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Motivation
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Large electron mean free path:

thermal conduction 
important & 
anisotropic  

Conduction important on scales:

L � 7 (λeH)1/2
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Linear Evolution of the MTI

Temperature (t = 0) Temperature (t = 5 tbuoy)• Would be stable if adiabatic.

• Efficient conduction along magnetic 
field lines ⇒ field lines isothermal.

• New stability criterion:

• Timescale for perturbations grow:

∂s

∂z
> 0→ ∂T

∂z
> 0

(displacements isothermal rather 
than adiabatic)

tbuoy =
�

g
∂ lnT

∂z

�−1/2

(Balbus, 2000; Parrish & Stone, 2005)

∂s/∂z > 0



Linear Evolution of the MTI

Temperature (t = 0) Temperature (t = 5 tbuoy)
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Linear Evolution of the HBI

t = 0 t = 3 tbuoy t = 12 tbuoy t = 17 tbuoy t = 50 tbuoy
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• Would be stable if adiabatic

• Stable according to MTI criterion

• Constant heat flux 
 ⇒ 

• Perturbations to       can cause 
instability

• Timescale for perturbations grow:

                  (same as MTI)
(Quataert, 2008; Parrish & Quataert, 2008)
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Linear Evolution of the HBI

Temperature (t = 5 tbuoy) ∆T

∇· �Q < 0

∇· �Q > 0
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Saturation of the HBI

t = 0 t = 3 tbuoy t = 12 tbuoy t = 17 tbuoy t = 50 tbuoy
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Velocities and field
lines horizontal in 
saturated state

Quiescent saturation
v/cs � 10−2



Saturation of the HBI



Velocities in the Saturated State of the HBI
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Limit that bz → 0:
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Velocities in the Saturated State of the HBI
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Magnetic Field in the Saturated State of the HBI
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Nonlinear Evolution of the MTI

t = 0 t = 4 tbuoy t = 6 tbuoy t = 30 tbuoy

Saturation is not quiescent.



Equilibrium State of the MTI

t = 0 t = 7.5 tbuoy t = 20 tbuoy t = 40 tbuoyLimit that bz → 1:

• Same dispersion relation as the HBI

• Stable stratification ⇒ horizontal 

displacements unaffected.
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Equilibrium State of the MTI

t = 0 t = 7.5 tbuoy t = 20 tbuoy t = 40 tbuoy

• No longer in equilibrium state

• Nonlinearly unstable

• Closes dynamo loop
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Equilibrium State of the MTI

t = 0 t = 7.5 tbuoy t = 20 tbuoy t = 40 tbuoy

At late times, can’t tell whether or not the plasma was 
initially stable.



Magnetic Field in the Saturated State of the MTI

Isotropic
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Turbulence Generated by the MTI

L / H
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• MTI can drive ~ sonic turbulence

• Answer depends on size of 
simulation domain; need boxes of 
order H to get the right answer.

• Strong turbulence + magnetic fields 
⇒ 10s of % non-thermal pressure
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HBI + Turbulence
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Saturated Field Angles
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Conclusions

• HBI and MTI both operate in clusters

• HBI saturates by reorienting the magnetic field, but the MTI does not

• MTI is a powerful dynamo and drives strong turbulence

• Interaction between HBI and turbulence determines suppression of the 
conductive flux


