Interaction of AGN Outflows and Plasma Bubbles with the ICM

Tom Jones

UNIVERSITY OF MINNESOTA

Pete Mendygral (UMN), Sean O'Neill (CU), David Porter (UMN), Dongsu Ryu (PNU), Dave DeYoung (NOAO), Klaus Dolag (MPA), Christoph Pfrommer (CITA)

Outline

--AGN/ICM Interactions Provide a Rich Laboratory--

•A) X-ray Cavities (Bubbles) as AGN Calorimeters

•B) Stability of Cavities

•C) Dynamic ICMs

•D) NATs as Possible Probes of ICM Shocks

A) Giant AGN-related Cavities Commonly Seen in ICMs Potential Calorimeters of AGN Energy Output

MS0735.6+7421

Red: radio Blue: X-ray White: visible

McNamara etal

Cavity Enthalpy as an AGN Calorimeter: How Well Does it Measure?

Thermal X-rays from ICM provide local pressure estimates:

$$\begin{split} & \mathsf{E}_{tot} \sim \mathsf{E}_{cav} + \mathsf{PV} = \mathsf{H} \\ &= \gamma/(\gamma\text{-1}) \; \mathsf{PV} \quad (\text{assuming } \mathsf{E}_{cav}\text{=}1/(\gamma\text{-1}) \; \mathsf{PV}) \\ & \mathsf{E}_{tot} \sim \mathsf{H} \sim (5/2) \; \mathsf{PV} \; (\gamma = 5/3) \\ &\sim 4 \; \mathsf{PV} \; (\gamma = 4/3) \\ & \mathsf{L}_{AGN} \quad \sim \mathsf{E}_{tot} \; / \; t_{age} \qquad (\text{given some age estimate}) \\ & \text{Cavity-ICM pressure balance assumed} \end{split}$$

$$PV' = \int P_{ICM} dV_{cavity}$$

Test: 3D MHD Jet Simulations & Synthetic Observations

Bipolar, collimated jet outflows

 L_{jet} = 1.2x10⁴⁶ erg/s (combined jets at full power), Mach 30, v_j = 0.1c r_{jet} = 3 kpc ρ_{iet}/ρ_0 = 0.01

Toroidal jet B field at source ($\beta \sim 100$; B ~ 10 μ G)

Steady, Intermittent & Terminated @26 Myr Outflows

AGN at center of ~ 4x10¹⁴ M_o relaxed cluster (NFW potential)

kT_{ICM} ~3 keV (~ Perseus)

Double β ICM density profile with random density fluctuations Tangled ICM magnetic field

 $<\beta_{plasma}>~100$ (range ~ 30:1000) ($<B_{core}>~7\mu G$) No radiative cooling of ICM

600x480x480 kpc box (1 kpc resolution) (O'Neill & Jones 2010)

Intermittent Jets

 $t_{on} = 13 \text{ Myr}$ $t_{off} = 13 \text{ Myr}$ DEOMACH.COM

Six cycles

Blue (AGN plasma) Red (ICM plasma) Rendering of Illustrative Outflow Structure t ~ 170 Myr

Magnetic Field Intensity Projected i~ 45°

Synthetic 2 keV X-ray Observations: Thermal + Inverse Compton (CMB) Radio Synchrotron

Intermittent Jets, projected i=80°

2 keV intensity divided by double β fitted profile

i = 80° 170.6 Myr 52.5 Myr 26.3 Myr i = 45° 170.6 Myr 26.3 Myr 52.5 Myr i = 30° 26.3 Myr 52.5 Myr 170.6 Myr 0.2 0.6 0.8 σ 0.4 τ 1.2 1.4

Intermittent Jets

Physics of the ICM

Intermittent Jet 'Observed' & Actual Energetics

Aug 24, 2010

Cavity Ages Not Really Known--Common Estimates:

$$t_{buoy} \sim R \sqrt{(A/(2gV))}, t_s \sim R/c_s$$

R, A & V are size, cross-section and volume estimates*

Model (i=80°)	Age in sim. (Myr)	t _{buoy} (Myr)	t _s (Myr)
Intermittent	170	154	155
Terminated	157	110	155

*All 'derived from observation'

Resultant Jet Power 'Observations'

Model (i=80º)	E _{tot} (sim.) 10 ⁶⁰ erg	E _{obs} = 2.5H _{obs} 10 ⁶⁰ erg	<p<sub>jet>(sim.) 10⁴⁵erg/s</p<sub>	P _{obs} = E _{obs} /t _{buoy} 10 ⁴⁵ erg/s
Intermittent	15	25	2.8	3.0
Terminated	9	15	1.8	4.3

B) Should the cavities survive ~ 10⁸ yr?

•Static bubble top Rayleigh-Taylor unstable: $(\eta = \rho_{bub} / \rho_{ICM} << 1; disruption for \lambda \sim R)$

$$t_{R-T} \sim \sqrt{\frac{1}{kg}} \sim \sqrt{\frac{h\lambda}{c_s^2}} \sim_{\lambda \to R} t_s \sqrt{\frac{h}{R}} <_{R>h} t_s$$

•Static bubble unstable to vortex ring formation (faster than R-T): (lower boundary not in HSE)

$$t_{vort} \sim \sqrt{\frac{\eta^{1/2} R}{g}} \sim t_{R-T} \eta^{1/4} < t_{R-T}$$

ONeill etal 2009

Scannapieco & Bruggen 2008

Real Cavities & Simulated 'Dynamical' Cavities Do Survive

MS0735.6+7421

Simulation: relic plasma 125 Myr after jet termination in cluster-like environment

Some Possible Stabilizing Factors

•R-T instabilities could lead to small-scale turbulence, entrainment, enhanced effective viscosity

High Reynolds number simulation with subgrid turbulence model

Scannapieco & Bruggen 2008

Physics of the ICM

•"Large Scale" Magnetic Fields

Field Tension can stabilize R-T & K-H instabilities in field plane;
Note, however, tension also can 'cut' bubble, disrupting it.
Field tangling on scales *I*<r_{bubble} limits disruption, maximizes stabilizing role

Even "weak" fields ($\beta >> 1$) have influence

•Real Cavities Form 'Dynamically'

<u>Dynamical Formation & Entrainment => stabilizing</u>

• Jet momentum transferred to adjacent ICM, continues to drive out (ONeill & Jones 2010)

Underlying Issue: Small Scale Flows, Turbulence, Viscosity:

Key question: effective viscosity, Reynolds number difficult to estimate ICM is a collisionless plasma (Coulomb scattering, τ_{col} >>1/ ω_{g})

$$v_{Brag} \sim v_p l_{col,p} \sim 10 \frac{T_{keV}^{5/2}}{n_{-2}} kpc - km/sec$$

$$l_{col} \sim 20 \ \frac{T_{keV}^2}{n_{-2}} pc;$$

$$\tau_{col,p} = \frac{l_{col}}{v_{p}} \sim 3.8 \times 10^{4} \frac{T_{keV}^{3/2}}{n_{-2}} \text{ yrs}$$

$$n_{-2} = \frac{n}{10^{-2} cm^{-3}};$$
$$u_{100} = \frac{u}{100 km / \sec}$$

For typical ICMs ($T_{kev} \sim several$, $n_{-2} < 1$) Can be that $l_{col} \sim kpc$, $\tau_{col} \sim Myr$

Underlying Issue: Small Scale Flows, Turbulence, Viscosity:

•For turbulence need $R_e > 10^3$ on driving scales, $l \sim L$

$$R_{e} \sim \frac{ul}{v_{Brag}} \sim 20 \frac{u_{100} l_{kpc} n_{-2}}{T_{keV}^{5/2}}$$

$$\mathbf{M}(\mathbf{L}) = \left(u(L) / c_s \right) >> 1 / 2 \left(T_{keV}^2 / L_{100} n_{-2} \right)$$

$$L_{100} = \frac{L}{100 kpc}$$

Small Scale Flows, Turbulence: Magnetic Fields

Particle streaming along fields; mfp limited by field line bends: Field lines bend only on scales where $M_A = u(I)/v_A > 1$ turbulent velocity $u(I_A) \sim u(L)(I_A/L)^{1/3}$ $=>mpf \sim min(I_c, I_A),$

$$v_A \approx 20 \frac{B_{\mu G}}{n_{-2}^{1/2}} km / \sec$$

$$\frac{l_A}{L} \sim \left(\frac{\mathbf{v}_A}{u_L}\right)^3 \sim 10^{-2} \frac{B_{\mu G}^3}{u_{L,100}^3 n_{-2}^{3/2}}$$

So for example, with $L_{100} \sim 1$, $u_{L,100} \sim 1$, $B_{\mu G} \sim 3$,

Micro instabilities may be critical players: e.g., firehose, mirror

Magnetic Field Structure in Turbulent Flow: •u & B fields intermittent on MHD scales, $l_{A,}$, •small-scale power $\perp \mathbf{B}(l_A)$, *laminated ribbons spanning large eddies*

Driven, isothermal turbulence, evolved from very weak field, $\beta=E_t/E_B=10^6$;

 $\frac{\Rightarrow E_{B}/E_{k} \sim 1/2}{\Rightarrow E_{k}/E_{t} \sim 1/5}$

Porter, Ryu, Cho & Jones

Volume containing one large eddy on ~driving scale

From 2048³ compressible MHD simulation

C) Dynamical ICM Interactions with AGN

'Relaxed',dynamical cluster from SPH MHD cosmological simulation

This box (588 kpc³) $\Delta x = 1$ kpc

> Mendygral, Dolag & Jones

Magnetic Field Strength

Influence Enhanced on Unsteady Outflows

'Relaxed',dynamical cluster from SPH MHD cosmological simulation

This box (588 kpc³) $\Delta x = 1$ kpc

> Mendygral, Dolag & Jones

Gas Density

Aug 24, 2010

Physics of the ICM

Flows in Disturbed Clusters May Also Disrupt Outflows & Broadly Extend Interactions

B. J. Morsony et al.

AGN in disturbed cluster extracted from SPH cosmological simulation

High R_e gasdynamics, so outflows unstable

Morsony etal 2010

Figure 8. Synthetic Chandra X-ray data (upper left, log scale, counts/pixel) and radio data (upper right, log scale, arbitrary units) for simulation with continuous AGN of 10⁴5 erg/s (45C) after 120 Myr, at the distance of the Perseus cluster. Lower left and lower right panels are an unsharp-masked image (with and without labels) of the X-ray data produced by the same procedure as in Fabian et al. 2003. A series of bubbles detached from the AGN are visible to the upper left and lower right of the cluster centre, and are labelled L1 - L3 and R1 - R3 in the lower right image. Low level radio emission extends beyond the distinct bubbles visible in the X-ray images, although there are small ripples in the unsharp-masked image throughout the radio region.

Physics of the ICM

D) NATs as Possible Probes of ICM Shocks

Aug 24, 2010

Physics of the ICM

Summary

X-ray cavities provide approximate calorimeters of AGN activity

 Cavities are dynamically formed & stabilized by entrainment, potentially by magnetic fields & perhaps locally generated turbulent viscosity.

ICM strength magnetic fields have structure-dependent roles

•Large scale ICM flows & turbulence can control long term AGN outflow evolution, disruption & impact on the ICM

 AGN outflows provide unique probes of ICM environments & dynamics

Thanks!

Example: Hydra (cavities & shocks)

Aug 24, 2010

Physics of the ICM

Deposition of Outflow Contents in the ICM:

~ $\frac{1}{2}$ of outflow energy deposited *locally* in ICM How to get it distributed more broadly?

Volume Estimation: Ellipsoids (by Eye)

Dynamical ICMs Broaden & Complicate Interactions

Intermittent AGN flow in 'relaxed', but dynamical cluster extracted from SPH MHD cosmological simulation

This box (588 kpc³) $\Delta x = 1$ kpc T_{end} ~ 130 Myr

AGN Outflows Clearly Impact Environments

Radio contours over Chandra X-ray

Cygnus A

NGC 1265 "complex" probes Perseus' periphery

Brentjens & deBruyn

Dynamical ICMs Broaden & Complicate Interactions

Intermittent AGN flow in 'relaxed', but dynamical cluster extracted from SPH MHD cosmological simulation

This box (588 kpc³)

Dynamical ICMs Broaden & Complicate Interactions

Intermittent AGN flow in 'relaxed', but dynamical cluster extracted from SPH MHD cosmological simulation

This box (588 kpc³)

Dynamical ICMs Extend Outflow Interaction Even in Relatively 'Relaxed' Clusters

Steady AGN flow in 'relaxed', but dynamical cluster extracted From SPH MHD cosmological simulation

