Coupling Jets to their Surroundings: the Role of Entropy

Paul Nulsen (Harvard-Smithsonian Center for Astrophysics) Ralph Kraft (CfA), David Stark (CfA), Andy Young (Bristol), Yuxuan Yang (UIUC), Brian McNamara (Waterloo), Cen A VLP collaboration

Jet of Cygnus A

Powerful, near FR II radio source (Carilli & Barthel 1994); radio luminosity $\approx 7 \times 10^{44}$ erg s⁻¹; z = 0.056; D_L = 250 Mpc; scale = 1.088 kpc/arcsec

30 arcsec

Chandra 0.5 – 7 keV

Hosted by cluster central galaxy

Smith et al (2002), Chandra shows AGN, jets, radio hotspots, cocoon shock, etc

SW shock: Mach 1.37, r \approx 40 kpc, age \approx 1.6×10⁷ yr, mean power \approx 4×10⁴⁵ erg s⁻¹

2010 August 24

X-ray vs radio jet

Unsharp masked Chandra 0.5 – 7 keV X-ray jet is resolved by Chandra

not coincident with radio jet
(Steenbrugge & Blundell 2007)

Symmetry (also: eastern jet receding) => jet X-ray emission not Doppler boosted

X-ray spectrum for 11"×5.7" region at eastern end => power law (photon index 1.69±0.26, 90%).

ICCMB (100 < γ < 10,000; p = 2.38) would require electron pressure > 10× surrounding gas pressure.

IC on beamed optical from AGN would require $> 10^{46}$ erg s⁻¹ beamed along jets

2010 August 24

Physics of Intracluster Medium

X-ray vs radio jet

Unsharp masked Chandra 0.5 – 7 keV Pressure equipartition in eastern lobe gives $B \approx 55 \ \mu G$

- 1 keV synchrotron photons radiated by electrons with $\gamma \approx 4 \times 10^7$

Synchrotron X-ray model requires ~10⁻⁵× electrons as ICCMB model

- t_{synchrotron} ≈ 200 yr

- requires acceleration in situ

X-ray jet traces the path of the jet now

radio does not

2010 August 24

Physics of Intracluster Medium

X-ray vs radio jet

D arcsec

 $p_{hotspot}/p_{jet} \approx (B_{hotspot}/B_{jet})^2 \approx 10 - 20$

Jet radius in eastern lobe ≈ 3 kpc

Unsharp masked 0.7 – 7 keV Chandra image (red)

Radio 6 cm (cyan)

Excess hotspot pressure due to jet ram pressure

SSC model (Harris et al 1994) -> $B_{hotspot} \approx 246 \ \mu\text{G}$; Wilson (2003) -> $B_{hotspot} \approx 150 \ \mu\text{G}$

2010 August 24

Jet Flow Model

(Laing & Bridle 2002)

Proper density of jet rest mass, p, rate of mass flow through jet:

Power through jet (h = enthalpy per unit volume, h = p + e = $\Gamma p/(\Gamma-1)$, for pressure p):

$$\dot{P} = (\gamma - 1)\dot{M}c^2 + hAc\beta\gamma^2$$

 $M = \gamma \beta c A \rho$

Momentum flux:

 $\Pi = (P/c + Mc)\beta$

Have estimates for: power (from shock); P, area, A, and pressure, p.

Jet comes to (near) halt in hotspot => hotspot pressure \approx ram pressure, so $\Pi \approx p_{ram}A$, also known ($p_{ram} = p_{hotspot}$; hotspot width matches jet)

Power + momentum equations give:

$$\frac{P}{pAc} = \left(\frac{p_{\text{ram}}/p}{\gamma+1} + \frac{\Gamma}{\Gamma-1}\right)\beta\gamma$$

- solve for jet speed, mass flow rate, etc

Cyg A Jet Flow Model

For $P_{jet} = 2 \times 10^{45}$ erg s⁻¹, jet pressure p = 2.4×10⁻¹⁰ erg cm⁻³, $r_{jet} = 3.1$ kpc, ratio of specific heats, $\Gamma = 5/3$ (see below), $p_{ram}/p = 20$, get:

 $\beta_{jet} = 0.079$; mass flow rate through jet = 9 M_{\odot} yr⁻¹; n_{e,jet} = 4.4×10⁻⁴ cm⁻³; for pressure balance, kT_{jet} = 175 keV (hence gas is non-relativistic).

Note a) 1-dimensional flow model, b) no correction for projection.

As above, with $p_{ram}/p = 10$ and $\Gamma = 13/9$:

 $\beta_{jet} = 0.12$; mass flow rate through jet = 3 M_☉ yr⁻¹; n_{e,jet} = 9.5×10⁻⁵ cm⁻³; for pressure balance, kT_{jet} = 810 keV (electrons relativistic, protons not).

Increasing P/(pAc) or decreasing p_{ram}/p will increase flow speed.

Large ram pressure => large mass flux => significant entrainment by the jet.

2010 August 24

Cen A, 5 GHz (red) and 0.3 – 1.5 keV (blue) Flow Model for Cen A Jet Steady, near 1-d flow => v = v(R). Jet Area of cross section, A(R), and external pressure, p(R), known (kT ≈ 0.55 keV, n_e ~ r^{-1.26}) – equate to internal pressure (cf. Laing & Bridle 2002). Mass flow through jet: $M = \gamma \beta c A \rho$ Entrainment rate, α , per unit volume: arcmin αAdR М $P = (\gamma - 1) M c^{2} + hAc\beta\gamma^{2}$ Assume constant power along jet: (enthalpy $h = \Gamma p / (\Gamma - 1)$, with $\Gamma = 13/9$ here). $\Pi\Big|_{1}^{2} = \int_{1}^{2} \frac{dp}{dR} A dR$ is affected by buoyancy Momentum flux $\Pi = (P/c + Mc)\beta$ 2010 August 24 Physics of Intracluster Medium

Flow Parameters

Fiducial values: Jet power, $P = 6 \times 10^{42} \text{ erg s}^{-1}$ (Croston et al 2009).

Initial speed, $\beta = 0.7$ (radio knots move at ≈ 0.5 c near inner end; Hardcastle et al 2003).

Stellar mass loss: star density = f × gravitating mass density (hydrostatic equilibrium), with f ≈ 1 at R = 100 arcsec (1.8 kpc; consistent with photometry) and $\alpha = f \rho_{grav} / \tau$, with $\tau = 10^{12}$ yr (Faber & Gallagher 1976).

Other entrainment – let f vary.

Radio and X-ray measurements of jet width agree.

No dissipation (constant \dot{M}) P eqn: speed must decrease Π eqn: speed must increase

=> Flow is dissipative

Flow is over-determined: adjust f to make 3 equations consistent.

2010 August 24

Physics of Intracluster Medium

Effect of Environment

Dissipation due mass entrainment makes a jet unstable: larger cross section => more entrainment => more dissipation => jet broadens

$$\frac{dM}{dR} = \alpha A; \ \frac{d\Pi}{dR} = -A\frac{dp}{dR}; \ P = \text{ constant}$$

Same power, initial speed, mass injection (α) as fiducial model, but bounding pressure is scaled by down factors of up to 2:

Conclusions

- Appears to be substantial entrainment in the jets of both Cyg A (FRII) and Cen A (FRI)
- Dissipation due to entrainment places the Cen A jet close to the margin for rapid inflation
- fate of the jet is sensitive to environmental influence
- Details of jet physics affect the site and manner of energy deposition by AGN jets