Perspectives for Penning Trap Mass Measurements of Super Heavy Elements

- Introduction to Super Heavy Elements
- Production of SHE
- Mass determination of SHE
- Direct mass measurements for Z > 100 with SHIPTRAP
- Extending the reach towards SHE
- Conclusions

Michael Block
GSI
Mass Measurements for Nuclear Physics

- Isospin Symmetry
- Pairing
- Exotic decays
- Fundamental Interactions

- Halos and Skins
- Stability of SHE

- Magic Numbers
- Evolution of Shell Structure

Proton Number Z

Neutron Number N

Michael Block, GSI Darmstadt

m.block@gsi.de
Extending the Nuclear Chart at RIB Facilities

Chart of the Nuclides 1958

Michael Block, GSI Darmstadt
m.block@gsi.de
Extending the Nuclear Chart at RIB Facilities

Chart of the Nuclides 2009

≈ 3000 known nuclides

Michael Block, GSI Darmstadt
m.block@gsi.de
Super Heavy Elements

- how heavy can the elements be?
- location of the island of stability?
- structure of SHE?

stability due to shell effects
⇒ accurate binding energies needed

Michael Block, GSI Darmstadt
m.block@gsi.de
Production of SHE

Exclusive access to nuclides with Z > 100 by fusion-evaporation reactions

- “cold” fusion: heavy ions on Pb and Bi targets
- “hot” fusion: \(^{48}\)Ca induced reactions on Actinide targets

- Heavy-ion accelerator to provide high-intensity stable beams at coulomb barrier energies
- thin targets \(\approx 0.5\) mg/cm\(^2\)
- Recoil separator to separate evaporation residues from primary beam in flight
GSI: Unique Combination for SHE Studies

ECR + UNILAC

Stable targets

Beam

Actinide targets

SHIP

TASCA

Chemistry

Radiochem. labs

SHIPTRAP

TASISpec

Chemical theory

Courtesy of Ch. E. Duellmann

Michael Block, GSI Darmstadt

m.block@gsi.de
The UNIversal Linear ACcelerator – UNILAC

≈ 12 MeV/u for all elements
Beam intensity (on target) 0.5 - 4 μA_p
(25% duty cycle)
SHIP:
- Separation time: 1 – 2 μs
- Transmission: 20 – 50 %
- Background: 10 – 50 Hz
- Det. E. resolution: 18 – 25 keV
- Det. Pos. resolution: 150 μm
- Dead time: 3 – 25 μs

≈ 5 MeV/u

0.1-1 MeV/u

Michael Block, GSI Darmstadt

m.block@gsi.de
TASCA - a Gas-filled Separator for Chemistry and Physics

- Chemical investigations of the transactinide elements: one-atom-at-a-time chemistry
- Nuclear structure investigations
- Hot-fusion nuclear reaction studies

TASCA
TransActinide Separator and Chemistry Apparatus

Courtesy of Ch. E. Duellmann

Michael Block, GSI Darmstadt
m.block@gsi.de
GSI: Elements 107 – 112

48Ca + X

X + 208Pb, 209Bi

proton number

neutron number

Courtesy of S. Hofmann
Results at FLNR Dubna

48Ca + X
X + 208Pb, 209Bi

85 chains
34 isotopes
5 new elements

Michael Block, GSI Darmstadt
m.block@gsi.de
Key Results: growing $T_{1/2}$ and constant σ

$T_{1/2} = 1 \text{ ms}$

$\sigma = 0.5 – 5 \text{ pb}$
Producing New Isotopes and Elements

Experiments with ^{248}Cm targets

$^{54}\text{Cr} + ^{248}\text{Cm} \rightarrow ^{302}120^*$

$\sigma = 30 \text{ fb} - 0.6 \text{ pb}$

for $BF = 7.0 - 8.3 \text{ MeV}$

Michael Block, GSI Darmstadt

m.block@gsi.de
Knowledge of Masses for $Z > 100$

AME 2003

- no direct mass measurements for $Z > 92$
- some masses indirectly determined from Q_α values
- many masses extrapolated from systematic trends
• binding energy determines existence of SHE
• studies of the shell structure evolution $N = 152, 162$
• pin down endpoints of decay chains (Rf, Sg)
• studies of long-lived isomeric states
Mass Determination using Decay-links

\[^{270}_{\alpha} \text{Ds (Z=110)} \]

\[^{266}_{\alpha} \text{Hs} \]
\[^{262}_{\alpha} \text{Sg} \]
\[^{258}_{\alpha} \text{Rf} \]
\[^{254}_{\alpha} \text{No} \]
\[^{250}_{\alpha} \text{Fm} \]
\[^{246}_{\alpha} \text{Cf} \]
\[^{242}_{\alpha} \text{Cm} \]
\[^{238}_{\alpha} \text{Pu} \]

Difficulties:
- "incomplete" α-chains
- decays not between ground states
- uncertainties accumulate

F.P. Hessberger et al.,

Michael Block, GSI Darmstadt
m.block@gsi.de
Direct Mass Measurements above $Z = 100$

Typical production rates at present facilities:

- 1 atom/s @ $Z=102$ ($\sigma \approx \mu b$)
- 1 atom/week @ $Z=112$ ($\sigma \approx pb$)

<table>
<thead>
<tr>
<th>Present reach of Penning Traps for RIBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-life</td>
</tr>
<tr>
<td>Rate of trapped ions</td>
</tr>
</tbody>
</table>

Requirements:

- energy matching of reaction products to trap's energy scale
- high efficiency to deal with very low production rates
- high cleanliness for low background
- stable and reliable operation over extended time
Penning Trap Basics in Brief

Axial motion:
harmonic oscillation in E-field
\[\omega_z = \sqrt{\frac{qV_0}{md^2}} \]

Magnetron motion:
E x B drift
\[\omega_\perp = \frac{\omega_z}{2} \sqrt{\frac{\omega_c^2}{4} - \frac{\omega_z^2}{2}} \]

Reduced cyclotron motion:
\[\omega_\perp = \frac{\omega_z}{2} \sqrt{\frac{\omega_c^2}{4} - \frac{\omega_z^2}{2}} \]

in an ideal trap:
\[\omega_c = \omega_\perp + \omega_\parallel = \frac{q}{m} B \]

invariance theorem:
\[\omega_c^2 = \omega_\perp^2 + \omega_\parallel^2 + \omega_z^2 \]

Michael Block, GSI Darmstadt m.block@gsi.de
Cyclotron frequency measurement

Step 1: Excite radial motion

- \(E_\sim 1\text{meV} \equiv E_+ \sim 1\text{eV} \)

Step 2: Convert \(E_{\text{rad}} \) into \(E_{\text{axial}} \), measure TOF

- Inhomogeneous part of magnetic field

Record TOF as function of excit. frequency \(\Rightarrow \) Resonance

M. König et al., Int. J. of Mass Spectr. and Ion Proc. 142 (1995) 95

Michael Block, GSI Darmstadt

m.block@gsi.de
SHIPTRAP Setup

0.1-1 MeV/u → ≈ 1 eV

Gas Cell
- SHIP ion beam
- Entrance window
- DC cage
- RF funnel
- Extraction RFQ
- Cooler and Buncher RFQ

Buncher
- Laser or surface ionization source

Transfer
- Quadrupole deflector
- Purification trap

Penning Traps
- Superconducting magnet
- Diaphragm
- MCP-detector
- Measurement trap

Michael Block, GSI Darmstadt
m.block@gsi.de
Mass resolving power of $m/\delta m \approx 100,000$ in purification trap:

\Rightarrow separation of isobars

Mass resolving power of $m/\delta m \approx 1,000,000$ in measurement trap:

\Rightarrow separation of isomers
Direct Mass Measurements of $^{252-254}$No

Gateway to Superheavies

Michael Block, GSI Darmstadt

m.block@gsi.de
• rate of incoming particles for ^{255}Lr only 0.3 ions/s

• First direct mass measurements in the region $Z > 100$

• ^{255}Lr nuclide with lowest rate ever measured in a Penning trap

Michael Block, GSI Darmstadt
m.block@gsi.de
Mass determination of SHE

- Combine new, directly measured masses and α-decay spectroscopy
- Determine the masses of short-lived higher-Z nuclides

To be determined:
α-decay of ^{262}Sg (15%)
The Route to SHE

- **improve production rates**
 - increase primary beam intensities
 - improved ECR sources (28 GHz)
 - optimized cw accelerator for stable beams
 - target developments (compounds, cooling)

- **access to more neutron-rich nuclides**
 - hot-fusion reactions with actinide targets

- **higher sensitivity and efficiency**
 - detection system with single-ion sensitivity
 - next generation gas stoppers
Higher Intensities at GSI

New 28-GHz EZR Source:
- Higher charge state
- Higher intensity

Factor: 2 – 5

New RFQ Injector:
- Duty factor 25 % => 50 %
- Higher injection energy
- Higher acceptance

Factor: ≥ 2

U. Ratzinger, K. Tinschert et al.
Michael Block, GSI Darmstadt
m.block@gsi.de
Optimized Accelerator for SHE Production

Superconducting continuous wave accelerator:

Energy MeV/u

- ECR source
- RFQ, 108 MHz
- IH DTL, 108 MHz
- CH DTL, supercond. 324 MHz
- QWR Cavities 108 MHz
- Debuncher

- 0.003
- 0.3
- 1.4
- 1.8
- 2.4
- 3.3
- 4.2
- 5.2
- 6.1
- 7.1

Design specifications
- DC beam
- $1 < A/q < 7$
- E_{beam}: 4-7.5 MeV/u
- $\Delta E_{\text{beam}} < \pm 3\text{keV/u}$

U. Ratzinger et al., Frankfurt University
W. Barth, L. Dahl et al., GSI

Michael Block, GSI Darmstadt
m.block@gsi.de
The Route to SHE

increase sensitivity and efficiency

- (non-destructive) detection system with single-ion sensitivity
 → mass measurement with one ion only

- next generation gas stoppers:
 - cryogenic for highest cleanliness
 - RF carpet extraction systems
Coupling of TASCA and SHIPTRAP

M. Schaedel
Ch. E Duellmann
F. Herfurth
K. Eberhardt
K. Blaum
C. Smorra
M. Eibach

Michael Block, GSI Darmstadt
m.block@gsi.de
Conclusions

• Direct mass measurements for No, Lr region have been performed

• High-precision mass measurements of stopped rare isotopes with production rates of about 0.1 per second are possible today

• Opened the door for novel experiments with stopped heavy elements

• Technical developments and new techniques will pave the way to heavier elements

Thank you for your attention!
THANKS TO

The SHIPTRAP, TRIGA-TRAP, and TASCA Collaborations

D. Ackermann, K. Blaum, C. Droese, M. Dworschak, S. Eliseev,
E. Haettner, F. Herfurth, F. P. Heßberger, S. Hofmann, J. Ketter,
J. Ketelaer, H.-J. Kluge, G. Marx, M. Mazzocco, Yu. Novikov, W. R. Plaß,
A. Popeko, D. Rodríguez, C. Scheidenberger, L. Schweikhard, P. Thirolf,
G. Vorobjev, C. Weber, K. Eberhardt, Ch.E. Duellmann, and M. Schädel