Simulating AGN feedback in clusters The effect of multiphase ICM

Sebastian Heinz, UW-Madison
Sam Friedman, UW-Madison
Eugene Churazov, MPA

Multi-phase?

- "Effervescent heating by lots of small bubbles"?
- Shredding of plasma?
- Mixing by turbulence?

Radio plasma in galaxy clusters

- Central supermassive black holes:
- 10⁹ solar masses
- Every big galaxy has one
- Copious plasma production

Manifestation:

- "Radio lobes"
- buoyant bubbles
- "NATs WATs"

Radio plasma in galaxy clusters

≤3.2

4.2

C1.10⁶

7.5

≥10.0

5.6

- Central supermassive black holes:
- 10⁹ solar masses
- Every big galaxy has one
- Copious plasma production
- Manifestation:
- "Radio lobes"
- buoyant bubbles
- "NATs WATs"

Radio plasma in galaxy clusters

- Central supermassive black holes:
- 10⁹ solar masses
- Every big galaxy has one
- Copious plasma production
- Manifestation:
- "Radio lobes"
- buoyant bubbles

waves in clusters

Perseus cluster, Fabian et al. 2003

Sound waves: $W > 10^{45} \text{ ergs s}^{-1}$

Forman et al. 2007

Shock waves: Mach 1.2

Waves + bubbles

- Wave Energy: ~ 25% of BH power
- Where does it go?
- Viscosity?
- X-ray cavities / radio bubbles
- Relativistic gas
- $c_{\rm s} \approx 60\% c$
- Low density
- Appreciable filling factor
- Filamentary

Bubble

Cluster gas

Toy cluster

Heinz & Churazov 2005

- 2D & 3D hydro simulations
- 2D & 3D MHD
- FLASH3 code:
 - Adaptive Mesh Refinement
 - 2nd order accurate
 - Public (ASCI center @ UChicago)
 - Fryxell et al. 2000

Heinz & Churazov 2005

Heinz & Churazov 2005

"Richtmyer-Meshkov" instability

Heinz & Churazov 2005

Evidence For RMI?

Forman, Nulsen, Heinz, et al. 2005

Filaments?

Perseus

B. Cellini (1554)

Vorticity Generation

• We reconstruct the solenoidal component of the velocity v_r using a spectral Helmholtz decomposition

We define the vortex energy associated with Vr as

$$E_{\rm rot} \equiv \int dV \left(\frac{v_{\rm rot}^2}{2}\rho\right) \approx V_{\rm bubble} \cdot \left(\frac{v_{\rm wave}^2}{2}\rho_{\rm IGM}\right) \cdot g$$

We define g as the efficiency (similar to an oscillator strength)

Fiducial back-of-the envelope estimate: g=1.

3D: 2x more efficient

Friedman et al. 2010

Non-linear Interaction

Non-linear evolution

Viscous dissipation

 Bubble size requirement to heat typical cooling flow:

$$R < \text{kpc} \sqrt{\frac{\epsilon}{10\%}} \frac{\nu}{\nu_{\text{Spitzer}}}$$

- Assumption:
 - ★ Sufficient amount of energy in wave field
 - ★ AGN can provide the energy & plasma for this

Interface: simulations/observations

- A simulation is useless in vacuum, needs connection to observations
- 1. Take a 3D simulation of thermal gas
- 2. Simulate the spectrum emitted by the gas

3. "Observe" it

XIM: A virtual X-ray observatory for numerical simulations

1.3D Input: nenH, T, velocity, metallicity, filling factor

2.Thermal emission (APEC + thermal broadening)

3.Line-of-sight integration along arbitrary vector

4.Telescope PSF convolution

5.Convolution with instrument response

6.Add blank sky & instrument background

7.Add Poisson noise

8. Optional: Interface with MARX (Chandra only)

9. Output FITS events file, pha file

The vortex profile

- Test dynamics observationally
- Prediction:
 - ★ Lorentzian @90°

Summary

- Multi-phase gas subject to RM instability
 - Can greatly increase level of turbulence
 - In simplest case, efficiency of energy extraction from steepened waves up to 200% of fiducial efficiency
 - Non-linear interaction reduces efficiency
- In clusters:
 - Small bubbles are more efficient at dissipation
 - Line profile: Modified Lorentzian

Summary

- Multi-phase gas subject to RM instability
 - Can greatly increase level of turbulence
 - In simplest case, efficiency of energy extraction from steepened waves up to 200% of fiducial efficiency
 - Non-linear interaction reduces efficiency
- In clusters:
 - Small bubbles are more efficient at dissipation
 - For effective dissipation, need bubbles smaller than ~ kpc