BLACK HOLES AND QUBITS

M. J. Duff

Physics Department Imperial College London

19th September 2008 MCTP, Michigan

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Abstract

• We establish a correspondence between the entanglement measures of qubits in quantum information theory and the Bekenstein-Hawking entropy of black holes in string theory.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- M. J. Duff, "String triality, black hole entropy and Cayley's hyperdeterminant," Phys. Rev. D 76, 025017 (2007) [arXiv:hep-th/0601134]
- R. Kallosh and A. Linde, "Strings, black holes, and quantum information," Phys. Rev. D 73, 104033 (2006) [arXiv:hep-th/0602061].
- P. Levay, "Stringy black holes and the geometry of entanglement," Phys. Rev. D 74, 024030 (2006) [arXiv:hep-th/0603136].
- M. J. Duff and S. Ferrara, "E₇ and the tripartite entanglement of seven qubits," Phys. Rev. D 76, 025018 (2007) [arXiv:quant-ph/0609227].
- P. Levay, "Strings, black holes, the tripartite entanglement of seven qubits and the Fano plane," Phys. Rev. D 75, 024024 (2007) [arXiv:hep-th/0610314].

(ロ) (同) (三) (三) (三) (○) (○)

- M. J. Duff and S. Ferrara, "*E*₆ and the bipartite entanglement of three qutrits," Phys. Rev. D 76, 124023 (2007) [arXiv:0704.0507 [hep-th]].
- P. Levay, "A three-qubit interpretation of BPS and non-BPS STU black holes," Phys. Rev. D 76, 106011 (2007) [arXiv:0708.2799 [hep-th]].
- L. Borsten, D. Dahanayake, M. J. Duff, W. Rubens and H. Ebrahim, "Wrapped branes as qubits," Phys.Rev.Lett.100:251602,2008 arXiv:0802.0840 [hep-th].
- P. Levay, M. Saniga and P. Vrana, "Three-Qubit Operators, the Split Cayley Hexagon of Order Two and Black Holes," arXiv:0808.3849 [quant-ph].

Black holes and entanglement

1) BLACK HOLES AND ENTANGLEMENT

|▲□▶▲圖▶▲≣▶▲≣▶ = 三 のへで

BH/qubit correspondence

- Quantum entanglement lies at the heart of quantum information theory, with applications to quantum computing, teleportation, cryptography and communication. In the apparently separate world of quantum gravity, the Bekenstein-Hawking entropy of black holes has also occupied center stage.
- Despite their apparent differences, recent work has established a correspondence between the tripartite entanglement measure of three qubits and the macroscopic entropy of the four-dimensional 8-charge *STU* black hole of N = 2 supergravity.

BH/qubit correspondence

 The measure of tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle τ_{ABC}, and the entropy S of the 8-charge STU black hole of supergravity are related by:

$${f S}=rac{\pi}{2}\sqrt{ au_{ABC}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Duff: hep-th/0601134

Further developments

• Further papers have written a more complete dictionary, which translates a variety of phenomena in one language to those in the other:

(日) (日) (日) (日) (日) (日) (日)

 For example, one can relate the classification of three-qubit entanglements to the classification of supersymmetric black holes as in the following table:

Table

Class	S _A	S_B	S_C	Det a	Black hole	Susy
A-B-C	0	0	0	0	small	1/2
A-BC	0	> 0	> 0	0	small	1/4
B-CA	> 0	0	> 0	0	small	1/4
C-AB	> 0	> 0	0	0	small	1/4
W	> 0	> 0	> 0	0	small	1/8
GHZ	> 0	> 0	> 0	< 0	large	1/8
GHZ	> 0	> 0	> 0	> 0	large	0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Table: Classification of three-qubit entanglements and their corresponding D = 4 black holes.

Further developments continued

• The attractor mechanism on the black hole side is related to optimal local distillation protocols on the QI side; the supersymmetric and non-supersymmetric cases corresponding to the suppression or non-suppression of bit-flip errors.

(日) (日) (日) (日) (日) (日) (日)

Abstract

- There is also quantum information theoretic interpretation of the 56 charge N = 8 black hole in terms of a Hilbert space consisting of seven copies of the three-qubit Hilbert space.
- It relies on the decomposition E₇₍₇₎ ⊃ [SL(2)]⁷ and admits the interpretation, via the Fano plane, of a tripartite entanglement of seven qubits, with the entanglement measure given by Cartan's quartic E₇₍₇₎ invariant.
- Since the Fano plane provides the multiplication table of the octonions, this means that the octonions, often written off as a lost cause in physics (Penrose, Streater), may actually be testable in the laboratory.

Microscopic origin

- Nevertheless, we still do not know whether there are any physical reasons underlying these mathematical coincidences.
- With this in mind, we also turn our attention to connecting the qubits to the *microscopic* origin of the black hole entropy.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Further developments continued

 We consider the configurations of intersecting D3-branes, whose wrapping around the six compact dimensions *T*⁶ provides the microscopic string-theoretic interpretation of the charges, and associate the three-qubit basis vectors |*ABC*⟩, (*A*, *B*, *C* = 0 or 1) with the corresponding 8 wrapping cycles.

(日) (日) (日) (日) (日) (日) (日)

To wrap or not to wrap: that is the qubit

Further developments continued

 In particular, we relate a well-known fact of quantum information theory, that the most general real three-qubit state can be parameterized by four real numbers and an angle, to a well-known fact of string theory, that the most general *STU* black hole can be described by four D3-branes intersecting at an angle.

(日) (日) (日) (日) (日) (日) (日)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Qubits

2) QUBITS

Two qubits

 The two qubit system Alice and Bob (where A, B = 0, 1) is described by the state

$$egin{aligned} |\Psi
angle &= a_{AB} |AB
angle \ &= a_{00} |00
angle + a_{01} |01
angle + a_{10} |10
angle + a_{11} |11
angle. \end{aligned}$$

The bipartite entanglement of Alice and Bob is given by

$$\tau_{AB} = 4 |\det \rho_A| = 4 |\det a_{AB}|^2,$$

where

$$\rho_{A} = Tr_{B} |\Psi\rangle \langle \Psi|$$

 It is invariant under SL(2)_A × SL(2)_B, with a_{AB} transforming as a (2, 2), and under a discrete duality that interchanges A and B.

(日) (日) (日) (日) (日) (日) (日)

Two qubits

Example, separable state:

$$ert \Psi
angle = rac{1}{\sqrt{2}} ert 00
angle + rac{1}{\sqrt{2}} ert 01
angle$$
 $au_{AB} = 0$

• Example, Bell state:

$$|\Psi
angle = rac{1}{\sqrt{2}}|00
angle + rac{1}{\sqrt{2}}|11
angle$$
 $au_{AB} = 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

EPR "paradox"

Three qubits

The three qubit system Alice, Bob and Charlie (where A, B, C = 0, 1) is described by the state

$$\begin{split} |\Psi\rangle &= a_{ABC} |ABC\rangle \\ &= a_{000} |000\rangle + a_{001} |001\rangle + a_{010} |010\rangle + a_{011} |011\rangle \\ &+ a_{100} |100\rangle + a_{101} |101\rangle + a_{110} |110\rangle + a_{111} |111\rangle. \end{split}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Cayley's hyperdeterminant

The tripartite entanglement of Alice, Bob and Charlie is given by

 $\tau_{ABC} = 4 |\text{Det } a_{ABC}|,$

Coffman et al: quant-ph/9907047

• Det *a_{ABC}* is Cayley's hyperdeterminant

Det
$$a_{ABC} = -\frac{1}{2} \varepsilon^{A_1 A_2} \varepsilon^{B_1 B_2} \varepsilon^{C_1 C_4} \varepsilon^{C_2 C_3} \varepsilon^{A_3 A_4} \varepsilon^{B_3 B_4}$$

 $\cdot a_{A_1 B_1 C_1} a_{A_2 B_2 C_2} a_{A_3 B_3 C_3} a_{A_4 B_4 C_4}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Symmetry

Explicitly

Det $a_{ABC} =$ $a_{000}^2 a_{111}^2 + a_{001}^2 a_{110}^2 + a_{010}^2 a_{101}^2 + a_{100}^2 a_{011}^2$ $- 2(a_{000}a_{001}a_{110}a_{111} + a_{000}a_{010}a_{101}a_{111} + a_{000}a_{010}a_{101}a_{110} + a_{001}a_{010}a_{011}a_{110} + a_{010}a_{100}a_{011}a_{101})$ $+ a_{001}a_{100}a_{011}a_{110} + a_{010}a_{100}a_{011}a_{101})$ $+ 4(a_{000}a_{011}a_{101}a_{110} + a_{001}a_{010}a_{100}a_{111}).$

It is invariant under SL(2)_A × SL(2)_B × SL(2)_C, with a_{ABC} transforming as a (2, 2, 2), and under a discrete triality that interchanges A, B and C.

Local entropy

Another useful quantity is the local entropy S_A , which is a measure of how entangled A is with the pair BC:

$$S_A = 4 \det \rho_A \equiv \tau_{A(BC)}$$

where ρ_A is the reduced density matrix

$$\rho_{\mathsf{A}} = \mathrm{Tr}_{\mathsf{BC}} |\Psi\rangle \langle \Psi|,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

and with similar formulae for B and C.

- 2-tangles τ_{AB}, τ_{BC}, and τ_{CA} give bipartite entanglements between pairs in 3-qubit system
- 3-tangle τ_{ABC} is a measure of the genuine 3-way entanglement:

$$\tau_{ABC} = \tau_{A(BC)} - \tau_{AB} - \tau_{CA}$$

Entanglement classes

Entanglement classes								
Class	$ au_{A(BC)}$	$ au_{B(AC)}$	$ au_{(AB)C}$	$ au_{ABC}$				
A-B-C	0	0	0	0				
A-BC	0	> 0	> 0	0				
B-CA	> 0	0	> 0	0				
C-AB	> 0	> 0	0	0				
W	> 0	> 0	> 0	0				
GHZ	> 0	> 0	> 0	eq 0				

Complex qubit parameters

• Two states of a composite quantum system are regarded as equivalent if they are related by a unitary transformation which factorizes into separate transformations on the component parts, so-called *local unitaries*. The Hilbert space decomposes into equivalence classes, or *orbits* under the action of the group of local unitaries.

(日) (日) (日) (日) (日) (日) (日)

Complex qubit parameters

• For unnormalized three-qubit states, the number of parameters[Linden and Popescu: quant-ph/9711016] needed to describe inequivalent states or, what amounts to the same thing, the number of algebraically independent invariants [Sudbery: quant-ph/0001116] is given by the dimension of the space of orbits

$$\frac{\mathbb{C}^2 \times \mathbb{C}^2 \times \mathbb{C}^2}{U(1) \times SU(2) \times SU(2) \times SU(2) \times SU(2)}$$

(日) (日) (日) (日) (日) (日) (日)

namely, 16 - 10 = 6.

Real qubit parameters

- However, for subsequent comparison with the STU black hole [Duff, Liu and Rahmfeld: hep-th/9508094; Behrndt et al: hep-th/9608059], we restrict our attention to states with real coefficients a_{ABC}.
- In this case, one can show that there are five algebraically independent invariants: Det a, S_A , S_B , S_C and the norm $\langle \Psi | \Psi \rangle$, corresponding to the dimension of

$$\frac{\mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2}{SO(2) \times SO(2) \times SO(2)}$$

(日) (日) (日) (日) (日) (日) (日)

namely, 8 - 3 = 5.

5 parameter state

- Hence, the most general real three-qubit state can be described by just five parameters. Acin et al: quant-ph/0009107
- It may conveniently be written

$$\begin{split} |\Psi\rangle &= -N_3 \cos^2\theta |001\rangle - N_2 |010\rangle + N_3 \sin\theta \cos\theta |011\rangle - \\ N_1 |100\rangle - N_3 \sin\theta \cos\theta |101\rangle + (N_0 + N_3 \sin^2\theta) |111\rangle. \end{split}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Representatives

Representatives from each class are:

• Class A-B-C (product states):

 $\textit{N}_{0}|111\rangle.$

• Classes A-BC, (bipartite entanglement):

 $\textit{N}_{0}|111\rangle-\textit{N}_{1}|100\rangle,$

and similarly B-CA, C-AB.

• Class W (maximizes bipartite entanglement):

 $-N_1|100
angle - N_2|010
angle - N_3|001
angle.$

• Class GHZ (genuine tripartite entanglement):

 $N_0|111
angle - N_1|100
angle - N_2|010
angle - N_3|001
angle.$

(ロ) (同) (三) (三) (三) (○) (○)

STU black holes

3) STU BLACK HOLES

▲□▶▲圖▶▲≧▶▲≧▶ 差 のQの

The *STU* model consists of N = 2 supergravity coupled to three vector multiplets interacting through the special Kahler manifold $[SL(2)/SO(2)]^3$:

$$\begin{split} \mathcal{S}_{\mathrm{STU}} &= \frac{1}{16\pi G} \int \mathrm{e}^{-\eta} \bigg[\\ & \left(R + \frac{1}{4} \Big(\mathrm{Tr} \left[\partial \mathcal{M}_T^{-1} \partial \mathcal{M}_T \right] + \mathrm{Tr} \left[\partial \mathcal{M}_U^{-1} \partial \mathcal{M}_U \right] \Big) \Big) \star 1 \\ & + \star \mathrm{d}\eta \wedge \mathrm{d}\eta - \frac{1}{2} \star \mathcal{H}_{[3]} \wedge \mathcal{H}_{[3]} - \frac{1}{2} \star \mathcal{F}_{S[2]}^{\mathsf{T}} \wedge \left(\mathcal{M}_T \otimes \mathcal{M}_U \right) \mathcal{F}_{S[2]} \bigg] \\ & \mathcal{M}_S = \frac{1}{\Im(S)} \begin{pmatrix} 1 & \Re(S) \\ \Re(S) & |S|^2 \end{pmatrix} \quad \text{etc.} \end{split}$$

STU parameters

• A general static spherically symmetric black hole solution depends on 8 charges denoted $q_0, q_1, q_2, q_3, p^0, p^1, p^2, p^3$, but the generating solution depends on just 8 - 3 = 5 parameters [Cvetic and Youm: hep-th/9512127; Cvetic and Hull: hep-th/9606193], after fixing the action of the isotropy subgroup $[SO(2)]^3$.

(日) (日) (日) (日) (日) (日) (日)

Black hole entropy

The STU black hole entropy is a complicated function of the 8 charges :

$$(S/\pi)^2 = -(p \cdot q)^2 + 4 \Big[(p^1q_1)(p^2q_2) + (p^1q_1)(p^3q_3) + (p^3q_3)(p^2q_2) + q_0p^1p^2p^2 - p^0q_1q_2q_3 \Big]$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Behrndt et al: hep-th/9608059

Qubit correspondence

• By identifying the 8 charges with the 8 components of the three-qubit hypermatrix *a*_{ABC},

$$\begin{bmatrix} p^0 \\ p^1 \\ p^2 \\ p^3 \\ q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} a_{000} \\ -a_{001} \\ -a_{010} \\ -a_{100} \\ a_{111} \\ a_{110} \\ a_{101} \\ a_{011} \end{bmatrix}$$

one finds that the black hole entropy is related to the 3-tangle as in

$$S = \pi \sqrt{|\text{Det } a_{ABC}|} = \frac{\pi}{2} \sqrt{\tau_{ABC}}$$

Duff: hep-th/0601134

Embeddings

The solution can usefully be embedded in

- N = 4 supergravity with symmetry $SL(2) \times SO(6, 22)$, the low-energy limit of the heterotic string compactified on T^6 , where the charges transform as a (2, 28).
- N = 8 supergravity with symmetry $E_{7(7)}$, the low-energy limit of the Type IIA or Type IIB strings, compactified on T^6 or M-theory on T^7 , where the charges transform as a 56.

Remarkably, the same five parameters suffice to describe these 56-charge black holes.

(日) (日) (日) (日) (日) (日) (日)

Table

Class	S _A	S_B	S_C	Det a	Black hole	Susy
A-B-C	0	0	0	0	small	1/2
A-BC	0	> 0	> 0	0	small	1/4
B-CA	> 0	0	> 0	0	small	1/4
C-AB	> 0	> 0	0	0	small	1/4
W	> 0	> 0	> 0	0	small	1/8
GHZ	> 0	> 0	> 0	< 0	large	1/8
GHZ	> 0	> 0	> 0	> 0	large	0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Table: Classification of three-qubit entanglements and their corresponding D = 4 black holes.

N = 8 CASE

4) N = 8 CASE

There is, in fact, a quantum information theoretic interpretation of the 56 charge N = 8 black hole in terms of a Hilbert space consisting of seven copies of the three-qubit Hilbert space. It relies on the decomposition E₇₍₇₎ ⊃ [SL(2)]⁷

(日) (日) (日) (日) (日) (日) (日)

Decomposition of the 56

Under

$$E_{7(7)} \supset$$

 $SL(2)_A \times SL(2)_B \times SL(2)_C \times SL(2)_D \times SL(2)_E \times SL(2)_F \times SL(2)_G$

the 56 decomposes as

Seven qubits

 It admits the interpretation of a tripartite entanglement of seven qubits, Alice, Bob, Charlie, Daisy, Emma, Fred and George:

$$egin{aligned} & a_{ABD} | ABD
angle \ & + b_{BCE} | BCE
angle \ & + c_{CDF} | CDF
angle \ & + d_{DEG} | DEG
angle \ & + e_{EFA} | EFA
angle \ & + f_{FGB} | FGB
angle \ & + g_{GAC} | GAC
angle \end{aligned}$$

(ロ) (同) (三) (三) (三) (○) (○)

The following diagram may help illustrate the tripartite entanglement between the 7 qubits

E7 Entanglement

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Cartan invariant

• The entanglement measure given by Cartan's quartic $E_{7(7)}$ invariant.

$$I_4 = -\text{Tr}((xy)^2) + \frac{1}{4}\text{Tr}(xy)^2 - 4(\text{Pf}(x) + \text{Pf}(y))$$

 x^{IJ} and y_{IJ} are again 8 × 8 antisymmetric charge matrices Duff and Ferrara: quant-ph/0609227 Levay: hep-th/0610314

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 x^{IJ}

$$\begin{pmatrix} 0 & -a_{111} & -b_{111} & -c_{111} & -d_{111} & -e_{111} & -f_{111} & -g_{111} \\ a_{111} & 0 & f_{001} & d_{100} & -c_{010} & g_{010} & -b_{100} & -e_{001} \\ b_{111} & -f_{001} & 0 & g_{001} & e_{100} & -d_{010} & a_{010} & -c_{100} \\ c_{111} & -d_{100} & -g_{001} & 0 & a_{001} & f_{100} & -e_{010} & b_{010} \\ d_{111} & c_{010} & -e_{100} & -a_{001} & 0 & b_{001} & g_{100} & -f_{010} \\ e_{111} & -g_{010} & d_{010} & -f_{100} & -b_{001} & 0 & c_{001} & a_{100} \\ f_{111} & b_{100} & -a_{010} & e_{010} & -g_{100} & -c_{001} & 0 & d_{001} \\ g_{111} & e_{001} & c_{100} & -b_{010} & f_{010} & -a_{100} & -d_{001} & 0 \end{pmatrix}$$

x^{IJ} -

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

УIJ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Schematically,

$$l_4 = a^4 + b^4 + c^4 + d^4 + e^4 + f^4 + g^4$$

+ $2\Big[a^2b^2 + a^2c^2 + a^2d^2 + a^2e^2 + a^2f^2 + a^2g^2$
+ $b^2c^2 + b^2d^2 + b^2e^2 + b^2f^2 + b^2g^2$
+ $c^2d^2 + c^2e^2 + c^2f^2 + c^2g^2$
+ $d^2e^2 + d^2f^2 + d^2g^2$
+ $e^2f^2 + e^2g^2$
+ $f^2g^2\Big]$

+ 8 [abce + bcdf + cdeg + defa + efgb + fgac + gabd],

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where a^4 is Cayley's hyperdeterminant etc

N = 8 case

• Remarkably, because the generating solution depends on the same five parameters as the *STU* model, its classification of states will exactly parallel that of the usual three qubits. Indeed, the Cartan invariant reduces to Cayley's hyperdeterminant in a canonical basis.

(日) (日) (日) (日) (日) (日) (日)

Kallosh and Linde: hep-th/0602061

Fano plane

An alternative description is provided by the Fano plane which has seven points, representing the seven qubits, and seven lines (the circle counts as a line) with three points on every line, representing the tripartite entanglement, and three lines through every point.

Octonions

The Fano plane also provides the multiplication for the imaginary octonions:

	Α	В	С	D	Е	F	G	
A		D	G	-B	F	-E	-C	
В	-D		Е	Α	-C	G	-F	
С	-G	-E		F	В	-D	Α	
D	В	-A	-F		G	С	-E	
E	-F	С	-B	-G		Α	D	
F	Е	-G	D	-C	-A		В	
G	С	F	-A	E	-D	-B		

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Wrapped D3-branes and 3 qubits

5) WRAPPED D3-BRANES AND 3 QUBITS

| ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ● の Q @

Microscopic analysis

- This is not unique since there are many ways of embedding the *STU* model in string/M-theory, but a useful one from our point of view is that of four D3-branes wrapping the (579), (568), (478), (469) cycles of *T*⁶ with wrapping numbers *N*₀, *N*₁, *N*₂, *N*₃ and intersecting over a string. Klebanov and Tseytlin: hep-th/9604166
- The wrapped circles are denoted by a cross and the unwrapped circles by a nought as shown in the following table:

(日) (日) (日) (日) (日) (日) (日)

4	5	6	7	8	9	macro charges	micro charges	ABC angle
x	0	x	0	x	0	p ⁰	0	000 angle
о	х	o	х	x	0	<i>q</i> 1	0	110⟩
о	х	x	0	0	х	<i>q</i> ₂	$-N_3\sin\theta\cos\theta$	$ 101\rangle$
x	0	0	х	0	х	<i>q</i> 3	N_3 sin θ cos θ	$ 011\rangle$
о	х	o	х	o	х	q_0	$N_0 + N_3 \sin^2 \theta$	$ 111\rangle$
x	0	x	0	o	x	$-p^1$	$-N_3\cos^2\theta$	001 angle
x	0	0	х	x	0	- <i>p</i> ²	- <i>N</i> ₂	010〉
o	х	x	0	x	0	- <i>p</i> ³	- <i>N</i> 1	100>

Table: Three qubit interpretation of the 8-charge D = 4 black hole from four D3-branes wrapping around the lower four cycles of T^6 with wrapping numbers N_0 , N_1 , N_2 , N_3 .

Fifth parameter

- The fifth parameter θ is obtained by allowing the N₃ brane to intersect at an angle which induces additional effective charges on the (579), (569), (479) cycles [Balasubramanian and Larsen: hep-th/9704143; Balasubramanian: hep-th/9712215; Bertolini and Trigiante: hep-th/0002191].
- The microscopic calculation of the entropy consists of taking the logarithm of the number of microstates and yields the same result as the macroscopic one [Bertolini and Trigiante: hep-th/0008201].

Qubit interpretation

- To make the black hole/qubit correspondence we associate the three T^2 with the $SL(2)_A \times SL(2)_B \times SL(2)_C$ of the three qubits Alice, Bob, and Charlie. The 8 different cycles then yield 8 different basis vectors $|ABC\rangle$ as in the last column of the Table, where $|0\rangle$ corresponds to xo and $|1\rangle$ to ox.
- We see immediately that we reproduce the five parameter three-qubit state |Ψ⟩:

$$\begin{split} |\Psi\rangle &= -N_3 \mathrm{cos}^2 \theta |001\rangle - N_2 |010\rangle + N_3 \mathrm{sin}\theta \mathrm{cos}\theta |011\rangle - \\ N_1 |100\rangle - N_3 \mathrm{sin}\theta \mathrm{cos}\theta |101\rangle + (N_0 + N_3 \mathrm{sin}^2\theta) |111\rangle. \end{split}$$

 Note from the Table that the GHZ state describes four D3-branes intersecting over a string, or groups of 4 wrapping cycles with just one cross in common.

IIA and IIB

Performing a T-duality transformation, one obtains a Type IIA interpretation with zero D6-branes, N₀ D0-branes, N₁, N₂, N₃ D4-branes plus effective D2-brane charges, where |0⟩ now corresponds to xx and |1⟩ to oo.

(日) (日) (日) (日) (日) (日) (日)

Wrapped D3-branes and 3 qubits

6) WRAPPED M2-BRANES AND 2 QUTRITS

|▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - の Q ()

Qutrit interpretation

- All this suggests that the analogy between D = 5 black holes and three-state systems (0 or 1 or 2), known as qutrits [Duff and Ferrara: 0704.0507 [hep-th]], should involve the choice of wrapping a brane around one of three circles in T^3 . This is indeed the case, with the number of qutrits being two.
- The two-qutrit system (where *A*, *B* = 0, 1, 2) is described by the state

$$|\Psi
angle=a_{AB}|AB
angle,$$

and the Hilbert space has dimension $3^2 = 9$.

2-tangle

• The bipartite entanglement of Alice and Bob is given by the 2-tangle

$$\tau_{AB} = 27 \det \rho_A = 27 |\det a_{AB}|^2,$$

where ρ_A is the reduced density matrix

$$\rho_{\mathbf{A}} = \mathrm{Tr}_{\mathbf{B}} |\Psi\rangle \langle \Psi|.$$

(日) (日) (日) (日) (日) (日) (日)

• The determinant is invariant under $SL(3)_A \times SL(3)_B$, with a_{AB} transforming as a (3,3), and under a discrete duality that interchanges A and B.

D = 5 black hole

- For subsequent comparison with the D = 5 black hole, we restrict our attention to unnormalized states with real coefficients a_{AB} .
- There are three algebraically independent invariants : *τ_{AB}*, *C*₂ (the sum of the squares of the absolute values of the minors of *ρ_{AB}*) and the norm (Ψ|Ψ), corresponding to the dimension of

$$rac{\mathbb{R}^3 imes\mathbb{R}^3}{SO(3) imes SO(3)}$$

(日) (日) (日) (日) (日) (日) (日)

namely, 9 - 6 = 3.

D = 5 black hole

 Hence, the most general two-qutrit state can be described by just three parameters, which may conveniently taken to be three real numbers N₀, N₁, N₂,.

$$|\Psi
angle = \mathit{N}_0|00
angle + \mathit{N}_1|11
angle + \mathit{N}_2|22
angle$$

 A classification of two-qutrit entanglements, depending on the rank of the density matrix, is given in the following table:

(日) (日) (日) (日) (日) (日) (日)

D = 5 table

Class	<i>C</i> ₂	$ au_{AB}$	Black hole	Susy
A-B	0	0	small	1/2
Rank 2 Bell	> 0	0	small	1/4
Rank 3 Bell	> 0	> 0	large	1/8

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Table: Classification of two-qutrit entanglements and their corresponding D = 5 black holes.

D = 5 black hole

- The 9-charge N = 2, D = 5 black hole may also be embedded in the N = 8 theory in different ways. The most convenient microscopic description is that of three M2-branes wrapping the (58), (69), (710) cycles of the T^6 compactification of D = 11 M-theory, with wrapping numbers N_0 , N_1 , N_2 and intersecting over a point [Papadopoulos and Townsend: hep-th/9603087; Klebanov and Tseytlin:hep-th/9604166].
- To make the black hole/qutrit correspondence we associate the two T³ with the SL(3)_A × SL(3)_B of the two qutrits Alice and Bob, where |0⟩ corresponds to xoo, |1⟩ to oxo and |2⟩ to oox. The 9 different cycles then yield the 9 different basis vectors |AB⟩ as in the last column of the following Table:

D = 5 table

5	6	7	8	9	10	macro charges	micro charges	AB angle
x	0	0	x	0	0	p ⁰	N ₀	00 angle
o	х	0	o	х	0	p ¹	N ₁	$ 11\rangle$
o	0	х	0	0	х	p ²	N ₂	$ 22\rangle$
x	0	0	0	х	0	p ³	0	$ 01\rangle$
o	х	0	0	0	х	p ⁴	0	12⟩
o	0	х	x	0	0	р ⁵	0	20 angle
x	0	0	0	0	х	p ⁶	0	$ 02\rangle$
o	х	0	x	0	0	p ⁷	0	$ 10\rangle$
o	0	х	0	х	0	<i>р</i> ⁸	0, 0, 0	<u> </u> 21)

990

 We see immediately that we reproduce the three parameter two-qutrit state |Ψ⟩:

$$|\Psi
angle = \mathit{N_0}|00
angle + \mathit{N_1}|11
angle + \mathit{N_2}|22
angle$$

 The black hole entropy, both macroscopic and microscopic, turns out to be given by the 2-tangle

$$S = 2\pi \sqrt{|\det a_{AB}|},$$

and the classification of the two-qutrit entanglements matches that of the black holes .

• Note that the non-vanishing cubic combinations appearing in det *a*_{AB} correspond to groups of 3 wrapping cycles with no crosses in common, i.e. that intersect over a point.

Embeddings

- There is, in fact, a quantum information theoretic interpretation of the 27 charge N = 8, D = 5 black hole in terms of a Hilbert space consisting of three copies of the two-qutrit Hilbert space. It relies on the decomposition $E_{6(6)} \supset [SL(3)]^3$ and admits the interpretation of a bipartite entanglement of three qutrits, with the entanglement measure given by Cartan's cubic $E_{6(6)}$ invariant. Duff and Ferrara: 0704.0507 [hep-th]
- Once again, however, because the generating solution depends on the same three parameters as the 9-charge model, its classification of states will exactly parallel that of the usual two qutrits. Indeed, the Cartan invariant reduces to det a_{AB} in a canonical basis.

Ferrara and Maldacena: hep-th/9706097

SUMMARY

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Summary

- Our Type IIB microscopic analysis of the D = 4 black hole has provided an explanation for the appearance of the qubit two-valuedness (0 or 1) that was lacking in the previous treatments: The brane can wrap one circle or the other in each T^2 .
- The number of qubits is three because of the number of extra dimensions is six.
- The five parameters of the real three-qubit state are seen to correspond to four D3-branes intersecting at an angle.

Summary

- Our M-theory analysis of the D = 5 black hole has provided an explanation for the appearance of the qutrit three-valuedness (0 or 1 or 2) that was lacking in the previous treatments: The brane can wrap one of the three circles in each T^3 .
- The number of qutrits is two because of the number of extra dimensions is six.
- The three parameters of the real two-qutrit state are seen to correspond to three intersecting M2-branes.

Summary

• It would be interesting to see whether we can now find an underlying physical justification

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ