Higgs Bosons and b Quarks

MCTP Higgs Workshop
May, 2010
Sally Dawson (BNL)

Laura Reina, Chris Jackson, Doreen Wackeroth, Chung Kao, Yili Wang, Prewit Jaiswal
SM Production Mechanisms at LHC

Production with b’s very small in SM

- Information about $b\bar{b}H$ coupling must come from decays
- Progress in extracting $H\rightarrow b\bar{b}$ from boosted Higgs techniques [Plehn]
Higgs Couplings Very Different in MSSM

H, A couplings to d, s, b enhanced at large $\tan \beta$

h couplings to d, s, b enhanced at large $\tan \beta$ for small M_A
Relative Importance of Production Modes

\[\sigma_{gg} = \frac{1}{M_h^2} \left(c_1 \cot^2 \beta + c_2 \frac{m_b^2}{M_h^2} + c_3 \frac{m_b^4}{M_h^4} \tan^2 \beta \right) \]

\[\sigma_{bb} = \frac{m_b^2}{M_h^4} c_4 \tan^2 \beta \]

⇒ At some \(\tan \beta \), the rates for \(\bar{b}b \rightarrow A,H,h \) will be larger than those for \(gg \rightarrow A,H,h \)
$pp, p\bar{p} \rightarrow b\bar{b}H$

Rates large even at relatively small $\tan \beta$

\[\alpha_{\text{eff}} \text{ from } \text{FeynHiggs with } M_{\text{SUSY}}=M_g=\mu=M_2=1 \text{ TeV, } A_b=A_t=25 \text{ GeV}\]
QCD Corrections Important

- NLO corrections improve scale dependence
- NLO QCD corrections large (can’t neglect them!)
- In 4 flavor number scheme:
 * Corrections don’t exist in public code

Dawson, Jackson, Reina, Wackeroth, hep-ph/0408077,0508293
Dittmaier, Kramer, Spira, hep-ph/0309204
Residual Scheme Dependence at NLO

- Cross section proportional to b Yukawa, \(\lambda_b^2 \approx \left(\frac{m_b^2}{v^2} \right) \)
- \(\overline{\text{MS}} \) vs on-shell definitions of b quark mass
- \(\overline{\text{MS}} \) mass depends on physical scale: \(\bar{m}_b(\mu) = m_b \left[1 - \frac{\alpha_s}{3\pi} \left(4 + 3 \ln \left\{ \frac{\mu^2}{m_b^2} \right\} \right) \right] \)
- Difference between schemes is \(\text{O}(\alpha_s^4) \)

\[pp \rightarrow b\bar{b}h \]

\[\text{Renormalization scheme dependence} \]

\[\text{Scale dependence} \]

- Large scheme dependence at NLO
- Effect \(\approx 10-20\% \)
Theoretical Issues in $b\bar{b}h$ production

Reduced \[\downarrow \]
Background \[\uparrow \]

- **Inclusive mode**: No tagged b's
- **Semi-inclusive mode**: At least one tagged b
- **Exclusive mode**: Two tagged b's

- Treating b quarks inclusively leads to large collinear logarithms from integration over phase space

\[\mu_F \approx M_h \]

- Expansion parameter becomes $\alpha_s \log(m_b/M_h)$
Two Schemes for PDFs

• **4 flavor number scheme (Fixed Flavor Number Scheme)**
 – No b quarks in initial state
 – Lowest order process involving Higgs and b’s is $gg \rightarrow bbh$
 – No kinematic approximations

• **5 flavor number scheme (Variable Flavor Number Scheme)**
 – Define b quark PDFs (absorbs large logarithms)
 \[
 b(x, \mu) = \frac{\alpha_s}{2\pi} \ln\left(\frac{\mu^2}{m_b^2} \right) \int_x^1 \frac{dz}{z} P_{bg} \left(\frac{x}{z} \right) g(z, \mu)
 \]
 – Higgs produced with no p_T at lowest order ($b\bar{b} \rightarrow h$)
 – Higgs p_T generated at higher orders in expansion
 – Both CTEQ and MSTW use this scheme for PDFs
Re-ordering of Perturbation Theory

• 0 b tag process in 5FNS:
 – LO: $b\bar{b} \rightarrow h$ $O(\alpha_s^2 \Lambda_b^2)$
 – NLO: Virtual + real corrections $O(\alpha_s^3 \Lambda_b^2)$
 – NLO: $bg \rightarrow bh$ $O(\alpha_s^2 \Lambda_b)$, correction of $O(1/\Lambda_b)$
 – NNLO: $gg \rightarrow b\bar{b}h$ $O(\alpha_s^2)$, correction of $O(1/\Lambda_b^2)$

• 1 b tag process in 5FNS:
 – LO process is $bg \rightarrow bh$: Tree level, $O(\alpha_s^2 \Lambda_b)$
 – NLO includes new subprocess: $gg \rightarrow b\bar{b}h$, $O(1/\Lambda_b)$ correction

$\Lambda_b = \log(M_h^2/m_b^2)$

4FNS and 5FNS must agree at high enough order in perturbation theory
Inclusive Cross Section for $\bar{b}b \to h$: 0 b tags

$\bar{b}b \to h$ vs $gg \to \bar{b}bh$

4FNS: NLO QCD

5FNS: NNLO QCD

Agreement best at low M_h

S-ACOT Scheme: $\sigma_{tot} \approx \sigma_{bb} + \sigma_{sub} + \sigma_{gg}$

σ_{sub} takes care of double counting from $g \to \bar{b}b$

LHC Higgs cross section group, Freiburg, 3/10

Harlander, Kilgore, hep-ph/0304035; public code bbh@NNLO
Issues with Factorization Scale Dependence?

$5FNS, \bar{b}b \to h @NNLO, MSTW2008, \sqrt{s}=7$ TeV

$0.2M_H < \mu_R < 5M_H$

$0.1M_H < \mu_F < 0.7M_H$

LHC Higgs cross section group, Freiburg, 3/10
PDF uncertainty for $b\bar{b}\rightarrow h$

5FNS, $b\bar{b}\rightarrow h$ @NNLO,
MSTW2008, $\sqrt{s}=7$ TeV

Large PDF uncertainty for heavy Higgs!

LHC Higgs cross section group, Freiburg, 3/10
SUSY QCD / Electroweak Corrections

- Compute in effective Lagrangian approach

\[L_{\text{eff}} = \frac{\bar{m}_b(\mu)}{v_{\text{SM}}} \left(-\frac{\sin \alpha}{\cos \beta} \right) \left(1 + \delta_{\text{SQCD}} + \delta_{\text{EW}} \right) \bar{b} h^0 \]

- SUSY QCD:

\[\delta_{\text{SQCD}} = \left(\frac{1}{1 + \Delta m_b} \right) \left(1 - \frac{\Delta m_b}{\tan \beta \tan \alpha} \right) \]

- Similarly for weak effects: \(\delta_{\text{EW}} \sim 2-4\% \)

Effective Lagrangian approach works to 1-3% for \(bb \rightarrow h \) for SQCD and EW effects

Dittmaier et al, hep-ph/0611353
Carena, Garcia, Nierste, Wagner, hep-ph/9912516
Bottom Line: Inclusive 0 b Tag

- Calculate SM in 5FNS to NNLO (using bbh@NNLO)
 - Find MSSM couplings from HDECAY or FeynHiggs
- μ_R uncertainty $\sim 5\%$
- μ_F uncertainty $\sim 5\%$ for $M_H > 200$ GeV, up to 20% for lighter M_H
- Scheme dependence $\sim 10-20\%$
- PDF uncertainty $\sim 10-20\%$
- SQCD and EW effects accurately included using effective Lagrangian approach (Δm_b)
 - These may be large
Easier experimentally: bH production

- **4 flavor number scheme**
 - NLO QCD

- **5 flavor number scheme**
 - NLO QCD [MCFM with top triangle removed]
 - SUSY QCD corrections
 - EW corrections

Consistent results for total cross sections
Compare Distributions: Single b Tag

• 4FNS vs 5FNS: Important differences

\[
\frac{d\sigma}{d\eta_h} \text{ (fb/GeV)} \quad \text{Tevatron} \quad \frac{d\sigma}{d\eta_h} \text{ (pb/GeV)} \quad \text{LHC} \quad \sqrt{s}=14 \text{ TeV}
\]

MSSM with $M_h=120$ GeV, $\tan \beta=40$
Compare distributions: Single b tag

MSSM with $M_h=120$ GeV, $\tan \beta=40$
Calculate SUSY QCD Corrections to bg→bh

- **Approach 1: Improved Born Approximation** (Δm_b)

 \[g_{hbb} \equiv m_b \left(\frac{1}{1 + \Delta m_b} \right) - \frac{\sin \alpha}{\cos \beta} \left(1 - \frac{\Delta m_b}{\tan \beta \tan \alpha} \right) \]

 \[\sigma_{IBA} = \left(\frac{g_{hbb}^S M}{g_{hbb}^b} \right)^2 \sigma_{LO} \]

- **Approach 2: O(α_s^2) NLO calculation**
 - Use g_{hbb} as above, so subtract off double counting
 - Include all contributions from squark/gluino loops

 Many contributions not included in IBA
Non-Decoupling of SQCD for Light SUSY (pp → bH)

\[\tilde{m}_g = \tilde{m}_b = 250 \text{ GeV} \]

Improved Born Approximation fails for light SUSY particles

\[\tilde{m}_g = \tilde{m}_b = 1 \text{ TeV} \]

Dawson & Jackson, arXiv:0709.4519
Do Electroweak Corrections Matter?

- Lowest order rate for $bg \rightarrow bh$ vanishes for $m_b = 0$
- At 1-loop, there are diagrams which do NOT vanish in $m_b = 0$ limit
- Full EW calculation

Plus many more diagrams.....

Mrenna, Yuan, hep-ph/9507235
EW Corrections to $pp \rightarrow bh$

$$\sigma(pp \rightarrow bH) = \sigma_0 \left(1 + \Delta_{QCD} + \Delta_{SQCD} + \Delta_{EW} \right)$$

Improved Born Approximation captures weak corrections accurately

Dawson & Jaiswal, arXiv:1002.2672
EW corrections in large M_h limit

- Dominant contributions from $b\bar{b}h$ vertex
 - No contributions which grow with M_h from triangle or box diagrams

$$\sigma(bg \rightarrow bh) \approx \sigma_0 \left(1 + \frac{M_h^2}{32\pi v^2} \left[13 - 2\pi\sqrt{3}\right]\right)$$

- Need $\log(M_h)$ pieces to reproduce full calculation
- Corrections $O(18\%)$ for $M_h \sim 1$ TeV

LHC Expectations

M_A (GeV)

QCD and theory uncertainties will change this!
Conclusions

• Compatible answers in 4FNS and 5FNS for total cross sections
 – Distributions in single b tag case slightly different

• EW corrections important at large M_h
 – EW corrections for both 0 and 1 b tag can be included with effective Lagrangian

• SUSY QCD corrections can be important for light SUSY
 – For heavy SUSY can include SQCD in effective Lagrangian for single b tag
 – Effective Lagrangian works for all SUSY masses for 0 b tag

• Uncertainties from scheme dependence, PDFs, scale uncertainty significant