Lepton Beam

Spin Physics at Existing Facilities

N.C.R. Makins

University of Illinois at Urbana-Champaign
see other talks for proton-beam stories!

Outline

- Spin at the Heart of Matter: the restless world within the atom
- Single-spin asymmetries: a key to the spin kingdom
- Inside the proton: quark spin \& orbital motion
- A coherent picture:

Are we there yet?

The Strange Nature of Matter

... and at every level, there is motion:
pointlike particles, forever spinning and orbiting ...

Parton Distribution Functions

Look inside the proton with high energy beams ...
\Rightarrow a rich substructure is revealed!

sea quarks : virtual quark-antiquark pairs that fluctuate in and out of the vacuum
\boldsymbol{X} fraction of proton momentum carried by struck quark
$\boldsymbol{q}(\boldsymbol{x})$ parton distribution func ${ }^{n}$
gluons: the color fields of the strong force

3 constituent quarks of mass $\approx 350 \mathrm{MeV}$
many bare quarks of tiny mass $\approx 5 \mathrm{MeV}$, and gluons account for
$>40 \%$ of the momentum, ~all of the mass ...

The Puzzle of Proton Spin

The proton: spin $1 / 2$

The quarks spins account for only 20\%

Whence comes the proton spin?

$$
q(x)=q^{\uparrow}(x)+q^{\downarrow}(x)
$$

only three possibilities

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g}
$$

(1) Quark polarization

$$
\Delta \Sigma \equiv \int d x(\Delta u(x)+\Delta d(x)+\Delta s(x)+\Delta \bar{u}(x)+\Delta \bar{d}(x)+\Delta \bar{s}(x)) \approx 20 \% \text { only }
$$

(2) Gluon polarization

$$
\Delta G \equiv \int d x \Delta g(x) \quad ?
$$

(3) Orbital angular momentum

In friendly, non-relativistic bound states like atoms \& nuclei (\& constituent quark model), particles are in eigenstates of $L \rightarrow$ shells

$$
t_{l=4}=t_{1} \text { ? }
$$

Not so for bound, relativistic Dirac particles .. Noble " l " is not a good quantum number

Single-Spín Asymmetries

Single-Spin Asymmetries in Elastic pp Scattering

Crab, Krisch et al, 1990

Induced Polarization P_{N}

Neal \& Longo, 1967

The Spin-Orbit Interaction

particles on left / right sides

 head for stronger / weaker $B$$U=-\vec{\mu} \cdot \vec{B}$

Spin S // Magnetic Moment of beam polarized

Let $V(r)=$ target's potential field, in target rest frame.

Lorentz boost to beam frame:

$$
\vec{B}^{\prime}=-\gamma \frac{\vec{v}}{c^{2}} \times \vec{E}=\frac{\vec{p}}{m c^{2}} \times \frac{\vec{r}}{r} \frac{d V}{d r}
$$

$$
\text { Using } \vec{r} \times \vec{p}=\vec{l} \hbar \text { and }
$$

$$
U=-\vec{\mu} \cdot \vec{B}^{\prime} \sim-\vec{s} \cdot \vec{B}^{\prime}
$$

\Rightarrow spin-orbit interaction

$$
U_{\mathrm{s}-\mathrm{o}}=\frac{\mathrm{const}}{r} \frac{d V}{d r} \vec{s} \cdot \vec{l}
$$

Note: The origin of the underlying potential $V(r)$ doesn't matter
\Rightarrow the result follows from relativity

Spin-Orbit Interaction for the short-range Nuclear Force

With $\rho(r)=$ target density,

$$
U_{\mathrm{s}-\mathrm{o}} \sim \frac{d V}{d r} \vec{s} \cdot \vec{l} \sim \frac{d \rho}{d r} \vec{s} \cdot \vec{l}
$$

nuclear spin-orbit interaction active at target surfaces

SSA: A_{N} in $p^{\uparrow} p \rightarrow p p$
$\rightarrow \sin (\theta)$ term in xsec

$$
\begin{gathered}
\Psi_{\mathrm{scat}} \sim\left(U_{1}+i U_{2}\right) e^{i k r}-U_{\mathrm{s}-\mathrm{o}} e^{i k(r-R \theta)}+U_{\mathrm{s}-\mathrm{o}} e^{i k(r+R \theta)} \\
=\left(U_{1}+i U_{2}+2 i U_{\mathrm{s}-\mathrm{o}} \sin k \theta R\right) e^{i k r} \\
\sim \frac{d \sigma}{d \Omega} \sim\left|\psi_{\mathrm{scat}}\right|^{2} \sim U_{1}^{2}+U_{2}^{2}+4 U_{\mathrm{s}-\mathrm{o}}^{2} \sin ^{2} k \theta R \\
+4 U_{2} U_{\mathrm{s}-\mathrm{o}} \sin k \theta R
\end{gathered}
$$

- Interference, between an imaginary, spin-independent term $\boldsymbol{U}_{\mathbf{2}}$ in volume potential and a spin-dependent spin-orbit term $\boldsymbol{U}_{\text {s-o }}$
- Surfaces where target density has a gradient \rightarrow target with structure

While many theoretical models have been suggested to explain the large spin effects found in strong interactions, models based on perturbative QCD imply that the analyzing power should be zero at high energy and large $P_{\perp}{ }^{2}$.
Our new high-precision data make it difficult to assume that this disagreement between theory and experiment will disappear because the nonzero A_{N} is a statistical fluctuation.
Perhaps one should now try to gain some new theoretical understanding of strong interactions that is consistent with this and other large and unexpected spin effects.

Single-spin asymmetries in $p^{\dagger} \uparrow \rightarrow \pi \mathbf{X}$

Analyzing Power

Observable $\vec{S}_{\text {beam }} \cdot\left(\vec{p}_{\text {beam }} \times \vec{p}_{\pi}\right)$ odd under naive Time-Reversal

SSA's at high-energies

STAR Run 6

T-odd observables
SSA observables $\sim \overrightarrow{\mathbf{J}} \cdot\left(\overrightarrow{\mathbf{p}_{1}} \times \overrightarrow{\mathbf{p}_{2}}\right)$
\Rightarrow odd under naive time-reversal
Since QCD amplitudes are T-even, must arise from interference between spin-flip and non-flip amplitudes with different phases
an't come from perturbative subprocess xsec:

- q helicity flip suppressed by m_{q} / \sqrt{s}
- need α_{s}-suppressed loop-diagram to generate necessary phase

At hard (enough) scales, SSA's must arise from soft physics: T-odd distribution /
fragmentation functions

SSA's at high-energies

STAR Run 6

SSA observables $\sim \overrightarrow{\mathbf{J}} \cdot\left(\overrightarrow{\mathbf{p}_{1}} \times \overrightarrow{\mathbf{p}_{2}}\right)$
\Rightarrow odd under naive time-reversal
Since QCD amplitudes are T-even, must arise sme.inurance between spin-flip and different phases
Must be a spin-orbit structure either in the fragmentation process ubprocess xsec: or within the proton itself

At hard (enough) scales, SSA's must arise from soft physics: T-odd distribution /
fragmentation functions

E704 Mechanism \#1: The "Collins Effect"

Need an ordinary distribution function ... transversity

$q(x)$
$\Delta q(x)$

$h_{1}(x)$
... with a new, T-odd "Collins" fragmentation function $H_{1}^{\perp}\left(z, p_{T}\right)$

E704 effect:

E704 Mechanism \#2: The "Sivers Effect"

Need the ordinary fragmentation function

$$
D_{1}(z)
$$

... with a new, T-odd "Sivers" distribution function $\quad f_{1 T}^{\perp}\left(x, k_{T}\right)$
Phenomenological model of Meng, Boros, Liang:
Forward $\pi+$ produced from orbiting valence-u quark by recombination at front surface of beam protons

Electro-Production of Hadrons with Tranvserse Targets

Measure dependence of hadron production on two azimuthal angles

Electron beam defines scattering plane

Target spin transverse to beam
 around q vector ...
with respect to scattering plane
$\phi_{S}=$ target spin orientation $\phi_{h}=$ hadron direction

Electroproduction of Pions with Transverse Target

SIDIS xsec with transverse target polarization has two similar terms:

$\otimes H_{1}^{\perp}=$
$\left.-\phi_{S}^{l}\right) \Rightarrow f_{1 T}^{\perp}=$
$\otimes D_{1}=\bullet$
separate Sivers and Collins mechanisms

- $\left(\phi_{h}^{l}-\phi_{S}^{l}\right)=$ angle of hadron relative to initial quark spin
- $\left(\phi_{h}^{l}+\phi_{S}^{l}\right)=\pi+\left(\phi_{h}^{l}-\phi_{\rho}^{\prime}\right)=$
hadron relative to final quark spin

Results from lepton beams: Collins, Sivers, and friends

The Collins

Fragmentation Function

$$
\begin{aligned}
& H_{1}\left(z, p_{T}\right) \\
& \text { (f) }
\end{aligned}
$$

Collins Moments for pions from H

Understanding the Collins Effect

The Collins function exists! \rightarrow spin-orbit correlations in $\boldsymbol{\pi}$ formation Is the Artru mechanism responsible?

The Sivers Function

$$
\begin{aligned}
& f_{T T}^{\prime}\left(x, k_{T}\right) \\
& \stackrel{\ominus}{\ominus}
\end{aligned}
$$

Sivers Moments for pions from \mathbf{H}^{\uparrow} Data

The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like $f_{1 T}^{\perp}$ must arise from interference ... but a distribution function is just a forward scattering amplitude, how can it contain an interference?

Brodsky, Hwang, \& Schmidt 2002

can interfere with

and produce
a T-odd effect!
(also need $L_{z} \neq 0$)

It looks like higher-twist ... but no, these are soft gluons = "gauge links" required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are final (or initial) state interactions ... and may be process dependent! \Rightarrow new universality issues

e.g. Drell-Yan

Global Fit to Sivers Asymmetries

N.C.R. Makins, Spin Physics Symposium, U Michigan, Nov 14, 2009

Phenomenology: Sivers Mechanism

Many models predict $\mathrm{L}_{u}>0$...

M. Burkardt: Chromodynamic lensing

Electromagnetic coupling $\sim\left(J_{0}+J_{3}\right)$ stronger for oncoming quarks
u mostly over here

We observe $\left\langle\sin \left(\phi_{h}^{l}-\phi_{S}^{l}\right)\right\rangle_{\mathrm{UT}}^{\pi^{+}}>0$
(and opposite for π^{-})
\therefore for $\phi_{S}^{l}=0, \phi_{h}^{l}=\pi / 2$ preferred Model agrees!

Jet Shadowing
Parton energy loss considerations suggest quenching of jets from "near" surface of target
\Rightarrow quarks from "far" surface should dominate
Opposite sign to data ...

$$
\begin{aligned}
& h_{1}^{1}\left(x, k_{T}\right) \\
& \text { © - }
\end{aligned}
$$

First charge-separated data on $<\cos (2 \Phi)>$ u

$$
h_{1}^{\perp}\left(x, k_{T}\right) \otimes H_{1}^{\perp}\left(z, p_{T}\right) \rightarrow \cos (2 \phi) \text { modulation }
$$

deuterium \approx hydrogen values \rightarrow indicate Boer-Mulders functions of same sign for u and d quarks (both negative \& similar magnitudes)

A Coherent Picture?

- Transversity: $h_{1, u}>0 \quad h_{1, d}<0$ \rightarrow same as $g_{1, u}$ and $g_{1, d}$ in NR limit
- Sivers: $\quad f_{1 T^{\perp}, u}<0 \quad f_{1 \mathrm{~T}^{\perp}, d}>0$
\rightarrow relat $^{\mathrm{n}}$ to anomalous magnetic moment*
$\boldsymbol{f}_{i \mathrm{I}^{\perp}, q} \sim \boldsymbol{\kappa}_{q}$ where $\kappa_{u} \approx+1.67 \quad \kappa_{d} \approx-2.03$
values achieve $\kappa^{p, n}=\Sigma_{q} e_{q} \kappa_{q}$ with u, d only

- Boer-Mulders: should follow that $h_{1}{ }^{\perp}, u$ and $h_{1}{ }^{\perp}, d<0$?
\rightarrow relat $^{\mathrm{n}}$ to tensor magnetic moment*
\rightarrow possible analogue to Sokolov-Ternov?

but these TMDs are all independent

* Burkardt PRD72 (2005) 094020;

$$
\left\langle\vec{s}_{u} \cdot \vec{S}_{p}\right\rangle=+0.5 \quad\left\langle\vec{l}_{u} \cdot \vec{S}_{p}\right\rangle=+0.5,\left\langle\vec{S}_{u} \cdot \vec{l}_{u}\right\rangle=0
$$

Barone et al PRD78 (1008) 045022;

Transverse spin on the lattice

Compute quark densities in impact-parameter space via GPD formalism nucleon coming out of page ...
spatial shifts \rightarrow infer L_{q} direction via chromodynamic lensing

\rightarrow no disconnected graphs, evolution applied via Ji, Hoodbhoy

\rightarrow lattice shows $L_{u}<0$ and $L_{d}>0$ in longitudinal case at expt al scales!
Evolution might explain disagreement with quark models, but not with lattice calculations of transverse spin.

Are disconnected graphs - sea quarks - the reason for apparent $L_{u} \& L_{d}$ sign change from longitudinal to transverse ?

