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SZ Observations of outer ICM
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RXCJ0232.2-4420, Plagge et al (arXiv:0911.2444)
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Electron Equilibration: Physical Picture
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Total gas pressure downstream from
shock given by standard jump conditions
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Two major uncertainties:
* amount of electron heating at the
shock (min adiabatic compression)

* rate of temperature equilibration
downstream from the shock front
(min due to Coulomb collisions)

Simulations implicitly assume
instant equilibration and may
overestimate electron temperature

Rudd & Nagai (2009), Fox & Loeb (1997), see also Bykov et al (2008)
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Numerical Scheme
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Separately track electron internal
energy which is advected with the fluid
(not subject to shocks) with source
terms:

= = (y=1)T.(V-v)
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Relaxation term heating/cooling

coupling to ions

Coulomb equilibration timescale:
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~ 6.3 x10° yr (T,/10°K)*? (n;/107° cm

Simple model allows us to
probe max/min effect in single
simulation, unable to model
shock-dependent heating
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Cosmological Simulations

Modified the distributed Adaptive Refinement
" Tree (ART) code to simulate several samples
' of galaxy clusters using this scheme (without
: cooling and feedback physics)

4

|6 galaxy clusters and groups from

Nagai et al (2007)
Msoo = 0.31-7.3x10'* h! M@
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10.8

Hydro resimulation of Bolshoi N-body
simulation (Klypin et al 2010)

. 250 h-! Mpc 10243 particles

2 ~130 clusters Msg0 > 10'* h'! Mo

0.6

«<— I[2Mpc/h —> High resolution (~few kpc) in cluster core,
degrading to several ~10s kpc in outskirts
Rudd & Nagai (2009)
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Nagai
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Range of temperatures
and shock morphologies
leads to qualitatively
different distribution of
“cold” electrons

Expected mass trend
broadly reproduced
with some scatter due
to formation history

Only self-consistent
simulations can model
the full distribution of

accretion histories



Radial Temperature Profile
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Spherically averaged electron temperature profiles reach
minimum relative to mean gas temperature near shock radius.

Rudd & Nagai (2009); see also Fox & Loeb (1997)
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Relaxation State/Cluster Assembly
Te/Tgas
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T R different distribution of non-
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w Understanding effect of cluster
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Effect on SZ Flux

Average of |50 sightlines/cluster
| 25

1.05 IE Mean Gas I'I'emp —l IElec’[ron Temp
L[ g gy g | 20 | Consistent with
s H ° Andersson et al
w 8¢ ° (2010)
% 0.95 — 15[
= ®
=
B Yint (< 1) /TenedV
~ 0.90 7 10"-J_1_
Yoroj (< R) /Tenedﬂ
0.85F [ Spherical (Wlthln 7‘500> g |
® Projected (60 h~! Mpc) |_|-|
L — L L L L | | | LI | ﬁ
0.80 1014 1015 15 1.20 1.25 1.30 1.35
A45m)[h—1_ﬁf®] }%mmnq/}%mmm

Yproj/ Yint

Effect is strongest for more massive clusters (up to ~6% in the
projected SZ flux). Lower electron temperature in outer
regions leads to lower flux when computed in projection.
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Ye/ Ygas
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Mass scale moves to lower mass with redshift
(combination of evolution in age-mass relation and
entropy-mass relations)
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Summary
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Rudd, Shaw & Nagai (2010, in prep)
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Electron temperatures may be

suppressed by up to 60% in the
outskirts of massive clusters if

equilibration proceeds through
Coulomb collisions.

Effect stronger in hotter and more
massive clusters; projected SZ flux
suppressed by ~6% at 8x10'* M@
atz=0

Effect grows to lower mass with
increasing redshift due partly to
evolution of mass-entropy relation

Unfortunately unlikely to be
directly constrained by
observations in the near future



