Dark stars at the Galactic centre and the DARKSTARS public code

Pat Scott

Oskar Klein Centre for Cosmoparticle Physics (OKC) & Department of Physics, Stockholm University

November 7-11 2009

Collaborators: Malcolm Fairbairn, Joakim Edsjö

Based on: PS, Edsjö & Fairbairn, arXiv:0904.2395 PS, Fairbairn & Edsjö, MNRAS **394**:82 (arXiv:0809.1871) Fairbairn, PS & Edsjö, PRD 2008,**77**:047301 (arXiv:0710.3396)

Background Theory Simulations

Outline

Preliminaries

- Background
- Theory
- Simulations
- Resul
 - Benchmark evolutionary changes
 - Main-sequence stars at the Galactic Centre

프 > * 프 >

4 日

Results

Background Theory Simulations

The idea in a nutshell (cartoon version)

▶ < ∃ >

Results

Background Theory Simulations

The idea in a nutshell (cartoon version)

▶ < Ξ >

Results

Background Theory Simulations

The idea in a nutshell (cartoon version)

э

Results

Background Theory Simulations

The idea in a nutshell (cartoon version)

Results

Background Theory Simulations

The idea in a nutshell (cartoon version)

Results

Background Theory Simulations

The idea in a nutshell (cartoon version)

Background Theory Simulations

Context

Early work (late 80s, early 90s) by Salati, Dearborn, Bouquet, Raffelt and others

- Interest sprang up again in 2007
 - compact objects (Moskalenko & Wai, Bertone & Fairbairn)
 - Pop III formation from Spolyar, Freese, Gondolo, et al
 - Popl/II main sequence evolution from us
 - Pop III evolution from locco, Ripamonti et al, Yoon et al and Taoso, Bertone, et al
- Previous efforts had been with simple semianalytical stellar structure models (polytropes), approximate capture expressions and simplified treatments of the WIMP physics within stars
- We wanted to do detailed numerical stellar structure and evolution investigations on main sequence stars at the Galactic Centre (GC) → DARKSTARS code

 Elliptical orbits, detailed treatment of dark matter density and velocity distributions at GC

Background Theory Simulations

Context

- Early work (late 80s, early 90s) by Salati, Dearborn, Bouquet, Raffelt and others
- Interest sprang up again in 2007
 - compact objects (Moskalenko & Wai, Bertone & Fairbairn)
 - Pop III formation from Spolyar, Freese, Gondolo, et al
 - PopI/II main sequence evolution from us
 - Pop III evolution from locco, Ripamonti et al, Yoon et al and Taoso, Bertone, et al
- Previous efforts had been with simple semianalytical stellar structure models (polytropes), approximate capture expressions and simplified treatments of the WIMP physics within stars
- We wanted to do detailed numerical stellar structure and evolution investigations on main sequence stars at the Galactic Centre (GC) → DARKSTARS code
- Elliptical orbits, detailed treatment of dark matter density and velocity distributions at GC

Background Theory Simulations

Context

- Early work (late 80s, early 90s) by Salati, Dearborn, Bouquet, Raffelt and others
- Interest sprang up again in 2007
 - compact objects (Moskalenko & Wai, Bertone & Fairbairn)
 - Pop III formation from Spolyar, Freese, Gondolo, et al
 - PopI/II main sequence evolution from us
 - Pop III evolution from locco, Ripamonti et al, Yoon et al and Taoso, Bertone, et al
- Previous efforts had been with simple semianalytical stellar structure models (polytropes), approximate capture expressions and simplified treatments of the WIMP physics within stars
- We wanted to do detailed numerical stellar structure and evolution investigations on main sequence stars at the Galactic Centre (GC) → DARKSTARS code
- Elliptical orbits, detailed treatment of dark matter density and velocity distributions at GC

Background Theory Simulations

Context

- Early work (late 80s, early 90s) by Salati, Dearborn, Bouquet, Raffelt and others
- Interest sprang up again in 2007
 - compact objects (Moskalenko & Wai, Bertone & Fairbairn)
 - Pop III formation from Spolyar, Freese, Gondolo, et al
 - PopI/II main sequence evolution from us
 - Pop III evolution from locco, Ripamonti et al, Yoon et al and Taoso, Bertone, et al
- Previous efforts had been with simple semianalytical stellar structure models (polytropes), approximate capture expressions and simplified treatments of the WIMP physics within stars
- We wanted to do detailed numerical stellar structure and evolution investigations on main sequence stars at the Galactic Centre (GC) → DARKSTARS code
- Elliptical orbits, detailed treatment of dark matter density and velocity distributions at GC

Background Theory Simulations

Outline

Preliminaries

- Background
- Theory
- Simulations
- Results
 - Benchmark evolutionary changes
 - Main-sequence stars at the Galactic Centre

★ E > ★ E >

Theory

Stellar structure and evolution

dP Gm	(4)	r	r
$\frac{1}{\mathrm{d}m} = -\frac{1}{4\pi r^4}$	(1)	m	r
dr 1		P	F
$\frac{dI}{dm} = \frac{1}{4\pi^2}$	(2)	ρ L	l I
$4\pi r^2 \rho$		$\epsilon_{ m nuc}$	r
$\frac{\mathrm{d}L}{\mathrm{d}m} = \epsilon_{\mathrm{nuc}} - \epsilon_{\nu} + \epsilon_{\mathrm{grav}} + \epsilon_{\mathrm{WIMP}}$	(3)	$\epsilon_{ u}$	r r
dln T dln P		$\epsilon_{ m grav}$	e f
$\frac{\mathrm{d}m}{\mathrm{d}m} = -\nabla \frac{\mathrm{d}m}{\mathrm{d}m}$	(4)	ϵ_{WIMP}	e

radius mass contained within radius r oressure densitv uminosity nuclear energy production rate per mass of baryonic matter rate of energy loss to neutrinos energy production rate from gravitational contraction energy production rate by WIMPs

Plus:

d

- various boundary conditions
- constitutive relations (lookup tables) for nuclear reaction rates, equation of state $P(\rho, T)$ and opacities
- 4 additional equations for adaptive radial mesh

Theory

Stellar structure and evolution

(4)	r	radius
(1)	т	mass contained within radius r
	Р	pressure
$\langle \mathbf{O} \rangle$	ρ	density
(2)	L	luminosity
	$\epsilon_{ m nuc}$	nuclear energy production rate per mass of baryonic matter
(3)	$\epsilon_{ u}$	rate of energy loss to neutrinos
	$\epsilon_{ m grav}$	energy production rate from gravitational contraction
(4)	ϵ_{WIMP}	energy production rate by WIMPs
	 (1) (2) (3) (4) 	$(1) \qquad \stackrel{r}{\underset{P}{\overset{P}{\underset{\epsilon_{nuc}}{\overset{\rho}{\underset{\epsilon_{nuc}}{\overset{\epsilon_{\nu}}{\underset{\epsilon_{grav}}{\overset{\epsilon_{grav}}{\overset{\epsilon_{wimp}}}{\overset{\epsilon_{wimp}}{\overset{\epsilon_{wimp}}{\overset{\epsilon_{wimp}}}{\overset{s_{wimp}}{\overset{s_{wimp}}}}{\overset{s_{wimp}}}{\overset$

Plus:

(

- various boundary conditions
- constitutive relations (lookup tables) for nuclear reaction rates, equation of state $P(\rho, T)$ and opacities
- 4 additional equations for adaptive radial mesh

Background Theory Simulations

WIMP capture and annihilation

$$\frac{\mathrm{d}N}{\mathrm{d}t} = C(t) - 2A(t) \qquad (5) \qquad \begin{pmatrix} N & \text{WIMP number} \\ C & \text{capture rate} \\ A & \text{annihilation rate} \\ \epsilon_{\mathrm{WIMP}} \equiv \epsilon_{\mathrm{ann}} + \epsilon_{\mathrm{trans}} \qquad (6) \qquad \begin{pmatrix} \epsilon_{\mathrm{ann}} & \epsilon_{\mathrm{energy generation rate} \\ from WIMP \mathrm{annihilation} \\ \epsilon_{\mathrm{trans}} & conductive \mathrm{energy transport} \\ rate by WIMPs \end{pmatrix}$$

Capture: full expression for C is quite involved, but includes

- integration over radius, taking into account density profile
- integration over WIMP velocity distribution (numerical or analytical)
- summation over capture rates for 22 most important nuclei (including spin-dependant scattering)

• • = •

Background Theory Simulations

 $n_{\chi}(r,t)$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Annihilation

Annihilation:

$$A(t) = 4\pi \int_{0}^{R_{\star}} r^{2} a(r, t) \mathrm{d}r$$
 (7) $R_{\star} m_{\chi}$

$$\epsilon_{\text{ann}}(\mathbf{r},t) = \frac{2\mathbf{a}(\mathbf{r},t)\mathbf{m}_{\chi}\mathbf{c}^{2}}{\rho(\mathbf{r},t)} - \nu_{\text{loss}} \quad (8) \quad {}^{\nu_{\text{loss}}}_{< \sigma_{a}\nu > 0}$$

at radius *r*, per unit volume stellar radius WIMP mass rate of energy loss into neutrino channels WIMP annihilation cross section local WIMP number density

→ E → < E →</p>

local annihilation rate

$$a(r,t) = \frac{1}{2} < \sigma_{a}v >_{0} n_{\chi}(r,t)^{2}$$
 (9)

 Assume all energy goes into heating gas (regardless of actual annihilation channel), except for some neutrino losses (10% – comes from detailed simulations of neutrino production in the solar core)

Background Theory Simulations

Outline

Preliminaries

- Background
- Theory
- Simulations
- Resu
 - Benchmark evolutionary changes
 - Main-sequence stars at the Galactic Centre

★ E > ★ E >

< 🗇 🕨

The DARKSTARS modelling code

- Derived from the stellar evolution code EZ by Bill Paxton, itself derived from Peter Eggelton's STARS
- Solves the 4 stellar structure equations by relaxation
- Solution is over an adaptive grid of 200 points, introducing a further 4 grid equations
- Capture routines are derived from solar capture routines in the DarkSUSY package
- WIMP population solved for explicitly at each timestep, annihilation and energy transport calculated at each gridpoint and fed into the structure equations

- ∃ → - 4 = →

The DARKSTARS modelling code

- Lots of options and switches: different velocity distributions, widths, stellar orbits, WIMP conductive transport / internal distribution schemes, particle data, stellar masses and metallicities, numerical options...
- Save and restart good for evolving part-way then trying different late-stage scenarios
- DARKSTARS 2.0 coming soon: conversion to full Z = 0 (new opacities, equation of state) – DARKSTARS 1.01 can only do Z = 0 on pre-MS
- Future options for expansion to include alternative form factors and/or WIMP evaporation
- DARKSTARS 1.01 publicly available from http://www.fysik.su.se/~pat/darkstars

< 🗇 🕨 🔺 🖻 ト 🔺

Results

Background Theory Simulations

The DARKSTARS code – examples

Theory Simulations

The DARKSTARS code – examples

$$\rho_{\chi} = 10^{-5} \,\mathrm{GeV} \,\mathrm{cm}^{-3} \qquad \rho_{\chi} = 10^9 \,\mathrm{GeV} \,\mathrm{cm}^{-3} \qquad \rho_{\chi} = 10^{10} \,\mathrm{GeV} \,\mathrm{cm}^{-3}$$

Pat Scott - MCTP Dark Stars Workshop - Ann Arbor

Galactic centre: input parameters

- Nuclear-scattering cross-sections: $\sigma_{\rm SI} = 10^{-44} \, {\rm cm}^2$, $\sigma_{\rm SD} = 10^{-38} \, {\rm cm}^2$
- Annihilation cross-section: $<\sigma_a\nu>_0=3 imes10^{-26}\,cm^3/s$
- WIMP halo densities: adiabatically contracted NFW profile with a central spike ("AC+spike"), or without adiabatic contraction ("NFW+spike").
- WIMP halo velocities: isothermal with dispersion 270 km/s, or non-Gaussian derived from Via Lactea simulation.
 Extending to infinity, or truncated at the local value of the Galactic escape velocity.
- Stellar masses: 0.3–2.0 M_☉, metallicities: Z = 0.0003 0.02

ヘロト ヘ戸ト ヘヨト ヘヨト

Benchmark evolutionary changes Stars at the GC

Outline

Preliminaries

- Background
- Theory
- Simulations

Results

• Benchmark evolutionary changes

Main-sequence stars at the Galactic Centre

∃ → < ∃ →</p>

Evolutionary tracks - HR diagram

Pat Scott – MCTP Dark Stars Workshop – Ann Arbor

Evolutionary tracks - HR diagram

Pat Scott - MCTP Dark Stars Workshop - Ann Arbor

Evolutionary tracks - central equation of state

Pat Scott - MCTP Dark Stars Workshop - Ann Arbor

Benchmark evolutionary changes Stars at the GC

Convection

Pat Scott - MCTP Dark Stars Workshop - Ann Arbor

Benchmark evolutionary changes Stars at the GC

Main-sequence lifetimes

Pat Scott - MCTP Dark Stars Workshop - Ann Arbor

Benchmark evolutionary changes Stars at the GC

Outline

Preliminaries

- Background
- Theory
- Simulations

Results

- Benchmark evolutionary changes
- Main-sequence stars at the Galactic Centre

★ E → < E →</p>

< 🗇

Benchmark evolutionary changes Stars at the GC

Circular orbits

Pat Scott – MCTP Dark Stars Workshop – Ann Arbor

Elliptical orbits - orbit by orbit evolution

Pat Scott - MCTP Dark Stars Workshop - Ann Arbor

Dark stars at the Galactic centre and the DARKSTARS code

(< ≥) < ≥)</p>

Elliptical orbits - mean capture rates

Elliptical orbits - alternative velocity distribution

Put them all together and you get...

- Finding dark stars near the Galactic Centre seems quite possible not S stars, but low-mass counterparts
- Assuming adiabatic contraction, 1 M_{\odot} stars with orbital periods $\lesssim 50$ years and eccentricities $\gtrsim 0.9$
- Without adiabatic contraction, 1 M_{\odot} stars require orbits with periods \lesssim 10 years and eccentricities \gtrsim 0.99
- Any observation of *normal* stars on these orbits, of a solar mass or below, would provide constraints upon
 - the dark matter density profile at the GC
 - the WIMP mass and spin-dependent nuclear-scattering cross-section - competitive with current direct detection sensitivities
- DARKSTARS code is publicly available from http://www.fysik.su.se/~pat/darkstars

- Finding dark stars near the Galactic Centre seems quite possible not S stars, but low-mass counterparts
- Assuming adiabatic contraction, 1 M_\odot stars with orbital periods $\lesssim 50$ years and eccentricities $\gtrsim 0.9$
- Without adiabatic contraction, 1 M_{\odot} stars require orbits with periods \lesssim 10 years and eccentricities $\gtrsim 0.99$
- Any observation of *normal* stars on these orbits, of a solar mass or below, would provide constraints upon
 - the dark matter density profile at the GC
 - the WIMP mass and spin-dependent nuclear-scattering cross-section - competitive with current direct detection sensitivities
- DARKSTARS code is publicly available from http://www.fysik.su.se/~pat/darkstars

- Finding dark stars near the Galactic Centre seems quite possible not S stars, but low-mass counterparts
- Assuming adiabatic contraction, 1 M_{\odot} stars with orbital periods $\lesssim 50$ years and eccentricities $\gtrsim 0.9$
- Without adiabatic contraction, 1 M_\odot stars require orbits with periods \lesssim 10 years and eccentricities $\gtrsim 0.99$
- Any observation of *normal* stars on these orbits, of a solar mass or below, would provide constraints upon
 - the dark matter density profile at the GC
 - the WIMP mass and spin-dependent nuclear-scattering cross-section competitive with current direct detection sensitivities
- DARKSTARS code is publicly available from http://www.fysik.su.se/~pat/darkstars

- Finding dark stars near the Galactic Centre seems quite possible not S stars, but low-mass counterparts
- Assuming adiabatic contraction, 1 M_{\odot} stars with orbital periods $\lesssim 50$ years and eccentricities $\gtrsim 0.9$
- Without adiabatic contraction, 1 M_\odot stars require orbits with periods \lesssim 10 years and eccentricities $\gtrsim 0.99$
- Any observation of *normal* stars on these orbits, of a solar mass or below, would provide constraints upon
 - the dark matter density profile at the GC
 - the WIMP mass and spin-dependent nuclear-scattering cross-section - competitive with current direct detection sensitivities
- DARKSTARS code is publicly available from http://www.fysik.su.se/~pat/darkstars

- Finding dark stars near the Galactic Centre seems quite possible not S stars, but low-mass counterparts
- Assuming adiabatic contraction, 1 M_{\odot} stars with orbital periods $\lesssim 50$ years and eccentricities $\gtrsim 0.9$
- Without adiabatic contraction, 1 M_{\odot} stars require orbits with periods \lesssim 10 years and eccentricities $\gtrsim 0.99$
- Any observation of *normal* stars on these orbits, of a solar mass or below, would provide constraints upon
 - the dark matter density profile at the GC
 - the WIMP mass and spin-dependent nuclear-scattering cross-section - competitive with current direct detection sensitivities
- DARKSTARS code is publicly available from http://www.fysik.su.se/~pat/darkstars

Extra: WIMP conductive energy transport

WIMP distribution:

 n_{\chi}(r, t) can be given by either an isothermal (nonlocal) approximation or an LTE approximation (completely local)

WIMP energy transport:

- WIMPs can transport energy by conduction only (*W*eakly-*I*nteracting *M*as...)
- In the LTE regime, an exact solution for ϵ_{trans} exists (Gould & Raffelt, 1990)
- In the nonlocal regime, no exact solution but an idea of how badly the LTE solution overestimates ϵ_{trans}

Degree of nonlocality of WIMP energy transport and distribution can be given by the Knudsen parameter K:

 $K \equiv I(0, t)/r_{\chi}(t), \quad (10) \qquad \text{WIMP mean free path} \qquad \text{Approximate WIMP scale between densities and scale LTE energy transport} \\ \text{University} \qquad \text{Unive$

Benchmark evolutionary changes Stars at the GC

Extras (cont.): $\epsilon_{\text{trans}} \& \mathfrak{E}(t)$

Pat Scott - MCTP Dark Stars Workshop - Ann Arbor

Extras (cont.): WIMP conductive energy transport

Pat Scott – MCTP Dark Stars Workshop – Ann Arbor

Benchmark evolutionary changes Stars at the GC

Extras 2: energy production

Pat Scott - MCTP Dark Stars Workshop - Ann Arbor