weak, for atoms.
Strongish, for molecules.
Field insensitive transitions exist.
Neutron-in-a-box (literally)
B₀, E₀, point up out of the screen

Neutron motion partially transforms strong electric field into B-field.

Enclosed area of neutron trajectory means enclosed area of B-vector in time. A shift in phase between \(m = 1/2 \) and \(m = -1/2 \) levels!

Go back to this case: No dirt (no spatial gradient in B) means no systematic. But, what about dephasing?
B_0, E_0, point up out of the screen

Neutron motion partially strong electric field into B-field.

Thermal distribution of trajectories means this effect as no net sign.

Enclosed area of neutron trajectory means enclosed area of B-vector in time. A shift in phase between $m=1/2$ and $m=-1/2$ levels!

Go back to this case: No dirt (no spatial gradient in B) means no systematic. But, what about dephasing?
B_0, E_0, point up out of the screen

Neutron motion partially strong electric field into B-field.

Thermal distribution of trajectories means this effect as no net sign.

Enclosed area of neutron trajectory means enclosed area of B-vector in time. A shift in phase between $m=1/2$ and $m=-1/2$ levels!

OK for a box. What about trapped particles!?
Dephasing due Berry’s phase arising from random motion in inhomogenous trapping fields.

Potentially big problem, except if atoms/molecules are “cold enough”.
Traps for precision measurement

Electrostatic trap (Ioffe-Pritchard) for neutrals

Force = \nabla \left(|E| \, d(E) \right)

Weak, for atoms.
Strongish, for molecules.
Field insensitive transitions exist.
Traps for precision measurement

Optical dipole traps for neutrals

Force = $\nabla \text{(Intensity } P(I, \nu))$

In general, polarization dependent m-level shifts.
Traps for precision measurement

Paul trap for ions

Force = $\mathbf{E} \ e$ (big) Field can be much more spatially homogenous.

At trap center $\langle \mathbf{E} \rangle = 0$

But you can have a rotating bias field.

Symmetry arguments constrain systematics.
Traps for precision measurement

Eric’s Tips for Better Precision Measurement with Atoms and Molecules (and with other things)
Eric’s Tips for Better Precision Measurement with Atoms and Molecules (and other things)

1. In general, frequencies are the easiest thing to measure with precision. From mHz to EHz, you can get clocks stable to 10^{-14} or better, absolute accuracy to 10^{-13}. Take advantage! Try to turn the quantity you want to measure into a frequency.

a. Voltage: Josephson junction oscillation frequency.
b. Magnetic field: Zeeman splitting
c. Electric field: Stark shift.
d. optical intensity: ac Stark shift.
e. mass: cyclotron frequency
f. capacitance: resonance of LC circuit.
g. distance: resonance of a fabry-perot laser cavity.
h. force: ???
i. etc
Eric’s Tips for Better Precision Measurement with Atoms and Molecules (and other things)

2. D.C is where precision measurements go to die. Get as far away as you can!

Example. Lens-Thiring effect
Eric’s Tips for Better Precision Measurement with Atoms and Molecules (and other things)

3. If you want to measure a very small oscillating field, use heterodyne detection (as e.g. alternative to “photon counters.”)
Eric’s Tips for Better Precision Measurement with Atoms and Molecules (and other things)

3. If you want to measure a very small oscillating field, use heterodyne detection (as e.g. alternative to “photon counters.”)

Corollary: for quantum mechanical effects, add an “offset amplitude.”
Eric’s Tips for Better Precision Measurement with Atoms and Molecules (and other things)

4. Experimenters (and numerical experimenters): if you want to understand if some imperfection in your experiment is causing you problems, don’t make it better: make it worse!
Eric’s Tips for Better Precision Measurement with Atoms and Molecules (and other things)

5. You are going to die someday.
Eric’s Tips for Better Precision Measurement with Atoms and Molecules (and other things)

5. You are going to die someday. Stop smoking.
Eric’s Tips for Better Precision Measurement with Atoms and Molecules (and other things)

5. You are going to die someday. Stop smoking. Wear a seatbelt.
Eric’s Tips for Better Precision Measurement with Atoms and Molecules (and other things)

5. You are going to die someday. Stop smoking. Wear a seatbelt. Most important:
Eric’s Tips for Better Precision Measurement with Atoms and Molecules (and other things)

5. You are going to die someday. Stop smoking. Wear a seatbelt. Most important: Have a sensible data collection strategy.
Eric’s Tips for Better Precision Measurement with Atoms and Molecules (and other things)

5. You are going to die someday. Stop smoking. Wear a seatbelt. Most important:
Have a sensible data collection strategy.
It’s like wearing a seatbelt in the lab!
Eric’s Tips for Better Precision Measurement with Atoms and Molecules (and with other things)

6. What field provides your quantization axis?
Eric’s Tips for Better Precision Measurement with Atoms and Molecules (and with other things)

7. \(h\text{-bar} \) is a small number. But \(N_A \) is a big number!

Is \(N_A \ h\text{-bar} < 1? \)

Is \(N_A^2 \ h\text{-bar} < 1? \)
“The Casimir-Polder Force”
The force experienced by an atom near a surface, arising from spatial patterns in the fluctuations in the E&M field. With implications for anomalous gravity stuff.

John Obrecht
Rob Wild [Dave Harber]
Thanks, Colleen Gillespie, Giacomo Roati
NSF, NIST

Other experiments:
Hinds
Westbrook/Aspect
Vuletic, Shimizu, Ketterle...

Theory: London, Casimir, Polder, Lifshitz
More recently, Eberlein, Henkel

We acknowledge “I Tre Trentini”:
Mauro Antezza, Lev Pitaevskii
and Sandro Stringari
Casimir-Polder force near a dielectric surface

Multiple dielectric surfaces

MOT chamber
2 D velocity/density distributions

~ 400 nK
~ 200 nK
~ 50 nK

0.2 mm
Use an atom.

Electric field F

Energy = $-\alpha F^2$

Average F^2

“?”

Position
Use an atom.

Electric field F

Energy $= -\alpha F^2$

Glass Sheet

Average F^2

Position
Electric field F

Energy = $-\alpha F^2$

Every “color” has $\frac{1}{2} h\nu$ of electric field energy. Add them up!
Energy = $-\alpha F^2$

Electric field F

Uh-oh. Experiments say Casimir-Polder force *pulls atom in*, doesn't push atom out!
We have neglected evanescent waves, and incident waves at grazing incidence!

Impinging thermal (and quantum) radiation at normal incidence contributes with opposite sign to force compared to thermal evanescent waves.
Summary of power-law dependencies.

\[
\begin{align*}
\ln(-U) & \quad 1/z^3_{\text{vdW}} \\
\ln(z) & \quad 1/z^4_{C-P} \\
& \quad T/z^3_{C-P, \text{ finite } T}
\end{align*}
\]
Summary of power-law dependencies.

\[\ln(-U) \]

\[\frac{1}{z^3} \text{ vdW} \]

\[\frac{1}{z^4} \text{ C-P} \]

\[\frac{T}{z^3} \text{ C-P, finite T} \]

\[\frac{(T_{\sub}^2 - T_{\env}^2)}{z^2} \text{ New from Trento! T nonequilibrated} \]
Summary of power-law dependencies.

\[\ln(-U) \]

\[\ln(z) \]

\[\frac{1}{z^3} \quad \text{vdW} \]

\[\frac{1}{z^4} \quad \text{C-P,} \]

\[\frac{T}{z^3} \quad \text{C-P, finite } T \]

\[\frac{T^2}{z^2} \]

New from Trento!

T nonequilibrated

JILA experiments
Measuring atom-surface forces

Use trapped BEC as a mechanical oscillator

Measure changes in dipole oscillation frequency

Express trap frequency changes as normalized frequency shifts:

\[\frac{\omega_x - \omega}{\omega_x} \approx - \frac{1}{2\omega_x^2m} \frac{d^2U}{dx^2} \]

Negative curvature
attractive potential
Trap frequency decrease

Unperturbed trap, \(\omega_x \)

Oscillating BEC

Move near the surface

Modified trap, \(\omega \)

Surface

Move near the surface
Actual experiment cycle

Create BEC → Move near surface → Excite dipole mode → Wait, image, repeat

Dipole mode oscillation:
- Damping time \(\sim 10 \text{ seconds} \)
- Frequency resolution \(\sim 10 \text{ mHz} \)
- Normalized frequency shift resolution \(\sim 4 \times 10^{-5} \)

Expanded position (\(\mu \text{m} \))

\[\begin{align*}
\text{Oscillation Time (ms)} & \\
0 & 2 & 4 & 1002 & 1004 & 1006 \\
\text{Freq} & = 228.14 \text{ Hz} \\
\end{align*} \]
Our first Casimir-Polder measurement attempt:

Normalized frequency shift (10^{-4}) vs. trap center to surface (μm)

- Silicon
- Titanium

Electric fields from alkali adsorbates
Our first Casimir-Polder measurement attempt:
Electric fields from alkali adsorbates

Our first Casimir-Polder measurement attempt:
Systematics

How can we put limits on forces from electric and magnetic surface contaminants?

Electric or magnetic surface contaminants are typically localized

→ affect only part of BEC

Detect spatially inhomogeneous forces by measuring the normalized frequency shift along BEC

~6 μm

~170 μm
FFS across BEC

Normal BEC oscillation:

BEC oscillation near “contaminated” surface region:

Analyze the oscillation frequency along the BEC:

If spatial variation > statistical uncertainty → Significant spatial inhomogeneity

Spatial variation of the oscillation frequency provides limit on spatially inhomogeneous forces
Uniform fields

What about electric & magnetic fields uniform across BEC?

To detect electric fields:
• Use our electric field measurement techniques

To detect magnetic fields:
• Magnetic distortions modify the trapping potential in multiple directions
• Measure trap frequencies in directions parallel to surface
• Detect center-of-mass position deviations
- Data from two different surface locations
- Error bars include statistical and systematic error
- Our data is in agreement with C-P force
- Resolution is not sufficient to discern the temperature correction

Our measurement

Casimir-Polder force from fused silica surface:

- vdW
- $T = 600 \, \text{K}$
- $T = 300 \, \text{K}$
- $T = 0 \, \text{K}$

Normalized frequency shift (10^{-4})

Trap-center to surface distance (μm)
Room Temperature Environment

Surface Temperature:

- 310K
- 474K
- 605K

Normalized Frequency Shift (10^{-4}) vs. Trap Center to Surface Distance (μm)
Room Temperature Environment
Surface Temperature:

- 310K
- 474K
- 605K

Normalized Frequency Shift (10^{-4})

Trap Center - Surface Distance (μm)
Yukawa-type forces?:

- Exotic force limits from our C-P measurement

\[U = \int_{\text{Substrate}} \frac{Gm_{\text{Rb}} \rho_{\text{substrate}} \, dV}{r} \left(1 + \alpha e^{-r/\lambda} \right) \]
The absence of forces in addition to C-P force allows us to obtain limits from our data:

Our data with $T = 300$ K

C-P force

Subtract off C-P force

Residual frequency shifts

Use residuals to obtain a limit on the presence of additional forces

Residuals to the C-P force
The *absence* of forces in addition to C-P force allows us to obtain limits from our data:

Our data with $T = 300$ K

C-P force

Subtract off C-P force

Residual shifts

Use residuals to obtain a limit on the presence of additional forces

Residuals to the C-P force

Trial value of λ and α
The absence of forces in addition to C-P force allows us to obtain limits from our data:

Our data with $T = 300$ K
C-P force

Subtract off C-P force
Residual shifts

Use residuals to obtain a limit on the presence of additional forces

Smaller trial value of λ

Residuals to the C-P force
\[U = \int_V \frac{Gm\rho \, dV}{r} \left(1 + \alpha e^{-r/\lambda}\right) \]

- Very different type of measurement (atom-bulk vs. bulk-bulk)
- Our experiment does not* reach the current best limits in 0.3-10 μm range
- Experimental modifications could improve sensitivity by over an order of magnitude

Current limits on forces of this type:

![Graph showing current limits on forces of this type with various regions excluded by experiment and the line for This experiment.

Limits on exotic forces

This way to UW
\[U = \int \frac{Gm \rho \, dV}{r} \left(1 + \alpha e^{-r/\lambda} \right) \]

- Very different type of measurement (atom-bulk vs. bulk-bulk)
- Our experiment does not* reach the current best limits in 0.3-10 \(\mu \)m range
- Experimental modifications could improve sensitivity by over an order of magnitude

Current limits on forces of this type:

\[\text{Casimir-Polder force on Atom} \]

\[\alpha = 1 \]

This way to UW

\(\alpha = 1 \)
Trento guys say by tinkering with temperature of “far away walls of experiment” relative to temperature of substrate, can change *sign* of total C-P force, make it repulsive.
Fixed distance to substrate, 7.5 microns

- Non-Equilibrium: $T_{ENV} = 310K$
- Equilibrium: $T_{SURF} = T_{ENV}$
- Casimir - Polder: $T_{SURF} = T_{ENV} = 0K$

Graph showing the relationship between FFS and Surface Temperature (K) with points indicating data.
Q1:
Why hasn't the gravity from the energy of the zero-point fluctuations of fields imploded the universe?

Q2:
And caused us all to die?

Q3:
Excrutiatingly painful deaths?

A: No clue. But maybe now we understand why the Casimir-Polder force between an atom and a surface is (usually) attractive, not repulsive.
Temperature Measurement

* Thermo-interferometer (side experiment):

- Substrate
- Reflective gold layers

Vortex Laser (780 nm)

* For 1mm thick fused silica glass:
 \[\sim 30 \, ^\circ\text{C} / \text{fringe} \]
Predicted FFS from C-P force

Theory:
Antezza et al.

BEC width and oscillation amplitude accounted for in theory.

Trento guys say by tinkering with temperature of the substrate relative to the “far away walls of experiment” can remove the cancellation of forces.
Where are we going?

Heat environment, cool substrate, change sign of force?

Try substrate with exotic dielectric properties, resonances.

Try spatially textured substrate.
Express trap frequency changes as normalized frequency shifts:

\[
\frac{\omega_x - \omega}{\omega_x} \approx - \frac{1}{2\omega_x^2 m} \frac{d^2 U}{dx^2}
\]

Negative curvature attractive potential
Trap frequency decrease

Unperturbed trap, \(\omega_x \)

Oscillating BEC

Move near the surface

Modified trap, \(\omega \)

Surface
Trento guys say by tinkering with temperature of the substrate relative to the “far away walls of experiment” can remove the cancellation of forces.