Dark stars at the Galactic centre and the DARKSTARS public code

Pat Scott

Oskar Klein Centre for Cosmoparticle Physics (OKC) \& Department of Physics, Stockholm University

November 7-11 2009

Collaborators: Malcolm Fairbairn, Joakim Edsjö
Based on: PS, Edsjö \& Fairbairn, arXiv:0904.2395
PS, Fairbairn \& Edsjö, MNRAS 394:82 (arXiv:0809.1871) Fairbairn, PS \& Edsjö, PRD 2008,77:047301 (arXiv:0710.3396)

Outline

(1) Preliminaries

- Background
- Theory
- Simulations
(2) Results
- Benchmark evolutionary changes
- Main-sequence stars at the Galactic Centre

Preliminaries
Results

The idea in a nutshell (cartoon version)

The idea in a nutshell (cartoon version)

Preliminaries
Results

The idea in a nutshell（cartoon version）

Preliminaries
Results

The idea in a nutshell (cartoon version)

Preliminaries
Results

The idea in a nutshell (cartoon version)

Preliminaries
Results

The idea in a nutshell (cartoon version)

Context

- Early work (late 80s, early 90s) by Salati, Dearborn, Bouquet, Raffelt and others
- Interest sprang up again in 2007
- compact objects (Moskalenko \& Wai, Bertone \& Fairbairn)
- Pop III formation from Spolyar, Freese, Gondolo, et al
- Popl/II main sequence evolution from us
- Pop III evolution from Iocco, Ripamonti et al, Yoon et al and Taoso, Bertone, et al
- Previous efforts had been with simple semianalytical stellar structure models (polytropes), approximate capture expressions and simplified treatments of the WIMP physics within stars
- We wanted to do detailed numerical stellar structure and evolution investigations on main sequence stars at the Galactic Centre (GC) \rightarrow DARKSTARS code
- Elliptical orbits, detailed treatment of dark matter density and velocity distributions at GC

Context

- Early work (late 80s, early 90s) by Salati, Dearborn, Bouquet, Raffelt and others
- Interest sprang up again in 2007
- compact objects (Moskalenko \& Wai, Bertone \& Fairbairn)
- Pop III formation from Spolyar, Freese, Gondolo, et al
- Popl/ll main sequence evolution from us
- Pop III evolution from locco, Ripamonti et al, Yoon et al and Taoso, Bertone, et al
- Previous efforts had been with simple semianalytical stellar structure models (polytropes), approximate capture expressions and simplified treatments of the WIMP physics within stars
- We wanted to do detailed numerical stellar structure and evolution investigations on main sequence stars at the Galactic Centre (GC) \rightarrow DARKSTARS code
- Elliptical orbits, detailed treatment of dark matter density and velocity distributions at GC

Context

- Early work (late 80s, early 90s) by Salati, Dearborn, Bouquet, Raffelt and others
- Interest sprang up again in 2007
- compact objects (Moskalenko \& Wai, Bertone \& Fairbairn)
- Pop III formation from Spolyar, Freese, Gondolo, et al
- Popl/II main sequence evolution from us
- Pop III evolution from locco, Ripamonti et al, Yoon et al and Taoso, Bertone, et al
- Previous efforts had been with simple semianalytical stellar structure models (polytropes), approximate capture expressions and simplified treatments of the WIMP physics within stars
- We wanted to do detailed numerical stellar structure and evolution investigations on main sequence stars at the Galactic
- Elliptical orbits, detailed treatment of dark matter density and velocity distributions at GC

Context

- Early work (late 80s, early 90s) by Salati, Dearborn, Bouquet, Raffelt and others
- Interest sprang up again in 2007
- compact objects (Moskalenko \& Wai, Bertone \& Fairbairn)
- Pop III formation from Spolyar, Freese, Gondolo, et al
- Popl/ll main sequence evolution from us
- Pop III evolution from locco, Ripamonti et al, Yoon et al and Taoso, Bertone, et al
- Previous efforts had been with simple semianalytical stellar structure models (polytropes), approximate capture expressions and simplified treatments of the WIMP physics within stars
- We wanted to do detailed numerical stellar structure and evolution investigations on main sequence stars at the Galactic Centre (GC) \rightarrow DARKStars code
- Elliptical orbits, detailed treatment of dark matter density and velocity distributions at GC

Outline

(1) Preliminaries

- Background
- Theory
- Simulations
(2) Results
- Benchmark evolutionary changes
- Main-sequence stars at the Galactic Centre

Stellar structure and evolution

$$
\begin{aligned}
\frac{\mathrm{d} P}{\mathrm{~d} m} & =-\frac{G m}{4 \pi r^{4}} \\
\frac{\mathrm{~d} r}{\mathrm{~d} m} & =\frac{1}{4 \pi r^{2} \rho} \\
\frac{\mathrm{~d} L}{\mathrm{~d} m}=\epsilon_{\mathrm{nuc}}-\epsilon_{\nu} & +\epsilon_{\mathrm{grav}}+\epsilon_{\mathrm{WIMP}} \\
\frac{\mathrm{~d} \ln T}{\mathrm{~d} m} & =-\nabla \frac{\mathrm{d} \ln P}{\mathrm{~d} m}
\end{aligned}
$$

(1)	r	radius
	m	mass contained within radius r
(2)	ρ	pressure density
	$\epsilon_{\text {nuc }}$	luminosity
(3)	ϵ_{ν}	nuclear energy production rate per mass of baryonic matter rate of energy loss to neutrinos energy production rate
(4)	$\epsilon_{\text {grav }}$	from gravitational contraction energy production rate by WIMPs

Plus:

- various boundary conditions
- constitutive relations (lookup tables) for nuclear reaction rates, equation of state $P(\rho, T)$ and opacities
- 4 additional equations for adaptive radial mesh

Stockholm University

Stellar structure and evolution

$$
\begin{aligned}
\frac{\mathrm{d} P}{\mathrm{~d} m} & =-\frac{G m}{4 \pi r^{4}} \\
\frac{\mathrm{~d} r}{\mathrm{~d} m} & =\frac{1}{4 \pi r^{2} \rho} \\
\frac{\mathrm{~d} L}{\mathrm{~d} m}=\epsilon_{\mathrm{nuc}}-\epsilon_{\nu} & +\epsilon_{\mathrm{grav}}+\epsilon_{\mathrm{WIMP}} \\
\frac{\mathrm{~d} \ln T}{\mathrm{~d} m} & =-\nabla \frac{\mathrm{d} \ln P}{\mathrm{~d} m}
\end{aligned}
$$

(1)	r	radius
	m	mass contained within radius r
(2)	ρ	pressure density
	$\epsilon_{\text {nuc }}$	luminosity
(3)	ϵ_{ν}	nuclear energy production rate per mass of baryonic matter rate of energy loss to neutrinos energy production rate
(4)	$\epsilon_{\text {grav }}$	from gravitational contraction energy production rate by WIMPs

Plus:

- various boundary conditions
- constitutive relations (lookup tables) for nuclear reaction rates, equation of state $P(\rho, T)$ and opacities
- 4 additional equations for adaptive radial mesh

Stockholm University

WIMP capture and annihilation

$$
\begin{array}{llll}
\frac{\mathrm{d} N}{\mathrm{~d} t}=C(t)-2 A(t) & (5) & \begin{array}{l}
N \\
A
\end{array} & \begin{array}{l}
\text { WIMP number } \\
\text { capture rate } \\
\text { annihilation rate } \\
\text { energy generation rate }
\end{array} \\
\epsilon_{\mathrm{WIMP}} \equiv \epsilon_{\mathrm{ann}}+\epsilon_{\text {trans }} & (6) & \epsilon_{\mathrm{ann}} & \begin{array}{l}
\text { from WIMP annihilation } \\
\text { conductive energy transport }
\end{array} \\
\text { rate by WIMPs }
\end{array}
$$

Capture: full expression for C is quite involved, but includes

- integration over radius, taking into account density profile
- integration over WIMP velocity distribution (numerical or analytical)
- summation over capture rates for 22 most important nuclei (including spin-dependant scattering)

Annihilation

Annihilation:

$$
\begin{align*}
& A(t)=4 \pi \int_{0}^{R_{\star}} r^{2} a(r, t) \mathrm{d} r \tag{7}\\
& \epsilon_{\mathrm{ann}}(r, t)=\frac{2 a(r, t) m_{\chi} c^{2}}{\rho(r, t)}-\nu_{\text {loss }} \tag{8}\\
& a(r, t)=\frac{1}{2}<\sigma_{\mathrm{a}} v>_{0} n_{\chi}(r, t)^{2} \tag{9}
\end{align*}
$$

- Assume all energy goes into heating gas (regardless of actual annihilation channel), except for some neutrino losses (10% - comes from detailed simulations of neutrino production in the solar core)

Outline

(1) Preliminaries

- Background
- Theory
- Simulations
(2) Results
- Benchmark evolutionary changes
- Main-sequence stars at the Galactic Centre

The DARKSTARS modelling code

- Derived from the stellar evolution code EZ by Bill Paxton, itself derived from Peter Eggelton's STARS
- Solves the 4 stellar structure equations by relaxation
- Solution is over an adaptive grid of 200 points, introducing a further 4 grid equations
- Capture routines are derived from solar capture routines in the DarkSUSY package
- WIMP population solved for explicitly at each timestep, annihilation and energy transport calculated at each gridpoint and fed into the structure equations

The DarkStars modelling code

- Lots of options and switches: different velocity distributions, widths, stellar orbits, WIMP conductive transport / internal distribution schemes, particle data, stellar masses and metallicities, numerical options...
- Save and restart - good for evolving part-way then trying different late-stage scenarios
- DarkStars 2.0 coming soon: conversion to full $Z=0$ (new opacities, equation of state) - DARKSTARS 1.01 can only do $Z=0$ on pre-MS
- Future options for expansion to include alternative form factors and/or WIMP evaporation
- DarkStars 1.01 publicly available from http://www.fysik.su.se/~pat/darkstars

The DARKSTARS code - examples

Preliminaries
Results

The DARKSTARS code - examples

$$
\rho_{\chi}=10^{-5} \mathrm{GeV} \mathrm{~cm}^{-3} \quad \rho_{\chi}=10^{9} \mathrm{GeV} \mathrm{~cm}^{-3} \quad \rho_{\chi}=10^{10} \mathrm{GeV} \mathrm{~cm}^{-3}
$$

Galactic centre: input parameters

- Nuclear-scattering cross-sections: $\sigma_{\mathrm{SI}}=10^{-44} \mathrm{~cm}^{2}$, $\sigma_{\mathrm{SD}}=10^{-38} \mathrm{~cm}^{2}$
- Annihilation cross-section: $\left\langle\sigma_{\mathrm{a}} v>_{0}=3 \times 10^{-26} \mathrm{~cm}^{3} / \mathrm{s}\right.$
- WIMP halo densities: adiabatically contracted NFW profile with a central spike ("AC+spike"), or without adiabatic contraction ("NFW+spike").
- WIMP halo velocities: isothermal with dispersion $270 \mathrm{~km} / \mathrm{s}$, or non-Gaussian derived from Via Lactea simulation. Extending to infinity, or truncated at the local value of the Galactic escape velocity.
- Stellar masses: $0.3-2.0 \mathrm{M}_{\odot}$, metallicities: $Z=0.0003$ 0.02

Outline

(1) Preliminaries

- Background
- Theory
- Simulations
(2) Results
- Benchmark evolutionary changes
- Main-sequence stars at the Galactic Centre

Evolutionary tracks - HR diagram

Evolutionary tracks - HR diagram

Evolutionary tracks - central equation of state

Stockholm
University

Convection

Main-sequence lifetimes

Outline

(1) Preliminaries

- Background
- Theory
- Simulations
(2) Results
- Benchmark evolutionary changes
- Main-sequence stars at the Galactic Centre

Circular orbits

Elliptical orbits - orbit by orbit evolution

Preliminaries
Results

Elliptical orbits - mean capture rates

Elliptical orbits - alternative velocity distribution

Stockholm University

Put them all together and you get...

Conclusions

- Finding dark stars near the Galactic Centre seems quite possible - not S stars, but low-mass counterparts
- Assuming adiabatic contraction, 1 M . stars with orbital periods $\lesssim 50$ years and eccentricities $\gtrsim 0.9$
- Without adiabatic contraction, 1 M. stars require orbits with periods $\lesssim 10$ years and eccentricities $\gtrsim 0.99$
- Any observation of normal stars on these orbits, of a solar mass or below, would provide constraints upon
- the dark matter density profile at the GC
- the WIMP mass and spin-dependent nuclear-scattering cross-section - competitive with current direct detection sensitivities
- DARKSTARS code is publicly available from

Conclusions

- Finding dark stars near the Galactic Centre seems quite possible - not S stars, but low-mass counterparts
- Assuming adiabatic contraction, $1 \mathrm{M}_{\odot}$ stars with orbital periods $\lesssim 50$ years and eccentricities $\gtrsim 0.9$
- Without adiabatic contraction, 1 M. stars require orbits with periods $\lesssim 10$ years and eccentricities $\gtrsim 0.99$
- Any observation of normal stars on these orbits, of a solar mass or below, would provide constraints upon
- the dark matter density profile at the GC
- the WIMP mass and spin-dependent nuclear-scattering cross-section - competitive with current direct detection
- DARKSTARS code is publicly available from

Conclusions

- Finding dark stars near the Galactic Centre seems quite possible - not S stars, but low-mass counterparts
- Assuming adiabatic contraction, $1 \mathrm{M}_{\odot}$ stars with orbital periods $\lesssim 50$ years and eccentricities $\gtrsim 0.9$
- Without adiabatic contraction, $1 \mathrm{M}_{\odot}$ stars require orbits with periods $\lesssim 10$ years and eccentricities $\gtrsim 0.99$
- Any observation of normal stars on these orbits, of a solar mass or below, would provide constraints upon
- the dark matter density profile at the GC
- the WIMP mass and spin-dependent nuclear-scattering cross-section - competitive with current direct detection
- DARKSTARS code is publicly available from

Conclusions

- Finding dark stars near the Galactic Centre seems quite possible - not S stars, but low-mass counterparts
- Assuming adiabatic contraction, $1 \mathrm{M}_{\odot}$ stars with orbital periods $\lesssim 50$ years and eccentricities $\gtrsim 0.9$
- Without adiabatic contraction, $1 \mathrm{M}_{\odot}$ stars require orbits with periods $\lesssim 10$ years and eccentricities $\gtrsim 0.99$
- Any observation of normal stars on these orbits, of a solar mass or below, would provide constraints upon
- the dark matter density profile at the GC
- the WIMP mass and spin-dependent nuclear-scattering cross-section - competitive with current direct detection sensitivities
- DARKSTARS code is publicly available from

Conclusions

- Finding dark stars near the Galactic Centre seems quite possible - not S stars, but low-mass counterparts
- Assuming adiabatic contraction, $1 \mathrm{M}_{\odot}$ stars with orbital periods $\lesssim 50$ years and eccentricities $\gtrsim 0.9$
- Without adiabatic contraction, $1 \mathrm{M}_{\odot}$ stars require orbits with periods $\lesssim 10$ years and eccentricities $\gtrsim 0.99$
- Any observation of normal stars on these orbits, of a solar mass or below, would provide constraints upon
- the dark matter density profile at the GC
- the WIMP mass and spin-dependent nuclear-scattering cross-section - competitive with current direct detection sensitivities
- DARKStars code is publicly available from http://www.fysik.su.se/~pat/darkstars

Extra: WIMP conductive energy transport

WIMP distribution:

- $n_{\chi}(r, t)$ can be given by either an isothermal (nonlocal) approximation or an LTE approximation (completely local)
WIMP energy transport:
- WIMPs can transport energy by conduction only (Weakly-Interacting Mas...)
- In the LTE regime, an exact solution for $\epsilon_{\text {trans }}$ exists (Gould \& Raffelt, 1990)
- In the nonlocal regime, no exact solution - but an idea of how badly the LTE solution overestimates $\epsilon_{\text {trans }}$
Degree of nonlocality of WIMP energy transport and distribution can be given by the Knudsen parameter K :

$$
K \equiv I(0, t) / r_{\chi}(t), \quad(10) \quad, \quad \text { WIMP mean free path }
$$

Extras (cont.): $\epsilon_{\text {trans }} \& \mathfrak{E}(t)$

$$
\begin{equation*}
\mathfrak{E}(t) \equiv \frac{\int_{0}^{R_{\star}} r^{2} \frac{\rho_{\star}(r, t)}{\mu_{\star}(r, t)}\left|\frac{\epsilon_{\text {trans }}}{\epsilon_{\text {other }}}\right| \mathrm{d} r}{\int_{0}^{R_{\star}} r^{2} \frac{\rho_{\star}(r, t)}{\mu_{\star}(r, t)} \mathrm{d} r} \tag{11}
\end{equation*}
$$

Extras (cont.): WIMP conductive energy transport

Stockholm University

Preliminaries
Results

Extras 2: energy production

