Inclusive searches in ATLAS: How can we discover SUSY in 2009

George Redlinger
Brookhaven National Laboratory
(for the ATLAS Collaboration)

University of Michigan LHC Dark Matter Workshop

6-10 Jan 2009
Can we discover SUSY in 2009?

A loaded question... “three wise men” respond
Can we discover SUSY in 2009?

A loaded question... “three wise men” respond

“it depends on what the meaning of the word [discover] is...”

• background systematics, detector effects (Okawa, Teuscher)
• we discover something real; is it SUSY? (Lari)
Can we discover SUSY in 2009?

A loaded question... “three wise men” respond

“It depends on what the meaning of the word [discover] is...”

- background systematics, detector effects (Okawa, Teuscher)
- we discover something real; is it SUSY? (Lari)

“And therefore I will strongly reject an artificial timetable...”

- it will take time to commission the LHC and the detectors and to “re-measure the Std. Model”
Can we discover SUSY in 2009?

A loaded question... “three wise men” respond

“it depends on what the meaning of the word [discover] is...”

- background systematics, detector effects (Okawa, Teuscher)
- we discover something real; is it SUSY? (Lari)

“and therefore I will strongly reject an artificial timetable...”

- it will take time to commission the LHC and the detectors and to “re-measure the Std. Model”

“yes, we can”

- the rest of this talk
Outline

- General remarks about inclusive SUSY searches
- Strategy in ATLAS for studying inclusive search sensitivity
- Benchmark points
- Parameter scans
- Conclusion
Inclusive searches: general considerations

Inclusive SUSY search strategy relies on fairly general features:

- SUSY production cross section can be calculated in the MSSM (xsec depends only on sparticle mass)
- gluinos/squarks are the heaviest sparticles
- gluino/squark decays give rise to (high pt) jets
- neutralinos/charginos often decay via emission of leptons
- LSP is stable (R-parity conservation) and neutral, escaping detector. Connection to dark matter.

Generic signature is therefore:
- multiple jets, often energetic
- possibly some leptons (lower pt)
- missing Et
Strategy for studying inclusive search sensitivity

Most studies in ATLAS done in the context of Minimal Supersymmetric SM (MSSM) with R-parity conservation

SUSY breaking scenarios considered:
- mSUGRA - minimal SuperGravity (most studied)
- GMSB - Gauge Mediated SUSY Breaking
- AMSB - Anomaly Mediated SUSY Breaking

Can choose to apply constraints from relic dark matter density

The strategy so far:
- Full detector simulations at selected points consistent with DM constraints and spanning different signatures
- Scans of parameter space with fast detector simulation
- Specialized studies of “exotic” signatures with full simulation:
 - Long-lived states
 - “R-hadron”

Not believing that any of these models is a true description of Nature.
Aim is to cover a broad range of experimental signatures in a self-consistent way
mSugra Benchmark Points

<table>
<thead>
<tr>
<th>SU1</th>
<th>70</th>
<th>350</th>
<th>0</th>
<th>10</th>
<th>10.9</th>
<th>Soft leptons, taus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU2</td>
<td>3550</td>
<td>300</td>
<td>0</td>
<td>10</td>
<td>7.2</td>
<td>gluino/gaugino production, heavy flavor decays</td>
</tr>
<tr>
<td>SU3</td>
<td>100</td>
<td>300</td>
<td>-300</td>
<td>6</td>
<td>27.7</td>
<td>Generic point</td>
</tr>
<tr>
<td>SU4</td>
<td>200</td>
<td>160</td>
<td>-400</td>
<td>10</td>
<td>402.2</td>
<td>Low mass point near Tevatron bound</td>
</tr>
<tr>
<td>SU6</td>
<td>320</td>
<td>375</td>
<td>0</td>
<td>50</td>
<td>6.1</td>
<td>Tau rich</td>
</tr>
</tbody>
</table>

Common features for all points
- $\mu > 0$
- $m(\tilde{g}) < 1$ TeV
- Comparable \tilde{g} and \tilde{q} masses (except SU2)
- $m(\tilde{g})/m(\tilde{\chi}_1^0) \approx 6-8$
- NLO xsec used

Std Model background samples:
- ALPGEN for QCD multijet, W/Z+jets (Pythia used for non-4jet analyses). Normalized to NLO xsec.
- MC@NLO for ttbar
4jets + MET channel

Njets + MET = most inclusive signature

Main backgrounds: ttbar and W/Z+jets contribute roughly equally

QCD multijet bkg appears to be controllable by cutting on angle between MET and jets (remains to be confirmed with real data)

Simple selection cuts:
- ≥ 4 jets, pt > (100,50,50,50) GeV
- MET > 0.2 Meff
- $S_T > 0.2$
- $\Delta\phi($jet-MET$) > 0.2$ for 3 leading jets
- Reject events with isolated e or μ
- Meff > 800 GeV

Meff $\equiv \Sigma$pt(jets, leptons) + MET
2 (3)jets + MET channel

Similar cuts to 4jets analysis
- ≥ 2 (3) jets, $p_T > 150, 100, (100)$ GeV
- MET > 0.3 (0.25) Meff
- $\Delta\phi$(jet-MET) > 0.2
- Reject events with isolated e or μ
- Meff > 800 GeV

Analysis based on MT2 has also been studied (using leading 2 jets)
- ≥ 2 (3) jets, $p_T > 150, 100, (100)$ GeV
- MET > 100 GeV
- Reject events with isolated e or μ
- MT2 > 400 GeV

Slightly better performance to the Meff analysis. Revisit with systematics from real data.
4 jets + 1 lepton + MET (e, μ)

Better control of QCD multijet bkg. Main bkg is dileptonic top with one lepton missed.

Retain sensitivity to taus through decays to e/μ

Selection cuts:
- ≥ 4 jets, $pt > (100,50,50,50)$ GeV
- MET > 0.2 Meff
- $S_T > 0.2$
- Exactly 1 isolated e or μ, $pt > 20$ GeV
- No other isolated leptons with $pt > 10$
- Transverse mass > 100 GeV
- Meff > 800 GeV

Significance > 5 for all benchmark points (except SU2) even with 100 pb$^{-1}$ assuming we can maintain 20% sys uncertainty on ttbar and W+jets bkg.
OS dilepton + 4jets + MET

Selection cuts:
- ≥ 4 jets, pt > (100,50,50,50) GeV
- MET > 100 GeV & MET > 0.2 Meff
- \(S_t > 0.2 \)
- Exactly 2 OS isolated e or \(\mu \), pt > 10 GeV
- No other isolated leptons with pt > 10

Main bkg is dileptonic \(t\bar{t} \)

OS dileptons from SUSY decay chains (e.g. \(\tilde{\chi}_2^0 \rightarrow \ell^+\ell^-\tilde{\chi}_1^0 \)) must be same flavor to avoid \(\mu \rightarrow e \gamma \) constraints.

SM backgrounds (e.g. \(t\bar{t} \)) populate e and \(\mu \) equally (OSSF and OSOF)

Search for excess in OSSF-OSOF

Mainly requires understanding relative acceptance of e versus \(\mu \).

\[\chi^2 / \text{ndf} = \frac{10.5}{16} \]
\[\text{Prob} = 0.839 \]
\[\text{Norm} = 70.07 \pm 8.971 \]
\[M1+M2 = 67.71 \pm 8.267 \]
\[M2-M1 = 52.68 \pm 2.439 \]

G. Redlinger
U.Michigan LHC-DM Workshop 6-10 Jan 2009
SS dilepton + 4jets + MET

Almost background free

Main bkg is semileptonic ttbar with semileptonic b decay on the other side

Could be a relatively clean early discovery channel

Selection cuts:
- ≥ 4 jets, $p_T > (100,50,50,50)$ GeV
- MET > 100 GeV
- Exactly 2 SS isolated e or μ, $p_T > 20$ GeV
- No other isolated leptons with $p_T > 10$
3 lepton channel

3 lepton + jet analysis
- \(\geq 3 \) isolated leptons with \(p_T > 10 \) GeV
- \(\geq 1 \) jet with \(p_T > 200 \) GeV

No reliance on MET

Jet cut effective against WZ and Wγ*

Dominant background is dileptonic t\(\bar{t}\)bar with semileptonic b decay

3 lepton + MET analysis also studied
- \(\geq 3 \) isolated leptons with \(p_T > 10 \) GeV
- \(\geq 1 \) OSSF pair with \(M > 20 \) GeV
- Track-based isolation (cone 0.2) < 1 (2) GeV for e (\(\mu\))
- MET > 30 GeV
- \(M(\text{OSSF}) < M_Z - 10 \) GeV

Generally inferior to 3\(\ell\)+jet analysis for all benchmark pts, but would cover scenarios without hard jets
Tau channel

Same cuts as the 4jets+MET analysis, plus:
- ≥ 1 tau, $p_T > 40$ GeV, $|\eta| < 2.5$
- $M_T > 100$ GeV (using visible momentum of hardest tau and MET)

Complete overlap with 4jets+MET channel

Nevertheless, interesting to consider tau channel to obtain complementary info on the nature of the BSM physics (stau LSP, $e/\mu/\tau$ universality, ...)

Bjet channel

B-tagging via a combination of 3D impact parameter and sec. vtx identification

Light-jet rejection by a factor of roughly 100 (for 300 GeV jets), with an efficiency of around 60%

Selection cuts:
- ≥ 4 jets, $p_T > (100, 50, 50, 50)$ GeV
- MET > 0.2 Meff
- $S_T > 0.2$
- ≥ 2 btagged jets
- Meff $> 600, 800, 1000$ GeV

Bjet requirement helps to control QCD multijet background (similar in philosophy to 1-lepton channel)

Sensitivity depends critically on btag performance for high p_T jets
Long-lived heavy particles appear in many SUSY scenarios, e.g.:
- GMSB at high tanβ where NLSP is a slepton which couples weakly to gravitino
- R-hadrons formed from stable \tilde{g} or \tilde{t}

Trigger and DAQ are critical

Mass measurement with L2 trigger based on time-of-flight (~3ns time resolution)

ATLAS

100 GeV slepton

Muon
Scans of SUSY parameter space

Attempt to look wider in parameter space

- mSUGRA grid, tan\(\beta\)=10. No constraints applied other than direct searches.
- Same as above with tan\(\beta\) = 50
- mSUGRA random sampling, compatible with DM and other constraints
- GMSB grid. \(N_{\text{mess}}\)=5 \(\rightarrow\) slepton NLSP with prompt decay to e,\(\mu\),\(\tau\)
- NUHM grid, subject to DM constraints

Using fast, parametrized simulation of ATLAS detector

Systematics on background estimation included (based on full sim studies):

- 50% for QCD multijet
- 20% for W/Z+jets and ttbar

SUSY cross sections from leading order HERWIG. NLO cross sections for backgrounds.

Crude optimization by scanning MET and Meff cuts (significance is corrected for the “trials factor” using a Monte Carlo technique)
mSUGRA discovery reach in 4jets

0-lepton mode can probe close to 1.5 TeV in \(\min[m(\tilde{g}), m(\tilde{q})] \) for 1 fb\(^{-1}\)

Reach is roughly independent of \(\tan \beta \) for 0- and 1-lepton modes
mSUGRA discovery reach vs number of jets

4-jet requirement seems best in 0-lepton mode

Comparative reach vs jet multiplicity in 1-lepton channel (also OS dilepton)
mSUGRA random scan

Similar reach compared to results without DM and other constraints

Sensitivity is mainly driven by \tilde{g} and \tilde{q} masses

\[\text{min (m}_{\text{squark}} \text{)} \text{ [GeV]} \]

\[\text{m}_{\tilde{g}} \text{ [GeV]} \]

ATLAS
5 σ discovery

4j0I MSUGRA

4j0I MSUGRA DM

solid (open): > (<) 5σ with 1 fb⁻¹
NUHM parameter scan

NUHM model:

similar to mSUGRA but doesn't assume that \(m(\text{Higgs}) \approx m(\text{squark}, \text{slepton}) \) at the GUT scale

Scan \(m_{1/2} \) vs \(m_0 \)

For each point, adjust \(\mu \) and \(M_A \) to be consistent with DM constraints

Similar sensitivity to mSUGRA
GMSB parameter scans

\(N_{\text{mess}} = 5 \): all events have \(\geq 2 \) leptons or taus
Scan in \(\tan \beta \) vs \(\Lambda \) plane
\(C_{\text{grav}} = 1, M_{\text{mess}} = 500 \) GeV

3-lepton reach (for \(1 \) fb\(^{-1} \)) is close to 2 TeV for all \(\tan \beta \)

\(N_{\text{mess}} = 1 \): neutralino NLSP, decaying promptly to \(\tilde{G} + \gamma \)
Scan in \(\tan \beta \) vs \(\Lambda \) plane
\(C_{\text{grav}} = 1, M_{\text{mess}} = 500 \) GeV
How can we discover SUSY in 2009

ATLAS sensitivity to SUSY via inclusive searches has been studied for a wide variety of signatures involving combinations of jets, leptons (e, \(\mu, \tau\)), missing Et, bjets, photons and long-lived particles.

Studies were based on full simulation of Standard Model backgrounds and a number of SUSY benchmark points.

Supplemented by parameter scans of mSUGRA, NUHM and minimal GMSB models, using fast (parametrized) simulations.

With 1 fb\(^{-1}\) of integrated luminosity, and assuming 50% (20%) systematic uncertainty on QCD multijet (W/Z + jet) backgrounds, ATLAS should be able to observe squarks and gluinos with a mass up to 1-1.5 TeV. Observation of an excess in several different inclusive searches is possible in many generic scenarios.

Many of the benchmark points can be discovered with 100 pb\(^{-1}\) (assuming the same systematic uncertainty on bkg as 1 fb\(^{-1}\)).

Whether or not this will happen in 2009 remains to be seen.