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SuSy Neutralino-

χ̃0 = g1B̃ + g2W̃ 3 + h1H̃1 + h2H̃2

|g1|2 + |g2|2 + |h1|2 + |h2|2 = 1

1

(See for ex, Jungman, Kamionkowski, Griest, ’95)

Note: There exist other dark matter candidates!



Particle  annihilation in clumps - 
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NFW 

NFW like

Isothermal + core
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ρ(r) = ρs

(r/rs)α(1+r/rs)β
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Abstract
If most of the dark matter in the Universe is composed of WIMPs, their annihilation will release energy, ionizing some of

the gas in the Universe. We investigate the effect of the earliest dark matter halos on reionization. It is shown that these halos
could contribute significantly to the WMAP inferred optical depth. Our results may be combined with studies of other ionizing
sources to put stronger constraints on the allowed halo and particle parameters.

The absence of significant Lyα absorption (the Gunn
Peterson test[? ]) in the spectrum of many quasars im-
plies that the Universe is highly ionized up to a redshift
≈ 6. Observations of the cosmic microwave background
(CMB) by the Wlikinson Microwave Anisotropy Probe
(WMAP)[? ] suggest that the Universe was reionized
at a redshift ≈ 11, assuming full ionization at lower red-
shifts. Primordial stars and quasars are commonly be-
lieved to have played a dominant role in the reionization
of the Universe. In this Letter, we investigate another
possibility, namely whether radiation from the earliest
dark matter halos could have contributed significantly to
reionization.

One of the well motivated candidates for the dark mat-
ter thought to exist in the Universe, is a Weakly In-
teracting Massive Particle (WIMP). WIMP dark mat-
ter has a very small primordial velocity dispersion and is
expected to form the first non-linear structures of mass
M ≈ 10−6M#, at a redshift ≈ 60[? ? ] (see however[? ],
which gives a much larger range of masses). Recent high
resolution simulations[? ] suggest that many of these ha-
los may survive to the present epoch. WIMP annihilation
in these early dark matter halos releases energy, some of
which is absorbed by gas, resulting in ionization. The
effect of particle annihilation on the ionization of gas, by
a uniform distribution of dark matter was studied by [?
? ]. These authors however, concluded that WIMP dark
matter is unlikely to have a significant effect on ioniza-
tion. The effect of dark matter clumping was taken into
account by [? ], who modified the dark matter distribu-
tion by including a “boost factor”, and found that WIMP
annihilation could be relevant to reionization, provided
that the annihilation rate 〈σav〉 ≈ 10−23 cm3/s for a 100
GeV WIMP, close to the upper limit inferred from the
WMAP observations.

We show here that the earliest dark matter halos
could play an important role in the reionization of the
Universe, even when a more realistic annihilation rate
〈σav〉 = 3 × 10−26 cm3/s [? ], (for a 100 GeV WIMP)
is assumed. We also provide a more detailed analysis
of the ionization process. We fit these early halos with
the profile of Navarro, Frenk, and White (NFW)[? ],
and calculate the energy released by WIMP annihilation.

We then solve for the evolution of the ionization fraction
with redshift. The contribution to the optical depth is
computed using the best-fit concordance values of the
WMAP 5 year data[? ]. We also determine the param-
eter space consistent with the WMAP inferred value of
optical depth.

Luminosity of dark matter halos: We fit each dark
matter halo with an NFW profile[? ]:

ρ(r) =
ρs

(r/rs) [1 + r/rs]
2 (1)

ρ(r) is the dark matter density at r, and ρs and rs are
constants. Let r200 denote the radius at which the mean
density ρ̄ equals 200 times the matter density at the for-
mation redshift zf , i.e.,

ρ̄(zf) = 200 ρc Ωm (1 + zf)
3 (2)

where ρc = 3H2
0/8πG is the critical density, H0 is the

Hubble parameter today and Ωm is the matter fraction.
The mass in dark matter enclosed within r200

Mdm(r200) = 4πρsr
3
s
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4π

3
r3
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M = M(r200) is the halo mass. The concentration pa-
rameter c200 = r200/rs and fdm is the fraction of mass in
dark matter which we set equal to Ωdm/Ωm = 0.8287[?
]. This allows us to solve for ρs in terms of c200 and zf :

ρs =
fdm ρ̄(zf)

3

c3
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1+c200

(4)

The luminosity of the halo is then given by

dE
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0
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s r3
s

3mχ
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1
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(5)

〈σav〉 is the averaged annihilation cross section of the
WIMPs times their relative velocity. mχ is the WIMP
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ρs and rs are constants. We define the concentration parameter c200 = r200/rs. r200 (which we
take to be the halo radius) is the radius at which the enclosed mean density equals ρ̄ = 200 × the
cosmological average measured at the redshift zF(M) at which the halo formed. We then have, for
NFW halos:

∫
dr4πr2ρ2(r) =

M ρ̄
3

(
Ωdm

Ωm

)2

f [c200(z)]

f (x) =
x3 [

1− (1+ x)−3]

3 [ln(1+ x)− x(1+ x)−1]2
. (2.4)

M = M(r200) is the mass of the halo, and we have set the mass in dark matter to be Mdm =
(Ωdm/Ωm) M. c200 is generally a function of both halo mass and redshift.

Let dNγ/dEγ(Eγ ,z) be the number of photons per annihilation per photon energy at z. The
form of dNγ/dEγ depends not only on the particle physics, but also on astrophysical processes such
as inverse compton scattering. Inverse compton scattering of CMB photons by energetic (∼ GeV)
electrons results in a background of upscattered photons in the ∼ MeV range, far more efficient in
ionization and heating [4]. As there are ∼ 2× 109 CMB photons per baryon, we may ignore the
mean free path of scattering of high energy electrons from WIMP annihilation with CMB photons
(compared to that of high energy photons from WIMP annihilation scattering with gas atoms),
and assume that the inverse compton photons are produced approximately at the redshift at which
particle annihilation takes place.

We can now write down an expression for the average energy available per gas atom per unit
time at a redshift z:

E(z)
n(z)

=
∫ z

∞

−dz′

(1+ z′)H(z′)

(
1+ z
1+ z′

)3 (
dNann

dtdV

)
(z′)

∫ E2

E1

dE ′
γ E ′

γ
dNγ
dE ′

γ
(E ′

γ) e−κ(z′,z;E ′
γ )

[
cσ(E ′

γ)
]

(2.5)
n(z) is the physical gas density at z. We have used the relation dz = −dt (1 + z)H(z) in Eq. 2.5.
The cubic term accounts for the expansion of the Universe. We have set E ′

γ = Eγ(1+ z)/(1+ z′) to
account for the redshifting of photon energy, and E1 and E2 are appropriately redshifted minimum
and maximum values. The exponential term accounts for the scattering of photons as they travel
from z′ to z. The last term within square brackets is the scattering rate for photons of energy E ′

γ . κ
is given by the expression

κ(z′,z;Eγ) =
∫ z

z′

−dz′′

(1+ z′′)H(z′′)
cn(z′′)σ(Eγ) (2.6)

Fractions ηion(z) and ηheat(z) of this energy go into ionization and heating respectively [11]. The
ionized fraction and gas temperature T (z) are obtained by solving together, the 2 equations:

(1+ z)H(z)
dxion(z)

dz
= −µ [1− xion(z))]ηion(z)

[
E(z)
n(z)

]
+n(z)x2
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= 2T (z)H(z)− 2ηheat(z)

3kb

[
E(z)
n(z)

]
−

xion(z)
[
Tγ(z)−T (z)

]

tc(z)
(2.7)

µ is the inverse of the average ionization energy per atom, including both H and He. α is the
recombination coefficient which depends on T (z). Tγ is the CMB temperature and tc is the compton

3
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take to be the halo radius) is the radius at which the enclosed mean density equals ρ̄ = 200 × the
cosmological average measured at the redshift zF(M) at which the halo formed. We then have, for
NFW halos:

∫
dr4πr2ρ2(r) =

M ρ̄
3

(
Ωdm

Ωm

)2

f [c200(z)]

f (x) =
x3 [

1− (1+ x)−3]

3 [ln(1+ x)− x(1+ x)−1]2
. (2.4)

M = M(r200) is the mass of the halo, and we have set the mass in dark matter to be Mdm =
(Ωdm/Ωm) M. c200 is generally a function of both halo mass and redshift.

Let dNγ/dEγ(Eγ ,z) be the number of photons per annihilation per photon energy at z. The
form of dNγ/dEγ depends not only on the particle physics, but also on astrophysical processes such
as inverse compton scattering. Inverse compton scattering of CMB photons by energetic (∼ GeV)
electrons results in a background of upscattered photons in the ∼ MeV range, far more efficient in
ionization and heating [4]. As there are ∼ 2× 109 CMB photons per baryon, we may ignore the
mean free path of scattering of high energy electrons from WIMP annihilation with CMB photons
(compared to that of high energy photons from WIMP annihilation scattering with gas atoms),
and assume that the inverse compton photons are produced approximately at the redshift at which
particle annihilation takes place.

We can now write down an expression for the average energy available per gas atom per unit
time at a redshift z:

E(z)
n(z)

=
∫ z

∞

−dz′

(1+ z′)H(z′)

(
1+ z
1+ z′

)3 (
dNann

dtdV

)
(z′)

∫ E2

E1

dE ′
γ E ′

γ
dNγ
dE ′

γ
(E ′

γ) e−κ(z′,z;E ′
γ )

[
cσ(E ′

γ)
]

(2.5)
n(z) is the physical gas density at z. We have used the relation dz = −dt (1 + z)H(z) in Eq. 2.5.
The cubic term accounts for the expansion of the Universe. We have set E ′

γ = Eγ(1+ z)/(1+ z′) to
account for the redshifting of photon energy, and E1 and E2 are appropriately redshifted minimum
and maximum values. The exponential term accounts for the scattering of photons as they travel
from z′ to z. The last term within square brackets is the scattering rate for photons of energy E ′

γ . κ
is given by the expression

κ(z′,z;Eγ) =
∫ z

z′

−dz′′

(1+ z′′)H(z′′)
cn(z′′)σ(Eγ) (2.6)

Fractions ηion(z) and ηheat(z) of this energy go into ionization and heating respectively [11]. The
ionized fraction and gas temperature T (z) are obtained by solving together, the 2 equations:

(1+ z)H(z)
dxion(z)

dz
= −µ [1− xion(z))]ηion(z)

[
E(z)
n(z)

]
+n(z)x2

ion(z)α(z)

(1+ z)H(z)
dT (z)

dz
= 2T (z)H(z)− 2ηheat(z)

3kb

[
E(z)
n(z)

]
−

xion(z)
[
Tγ(z)−T (z)

]

tc(z)
(2.7)

µ is the inverse of the average ionization energy per atom, including both H and He. α is the
recombination coefficient which depends on T (z). Tγ is the CMB temperature and tc is the compton
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• Ionization.

• Increase in gas temperature.

• Increase in LyA photons.

Many consequences for cosmology.
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H21 cm spin flip transition:
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FIG. 7: Collisional and Ly-α coupling terms for particle masses mχ = 10 and 50 GeV. c200 = 10.

Using Eq. (26), we can rewrite Eq. (25) as:

Tb = 27 mK

√
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(1− xion)

n
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1 + ξ

(
1− Tγ

T

) [
H(z)/(1 + z)

dv||/dr||

]

. (31)

where ξ = ξc + ξα.
Fig. 8 shows the spatially averaged value of Tb for different values of the concentration

parameter c200, for masses (a) mχ = 10 and (b) 50 GeV. The solid (red) curve shows Tb in
the absence of dark matter heating (c200 = 0). Let us refer to this temperature as Tb(no
DM). The gas temperature with no dark matter heating is labeled T (no DM). For some
values of c200, the differential brightness temperature Tb starts out smaller than Tb(no DM),
but soon crosses this curve. This is caused by the gas temperature T being smaller than
the CMB temperature Tγ, yet larger than T (no DM). Eventually T becomes larger than Tγ

(compare with Fig. 4). For (c200 = 20, mχ = 10 GeV), Tb is larger than Tb(no DM) for all
z. Conversely, for (c200 = 5, mχ = 50 GeV), Tb is smaller than Tb(no DM) for all z. We will
explore the redshift variation of Tb further when we discuss the power spectrum.

A. Perturbations in the brightness temperature.

Let us now consider perturbations in the differential brightness temperature Tb. Eq.
(31) is sensitive to fluctuations in the baryon density, the ionized fraction, and the gas

13

(compare with Fig. 5). The scattering of electrons at high
redshifts results in a reduced amplitude for the first peak at
l ! 4 and greater power at slightly higher l. For l > 30,
there is very little difference between the spectra. It may be
possible to distinguish these curves with future experi-
ments such as Planck and CMBPol [13,14]. However,
differentiating between the dark matter models and a
model of gradual reionization by astrophysical sources
(as opposed to the sudden reionization model) will be
considerably more challenging. It was recently shown
[22] that in certain dark matter models with a large value
of h!avi, ionization by dark matter annihilation is substan-
tially larger. This would result in large modifications to the
CMB polarization power spectrum as well.

IV. THE HYDROGEN 21 CM LINE

Hydrogen 21 cm cosmology is an important tool to study
reionization and the early Universe [15]. The 21 cm dif-
ferential brightness temperature (brightness temperature
relative to the CMB) is given by (see for e.g., [24,25]):

TbðzÞ ! 27 mK
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s
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n
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: (25)

n0 is the spatial average of n. Ts is the spin temperature
given by

T%1
s ! T%1

" þ ð#c þ #$ÞT%1

1þ #c þ #$
: (26)

#cðz; xion; TÞ is called the collisional coupling coefficient
[25]:

#c ¼
nð1þ zÞ3

A10

T(
T";0ð1þ zÞ ½xion%

e þ ð1% xionÞ%H*: (27)

A10 is the Einstein coefficient for spontaneous emission.
T( ¼ E10=kb, with E10 being the energy difference be-
tween the singlet and triplet levels. %eðTÞ and %HðTÞ are
rate coefficients for collisions with electrons and Hydrogen
atoms, respectively. At low temperatures, the ionization
fraction is very low, and we expect %H to be the dominant
term. %e becomes relevant for larger values of xion which
are associated with higher T. We may neglect collisions
with protons for large T [41]. dvjj=drjj is the gradient of the
proper velocity along the line of sight. #$ is the
Wouthuysen-Field (Ly-$) coupling term [25]:

#$ ¼ 16&2cf$
27A10

T(
T";0ð1þ zÞ

"
e2

mec
2

#Z
d'Jð'Þ!ð'Þ: (28)

Figure 7 shows #c and #$ form( ¼ 10 and 50 GeV, with
c200 ¼ 10. For redshifts z < 25, both coupling coefficients
are important for light dark matter particlesm( + 10 GeV.
For heavier dark matter particles m( + 50 GeV, #c , #$.

f$ ¼ 0:4162 is the oscillator strength of the transition.
Jð'Þ is the number of Ly-$ photons per unit area, per
time, per frequency, and per solid angle. Following [24],
we make the assumption that one half of the energy that
goes into collisional excitations results in the generation of
Ly-$ photons. With the simple ansatz that a third of the
total energy absorbed goes into collisional excitations, we
have a fraction )$ ¼ 1=6 of the total energy resulting in
Ly-$ photons. !ð'Þ is the line profile satisfyingR
d'!ð'Þ ¼ 1. We will assume that !ð'Þ is sharply

peaked about ' ¼ '$ ! 2:5& 1015 Hz. J may be ex-
pressed as [24]:

J ! )$c
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E

h'$

1

'$
: (29)

Eðz; m(; c200Þ is given by Eq. (11). Using Eq. (28) with
"m ¼ 0:258, h ¼ 0:71, we find
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Using Eq. (26), we can rewrite Eq. (25) as

Tb ¼ 27 mK
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where # ¼ #c þ #$.
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FIG. 7 (color online). Collisional (#c) and Ly-$ (#$) coupling
terms for particle masses m( ¼ 10 and 50 GeV. c200 ¼ 10.
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(compare with Fig. 5). The scattering of electrons at high
redshifts results in a reduced amplitude for the first peak at
l ! 4 and greater power at slightly higher l. For l > 30,
there is very little difference between the spectra. It may be
possible to distinguish these curves with future experi-
ments such as Planck and CMBPol [13,14]. However,
differentiating between the dark matter models and a
model of gradual reionization by astrophysical sources
(as opposed to the sudden reionization model) will be
considerably more challenging. It was recently shown
[22] that in certain dark matter models with a large value
of h!avi, ionization by dark matter annihilation is substan-
tially larger. This would result in large modifications to the
CMB polarization power spectrum as well.

IV. THE HYDROGEN 21 CM LINE

Hydrogen 21 cm cosmology is an important tool to study
reionization and the early Universe [15]. The 21 cm dif-
ferential brightness temperature (brightness temperature
relative to the CMB) is given by (see for e.g., [24,25]):
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T( ¼ E10=kb, with E10 being the energy difference be-
tween the singlet and triplet levels. %eðTÞ and %HðTÞ are
rate coefficients for collisions with electrons and Hydrogen
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fraction is very low, and we expect %H to be the dominant
term. %e becomes relevant for larger values of xion which
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with protons for large T [41]. dvjj=drjj is the gradient of the
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c200 ¼ 10. For redshifts z < 25, both coupling coefficients
are important for light dark matter particlesm( + 10 GeV.
For heavier dark matter particles m( + 50 GeV, #c , #$.

f$ ¼ 0:4162 is the oscillator strength of the transition.
Jð'Þ is the number of Ly-$ photons per unit area, per
time, per frequency, and per solid angle. Following [24],
we make the assumption that one half of the energy that
goes into collisional excitations results in the generation of
Ly-$ photons. With the simple ansatz that a third of the
total energy absorbed goes into collisional excitations, we
have a fraction )$ ¼ 1=6 of the total energy resulting in
Ly-$ photons. !ð'Þ is the line profile satisfyingR
d'!ð'Þ ¼ 1. We will assume that !ð'Þ is sharply
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where # ¼ #c þ #$.
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FIG. 7 (color online). Collisional (#c) and Ly-$ (#$) coupling
terms for particle masses m( ¼ 10 and 50 GeV. c200 ¼ 10.
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The standard lore-

the CMB, and so Ts tracks T! again. Consequently, there
is a redshift window between 30 & z & 200, during
which the cosmic hydrogen absorbs the CMB flux at its
resonant 21 cm transition. Coincidentally, this redshift
interval precedes the appearance of collapsed objects
[2] and so its signatures are not contaminated by non-
linear density structures or by radiative or hydrodynamic
feedback effects from stars and quasars.

During the period when the spin temperature is smaller
than the CMB temperature, neutral hydrogen atoms ab-
sorb CMB photons. The resonant 21 cm absorption re-
duces the brightness temperature of the CMB by

Tb ! ""Ts # T!$="1% z$; (3)

where the optical depth for resonant 21 cm absorption is

" ! 3c#2hA10nH
32$kBTsH"z$ : (4)

Small inhomogeneities in the hydrogen density %H &
"nH # !nnH$= !nnH result in fluctuations of the 21 cm absorp-
tion through two separate effects. An excess of neutral
hydrogen directly increases the optical depth and also
alters the evolution of the spin temperature. We can write
an equation for the resulting evolution of " fluctuations,

d%"
dz

! 'H"1% z$(#1f'C10 % C01 % "B01 % B10$I&(%"
% 'C01"# C10"1#"$(%Hg;

(5)

leading to spin temperature fluctuations,

%Ts
!TTs

! # 1

ln'3"="1#"$(
%"

""1#"$ : (6)

The resulting brightness temperature fluctuations can be
related to the derivative,

dTb

d%H
& !TTb %

T!
!TTb

" !TTs # T!$
%Ts
!TTs%H

; (7)

through %Tb ! "dTb=d%H$%H. We include all fluctuations
caused by %H except for the variation in Cij due to
fluctuations in Tgas, which is very small [10]. Figure 1
shows dTb=d%H as a function of redshift, including the
two contributions to dTb=d%H, one originating directly
from density fluctuations and the second from the asso-
ciated changes in the spin temperature [4]. Both contri-
butions have the same sign, because an increase in density
raises the collision rate and lowers the spin temperature,
and so it allows Ts to better track Tgas. Since %H grows
with time as %H / a, the signal peaks at z) 50, a slightly
lower redshift than the peak of dTb=d%H.

Next we calculate the angular power spectrum of the
brightness temperature on the sky, resulting from density
perturbations with a power spectrum P%"k$,

h%H"k1$%H"k2$i ! "2$$3%D"k1 % k2$P%"k1$; (8)

where %H"k$ is the Fourier transform of the hydrogen
density field, k is the comoving wave vector, and h* * *i
denotes an ensemble average (following the formalism
described in [6]). The 21 cm brightness temperature ob-
served at a frequency &, corresponding to a distance r
along the line of sight, is given by

%Tb"n;&$ !
Z

drW&"r$
dTb

d%H
%H"n; r$; (9)

where n denotes the direction of observation, W&"r$ is a
narrow function of r that peaks at the distance corre-
sponding to &. The details of this function depend on the
characteristics of the experiment. The brightness fluctua-
tions in Eq. (9) can be expanded in spherical harmonics
with expansion coefficients alm"&$. The angular power
spectrum of map Cl"&$ ! hjalm"&$j2i can be expressed
in terms of the 3D power spectrum of fluctuations in
the density P%"k$,

Cl"&$ ! 4$
Z d3k

"2$$3 P%"k$'2
l "k;&$;

'l"k;&$ !
Z

drWr0"r$
dTb

d%H
"r$jl"kr$:

(10)

Our calculation ignores inhomogeneities in the hydrogen
ionization fraction, since they freeze at the earlier re-
combination epoch (z) 103), and so their amplitude is
more than an order of magnitude smaller than %H at z &
100. The peculiar velocity and gravitational potential
perturbations induce redshift distortion effects that are
of order )"H=ck$ and )"H=ck$2 smaller than %H for the
high-l modes of interest here. These effects are expected
to be washed out within realistically broadband filters.

FIG. 1 (color online). Upper panel: Evolution of the gas,
CMB, and spin temperatures with redshift [4]. Lower panel:
dTb=d%H as a function of redshift. The separate contributions
from fluctuations in the density and the spin temperature are
depicted. We also show dTb=d%Ha / dTb=d%H + %H , with an
arbitrary normalization. Throughout this Letter, we assume
the standard set of cosmological parameters for a universe
dominated by cold dark matter and a cosmological constant
(#CDM) [6].
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dTb=d%H as a function of redshift. The separate contributions
from fluctuations in the density and the spin temperature are
depicted. We also show dTb=d%Ha / dTb=d%H + %H , with an
arbitrary normalization. Throughout this Letter, we assume
the standard set of cosmological parameters for a universe
dominated by cold dark matter and a cosmological constant
(#CDM) [6].
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Fig. from Loeb and Zaldarriaga, PRL 92,  211301 (2004)

• H21 not seen for z < 30 in the absence of stars.

•  At high redshifts 30 < z < 200, the kinetic temperature of the gas is well 
coupled to the spin temperature.

•  H21 only seen in absorption as T_gas < T_cmb.



Dark matter and H21cm transitions-

•  Dark matter annihilation increases the gas temperature. This leads to more 
collisions between atoms, and hence more 21 cm transitions.

• Some energy goes into collisional excitations of gas atoms, resulting in Ly-A 
photons. The presence of a Ly-A background also increases the rate of transitions.

• Fluctuations in the 21cm temperature are sensitive to fluctuations in the gas 
density, the ionized fractions, and the temperature.
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Figure 8 shows the spatially averaged value of Tb for
different values of the concentration parameter c200, for
masses (a) m! ¼ 10 and (b) 50 GeV. The solid (red) curve
shows Tb in the absence of dark matter heating (c200 ¼ 0).
Let us refer to this temperature as Tb (no DM). The gas
temperature with no dark matter heating is labeled T (no
DM). For some values of c200, the differential brightness
temperature Tb starts out smaller than Tb(no DM), but soon
crosses this curve. This is caused by the gas temperature T
being smaller than the CMB temperature T", yet larger
than T (no DM). Eventually T becomes larger than T"

(compare with Fig. 4). For (c200 ¼ 20, m! ¼ 10 GeV), Tb

is larger than Tb (no DM) for all z in the range considered.
Conversely, for (c200 ¼ 5, m! ¼ 50 GeV), Tb is smaller
than Tb (no DM) for all z in the range considered. We will
explore the redshift variation of Tb further when we discuss
the power spectrum.

A. Perturbations in the brightness temperature

Let us now consider perturbations in the differential
brightness temperature Tb. Equation (31) is sensitive to
fluctuations in the baryon density, the ionized fraction, and
the gas temperature. Let us perturb xion, n, and T, and
expand to linear order:

1" xion ¼ 1" xion;0 " xion;0#x

n ¼ n0 þ n0#n

1" T"

T
¼ 1" T"

T0
þ T"

T0
#T

$ ¼ $0 þ
!
@$0

@n
n0#n þ

@$0

@T
T0#T þ

@$0

@xion
xion;0#x

"
;

(32)

where xion;0, n0, and T0 are spatially averaged values, and

#x, #n, and #T are fractional perturbations in the ionized
fraction, baryon density, and gas temperature, respectively.
$0 is evaluated at ðxion;0; n0; T0Þ.
The fractional perturbation in the brightness temperature

in Fourier space is then found to be

#21ðz; ~kÞ ¼ #nðz; ~kÞ½%nðzÞ þ ðn̂ ' k̂Þ2( þ #Tðz; ~kÞ%TðzÞ
þ #xðz; ~kÞ%xðzÞ; (33)

where n̂ is the direction of the line of sight, ~k is the Fourier
wave vector, and

%n ¼
!
1þ 1

1þ $0

@ ln$0

@ lnn

"
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!
" xion;0
1" xion;0
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@ ln$0
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"
:

(34)

To compute the derivates of $ ¼ $c þ $&, let us first con-
sider perturbations in the density of dark matter halos. The
energy absorbed by the gas at any redshift z depends on the
halo density for redshifts z0 > z, as seen in Eq. (11). The
integration over redshifts in Eq. (11) results in the pertur-
bations averaging out as statistically, overdense regions are
as likely to exist as underdense regions. As a first approxi-
mation, we may ignore perturbations in halo density. The
fractional perturbation caused by the dark matter halos /
1=

ffiffiffiffi
N

p
where N is the number of halos in a mean free path

volume. Hence this assumption is valid provided
ffiffiffiffi
N

p
) 1.

The mean free path of a high energy photon at redshift z *
½nð1þ zÞ3'("1 * 100 Mpc for z ¼ 25, where n is the
comoving baryon number density, and we assumed ' ¼
'T (although for high energy photons, '< 'T, which

(a) m (VeG01= b) m = 50 GeV

Redshift

-20

-10

0

20

40302010

T b
(m

K
)

403020

c200 = 0
c200 = 5

c200 = 10
c200 = 20

FIG. 8 (color online). H21 cm differential brightness temperature Tb. The solid (red) line shows Tb with no dark matter heating,
while the dashed lines are drawn for models with c200 ¼ 5, 10, and 20. Shown are the plots for (a) m! ¼ 10 GeV and

(b) m! ¼ 50 GeV.

ARAVIND NATARAJAN AND DOMINIK J. SCHWARZ PHYSICAL REVIEW D 80, 043529 (2009)

043529-8
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is larger than Tb (no DM) for all z in the range considered.
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makes the mean free path larger). The number density of
halos at redshift z is

nhaloðzÞ ¼ ð1þ zÞ3
Z 1

Mmin

dM
dnh
dM

(35)

% 1018 Mpc&3ð1012 Mpc&3Þ for Mmin ¼ 10&6M'ð1M'Þ,
at z ¼ 25. The corresponding mass density % 8(
1013M' Mpc&3ð1013M' Mpc&3Þ, about 15% (2%) of the
dark matter density at z ¼ 25. dnh=dM is given by Eq. (9).
Thus

ffiffiffiffi
N

p
% 109–1012 depending on Mmin. Using Eq. (27)

and !" / E / n, we have:

@ ln!

@ lnn
¼ 1;

@ ln!

@ lnT
¼ T½xion@#e=@T þ ð1& xionÞ@#H=@T*

xion#
e þ ð1& xionÞ#H ;

@ ln!

@ lnxion
¼ xion½#e & #H*

xion#
e þ ð1& xionÞ#H :

(36)

We show that for redshifts z < 30,$n is often the dominant
term.

B. The multifrequency angular power spectrum

Let us expand %21 as a sum over spherical harmonics:

%21ðz; n̂Þ ¼
X

l;m

almðzÞYlmðn̂Þ; (37)

where

almðzÞ ¼
Z

d!Y+
lmðn̂Þ

Z d3k

2&3 ½exp&ikrðk̂ , n̂Þ*%21ðz; ~kÞ;

(38)

and r is the comoving distance

rðzÞ ¼ r½'ðzÞ* ¼
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0
dz0
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% 2c
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!m

p ½1& ð1þ zÞ&1=2*; (39)

where we ignored !". 'ðzÞ is the redshifted 21 cm line
frequency

'ðzÞ ¼ '0

1þ z
; (40)

where '0 ¼ c=21:1 cm ¼ 1:42 GHz. Setting x ¼ kr, and
using Eq. (33) and the identities

Z
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2jlðxÞ
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lmðk̂Þ;

(41)

we find the following expression for alm:
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We can now construct the variance Cl defined as

Clð';#'Þ%ll0%mm0 ¼ halmð'Þa+l0m0ð'0Þi
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P is given by

P ¼ h%nðzÞ%+
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x0 ¼ k0r0. Let us now make the approximation that j'0 &
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For small values of j#'='0j, we may make the following
approximations:

$iðzÞ % $iðz0Þ
h%iðz; ~kÞ%+

j ðz0; ~k0Þi % h%iðz; ~kÞ%+
j ðz; ~k0Þi

¼ ð2&Þ3%3ð ~k& ~k0ÞPijðz; kÞ
¼ ð2&Þ3%3ð ~k& ~k0ÞPjiðz; kÞ; (46)

where i and j may stand for the baryon number density,
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Figure 8 shows the spatially averaged value of Tb for
different values of the concentration parameter c200, for
masses (a) m! ¼ 10 and (b) 50 GeV. The solid (red) curve
shows Tb in the absence of dark matter heating (c200 ¼ 0).
Let us refer to this temperature as Tb (no DM). The gas
temperature with no dark matter heating is labeled T (no
DM). For some values of c200, the differential brightness
temperature Tb starts out smaller than Tb(no DM), but soon
crosses this curve. This is caused by the gas temperature T
being smaller than the CMB temperature T", yet larger
than T (no DM). Eventually T becomes larger than T"

(compare with Fig. 4). For (c200 ¼ 20, m! ¼ 10 GeV), Tb

is larger than Tb (no DM) for all z in the range considered.
Conversely, for (c200 ¼ 5, m! ¼ 50 GeV), Tb is smaller
than Tb (no DM) for all z in the range considered. We will
explore the redshift variation of Tb further when we discuss
the power spectrum.

A. Perturbations in the brightness temperature

Let us now consider perturbations in the differential
brightness temperature Tb. Equation (31) is sensitive to
fluctuations in the baryon density, the ionized fraction, and
the gas temperature. Let us perturb xion, n, and T, and
expand to linear order:

1" xion ¼ 1" xion;0 " xion;0#x

n ¼ n0 þ n0#n

1" T"

T
¼ 1" T"

T0
þ T"

T0
#T

$ ¼ $0 þ
!
@$0

@n
n0#n þ

@$0

@T
T0#T þ

@$0

@xion
xion;0#x

"
;

(32)

where xion;0, n0, and T0 are spatially averaged values, and

#x, #n, and #T are fractional perturbations in the ionized
fraction, baryon density, and gas temperature, respectively.
$0 is evaluated at ðxion;0; n0; T0Þ.
The fractional perturbation in the brightness temperature

in Fourier space is then found to be

#21ðz; ~kÞ ¼ #nðz; ~kÞ½%nðzÞ þ ðn̂ ' k̂Þ2( þ #Tðz; ~kÞ%TðzÞ
þ #xðz; ~kÞ%xðzÞ; (33)

where n̂ is the direction of the line of sight, ~k is the Fourier
wave vector, and

%n ¼
!
1þ 1

1þ $0

@ ln$0

@ lnn

"
;
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1þ $0
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;

%x ¼
!
" xion;0
1" xion;0
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1þ $0

@ ln$0

@ lnxion

"
:

(34)

To compute the derivates of $ ¼ $c þ $&, let us first con-
sider perturbations in the density of dark matter halos. The
energy absorbed by the gas at any redshift z depends on the
halo density for redshifts z0 > z, as seen in Eq. (11). The
integration over redshifts in Eq. (11) results in the pertur-
bations averaging out as statistically, overdense regions are
as likely to exist as underdense regions. As a first approxi-
mation, we may ignore perturbations in halo density. The
fractional perturbation caused by the dark matter halos /
1=

ffiffiffiffi
N

p
where N is the number of halos in a mean free path

volume. Hence this assumption is valid provided
ffiffiffiffi
N

p
) 1.

The mean free path of a high energy photon at redshift z *
½nð1þ zÞ3'("1 * 100 Mpc for z ¼ 25, where n is the
comoving baryon number density, and we assumed ' ¼
'T (although for high energy photons, '< 'T, which
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FIG. 8 (color online). H21 cm differential brightness temperature Tb. The solid (red) line shows Tb with no dark matter heating,
while the dashed lines are drawn for models with c200 ¼ 5, 10, and 20. Shown are the plots for (a) m! ¼ 10 GeV and

(b) m! ¼ 50 GeV.
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Figure 8 shows the spatially averaged value of Tb for
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masses (a) m! ¼ 10 and (b) 50 GeV. The solid (red) curve
shows Tb in the absence of dark matter heating (c200 ¼ 0).
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temperature with no dark matter heating is labeled T (no
DM). For some values of c200, the differential brightness
temperature Tb starts out smaller than Tb(no DM), but soon
crosses this curve. This is caused by the gas temperature T
being smaller than the CMB temperature T", yet larger
than T (no DM). Eventually T becomes larger than T"

(compare with Fig. 4). For (c200 ¼ 20, m! ¼ 10 GeV), Tb

is larger than Tb (no DM) for all z in the range considered.
Conversely, for (c200 ¼ 5, m! ¼ 50 GeV), Tb is smaller
than Tb (no DM) for all z in the range considered. We will
explore the redshift variation of Tb further when we discuss
the power spectrum.
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where xion;0, n0, and T0 are spatially averaged values, and
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fraction, baryon density, and gas temperature, respectively.
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The fractional perturbation in the brightness temperature

in Fourier space is then found to be
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To compute the derivates of $ ¼ $c þ $&, let us first con-
sider perturbations in the density of dark matter halos. The
energy absorbed by the gas at any redshift z depends on the
halo density for redshifts z0 > z, as seen in Eq. (11). The
integration over redshifts in Eq. (11) results in the pertur-
bations averaging out as statistically, overdense regions are
as likely to exist as underdense regions. As a first approxi-
mation, we may ignore perturbations in halo density. The
fractional perturbation caused by the dark matter halos /
1=

ffiffiffiffi
N

p
where N is the number of halos in a mean free path

volume. Hence this assumption is valid provided
ffiffiffiffi
N

p
) 1.

The mean free path of a high energy photon at redshift z *
½nð1þ zÞ3'("1 * 100 Mpc for z ¼ 25, where n is the
comoving baryon number density, and we assumed ' ¼
'T (although for high energy photons, '< 'T, which
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(b) m! ¼ 50 GeV.
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makes the mean free path larger). The number density of
halos at redshift z is

nhaloðzÞ ¼ ð1þ zÞ3
Z 1

Mmin

dM
dnh
dM

(35)

% 1018 Mpc&3ð1012 Mpc&3Þ for Mmin ¼ 10&6M'ð1M'Þ,
at z ¼ 25. The corresponding mass density % 8(
1013M' Mpc&3ð1013M' Mpc&3Þ, about 15% (2%) of the
dark matter density at z ¼ 25. dnh=dM is given by Eq. (9).
Thus

ffiffiffiffi
N

p
% 109–1012 depending on Mmin. Using Eq. (27)

and !" / E / n, we have:

@ ln!

@ lnn
¼ 1;

@ ln!

@ lnT
¼ T½xion@#e=@T þ ð1& xionÞ@#H=@T*

xion#
e þ ð1& xionÞ#H ;

@ ln!

@ lnxion
¼ xion½#e & #H*

xion#
e þ ð1& xionÞ#H :

(36)

We show that for redshifts z < 30,$n is often the dominant
term.

B. The multifrequency angular power spectrum

Let us expand %21 as a sum over spherical harmonics:

%21ðz; n̂Þ ¼
X

l;m

almðzÞYlmðn̂Þ; (37)

where

almðzÞ ¼
Z

d!Y+
lmðn̂Þ

Z d3k

2&3 ½exp&ikrðk̂ , n̂Þ*%21ðz; ~kÞ;

(38)

and r is the comoving distance

rðzÞ ¼ r½'ðzÞ* ¼
Z z

0
dz0

c

Hðz0Þ

% 2c

H0

ffiffiffiffiffiffiffiffi
!m

p ½1& ð1þ zÞ&1=2*; (39)

where we ignored !". 'ðzÞ is the redshifted 21 cm line
frequency

'ðzÞ ¼ '0

1þ z
; (40)

where '0 ¼ c=21:1 cm ¼ 1:42 GHz. Setting x ¼ kr, and
using Eq. (33) and the identities

Z
d!Y+

lmðn̂Þe&ixk̂,n̂ ¼ 4&ð&iÞljlðxÞY+
lmðk̂Þ

Z
d!Y+

lmðn̂Þe&ixk̂,n̂ðk̂ , n̂Þ2 ¼ &4&ð&iÞl @
2jlðxÞ
@x2

Y+
lmðk̂Þ;

(41)

we find the following expression for alm:

almð'Þ ¼ 4&ð&iÞl
Z d3k

ð2&Þ3 Y
+
lmðk̂Þ

"
%n

#
$njlðxÞ &

@2jlðxÞ
@x2

$

þ %T$TjlðxÞ þ %x$xjlðxÞ
%
: (42)

We can now construct the variance Cl defined as

Clð';#'Þ%ll0%mm0 ¼ halmð'Þa+l0m0ð'0Þi

¼ 16&2ð&iÞlil0
Z d3k

2&3

( d3k0

2&3 Y
+
lmðk̂ÞYl0m0ðk̂0ÞP ðz; z0; ~k; ~k0Þ:

(43)

P is given by

P ¼ h%nðzÞ%+
nðz0Þi½$nðzÞjlðxÞ & @2jlðxÞ=@x2*½$nðz0Þjl0ðx0Þ & @2jl0ðx0Þ=@x02* þ jlðxÞ½$nðz0Þjl0ðx0Þ & @2jl0ðx0Þ=@x02*

( ½$TðzÞh%TðzÞ%+
nðz0Þiþ $xðzÞh%xðzÞ%+

nðz0Þi* þ jl0ðx0Þ½$nðzÞjlðxÞ & @2jlðxÞ=@x2*½$Tðz0Þh%nðzÞ%+
Tðz0Þi

þ $xðz0Þh%nðzÞ%+
xðz0Þi* þ jlðxÞjl0ðx0Þ½$TðzÞ$Tðz0Þh%TðzÞ%+

Tðz0Þiþ $xðzÞ$xðz0Þh%xðzÞ%+
xðz0Þi

þ $TðzÞ$xðz0Þh%TðzÞ%+
xðz0Þiþ $xðzÞ$Tðz0Þh%xðzÞ%+

Tðz0Þi*: (44)

x0 ¼ k0r0. Let us now make the approximation that j'0 &
'j ¼ #' - '0:

jr0 & rj ¼ #r % c

H0

ffiffiffiffiffiffiffiffi
!m

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p &&&&&&&&
#'

'0

&&&&&&&&: (45)

For small values of j#'='0j, we may make the following
approximations:

$iðzÞ % $iðz0Þ
h%iðz; ~kÞ%+

j ðz0; ~k0Þi % h%iðz; ~kÞ%+
j ðz; ~k0Þi

¼ ð2&Þ3%3ð ~k& ~k0ÞPijðz; kÞ
¼ ð2&Þ3%3ð ~k& ~k0ÞPjiðz; kÞ; (46)

where i and j may stand for the baryon number density,
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makes the mean free path larger). The number density of
halos at redshift z is
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Mmin
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(35)

% 1018 Mpc&3ð1012 Mpc&3Þ for Mmin ¼ 10&6M'ð1M'Þ,
at z ¼ 25. The corresponding mass density % 8(
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dark matter density at z ¼ 25. dnh=dM is given by Eq. (9).
Thus
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We show that for redshifts z < 30,$n is often the dominant
term.

B. The multifrequency angular power spectrum

Let us expand %21 as a sum over spherical harmonics:
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X
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where
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power spectrum-

contrast with (c) which shows a steady increase in power as
the redshift is varied from 15 to 30. Thus observations of
21 cm fluctuations at different redshifts may be used to
identify light dark matter models. The curves in (b) do not
show a minimum with change in redshift. This is because
for c200 ¼ 5 and m! ¼ 50 GeV, the gas temperature T
never rises above the CMB temperature (see Fig. 4).
Hence this effect is only visible with light dark matter
models, or with large concentration parameters.
Figure 12 shows the effect of variation with redshift, for

l ¼ 1000, and for c200 ¼ 2:5, 5, and 7.5. Also shown is the
case c200 ¼ 0 which does not take dark matter heating into
account. (a) is plotted for m! ¼ 10 GeV, while (b) shows
m! ¼ 50 GeV. In (a), the power spectrum shows minima
for c200 ¼ 2:5, 5, and 7.5. In contrast, in plot (b), we see a
minimum (at z ¼ 16:4) only with c200 ¼ 7:5. Thus, for

FIG. 10 (color online). Variation of Clð";!"Þ with !"="0, at
z ¼ 25ð"ðzÞ $ 55 MHz). The decrease in power with !" may
be used to separate the Hydrogen 21 cm signal from the large
foregrounds.

(a) m = 10 GeV
c200 = 5

(b) m = 50 GeV
c200 = 5

(c) No DM heating
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FIG. 11 (color online). Power spectrum Clð";!" ¼ 0Þ for different z. (a) and (b) show plots for m! ¼ 10 GeV and 50 GeV,
respectively, with c200 ¼ 5. (c) is plotted for the case of no heating by dark matter. In (a), the power spectrum decreases, and then
increases, as we move from redshift z ¼ 15 to 30, in contrast to (b) and (c).
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FIG. 9 (color online). #Tb;0 and #nTb;0 as a function of redshift z. The curves are nearly identical at low redshifts, which implies that
our results are not very sensitive to the form of $T and $x.
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FIG. 9: βTb,0 and βnTb,0 as a function of redshift z. The curves are nearly identical at low redshifts
which implies that our results are not very sensitive to the form of δT and δx.
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contrast with (c) which shows a steady increase in power as
the redshift is varied from 15 to 30. Thus observations of
21 cm fluctuations at different redshifts may be used to
identify light dark matter models. The curves in (b) do not
show a minimum with change in redshift. This is because
for c200 ¼ 5 and m! ¼ 50 GeV, the gas temperature T
never rises above the CMB temperature (see Fig. 4).
Hence this effect is only visible with light dark matter
models, or with large concentration parameters.
Figure 12 shows the effect of variation with redshift, for

l ¼ 1000, and for c200 ¼ 2:5, 5, and 7.5. Also shown is the
case c200 ¼ 0 which does not take dark matter heating into
account. (a) is plotted for m! ¼ 10 GeV, while (b) shows
m! ¼ 50 GeV. In (a), the power spectrum shows minima
for c200 ¼ 2:5, 5, and 7.5. In contrast, in plot (b), we see a
minimum (at z ¼ 16:4) only with c200 ¼ 7:5. Thus, for

FIG. 10 (color online). Variation of Clð";!"Þ with !"="0, at
z ¼ 25ð"ðzÞ $ 55 MHz). The decrease in power with !" may
be used to separate the Hydrogen 21 cm signal from the large
foregrounds.
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III. EARLY REIONIZATION

Let us now consider different dark matter models and
study the epoch of reionization for a fixed optical depth.
We then compare the expected CMB polarization power
spectra for the different models.

A. Optical depth and reionization redshift

The optical depth due to scattering of CMB photons with
free electrons is given by

!ðzÞ ¼
Z z

0
cdz0

!$dt

dz0

"
"Tneðz0Þ: (23)

Studies of quasar spectra have confirmed that the
Universe is nearly completely ionized up to z % 6.
Assuming H is ionized at z ¼ 6, He is singly ionized at z ¼
6, and doubly ionized at z ¼ 3 [38], we find !ðz ¼ 6Þ ¼
0:04. As this value if less than the WMAP measured [39]
value of ! % 0:087, we conclude that the Universe is at
least partially ionized at redshifts z > 6. Let z& be the
redshift below which xion ¼ 1. The simplest model of
reionization is one in which xionðzÞ ¼ 0 for z > z&. In this
model, the Universe is assumed to be instantaneously
reionized at z ¼ z&. Let us refer to this model as the
‘‘sudden reionization’’ scenario. While only an idealiza-
tion, this model gives us a rough idea of the epoch of
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FIG. 4 (color online). Evolution of the gas temperature with redshift. (a) shows the case for m# ¼ 10 GeV, while (b) is plotted for
m# ¼ 50 GeV. The solid red line shows the gas temperature 'ð1þ zÞ2 in the absence of dark matter heating. The solid black line

shows the CMB temperature 'ð1þ zÞ. The dashed lines show the evolution of the gas temperature for various concentration
parameters.
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FIG. 3 (color online). Evolution of the ionized fraction xion with redshift, for different values of the concentration parameter c200.
(a) shows the case for m# ¼ 10 GeV while (b) is plotted for m# ¼ 50 GeV. The residual ionized fraction at a redshift z ¼ 55 was

chosen to be 10$4.
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Contamination by the first stars.

The first stars are massive, short lived, and form early.
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(X.Chen and J. Miralda Escude ’08)
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Not numerous enough to heat the baryons.



Contamination by low-z  astrophysical objects-

Pop. II stars, quasars, etc contribute at lower z.

(J. Pritchard and A. Loeb, ’08)
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Very different prediction for z = 17.

Cannot distinguish between DM and standard sources for z < 15.



Conclusions:

• The power spectrum has a minimum at a certain redshift. By observing the power 
spectrum  at different redshifts, it is possible to identify heating by dark matter / 
some exotic source.

• If the dark matter is made up of WIMPs, they will annihilate, releasing energy.

• The Hydrogen 21 cm  radiation is sensitive to changes in the gas density, temperature,
and ionization fraction.

• The minimum is not present in all dark matter models, but only those with favorable 
particle and/or halo properties.


