

Spin Physics at the LHC

Jonas Strandberg

- 1. Introduction to the LHC
- 2. Spin Measurements in Top Quark Physics
- 3. Measuring the Spin of the Higgs Boson
- 4. Spin Measurements of SUSY Particles
- 5. Conclusions

1. Introduction

- Spin physics at the LHC is a vast topic, unfortunately I can only show you a fraction of all the available studies.
 - I will concentrate on physics which is only accessible at the highest energy accelerators like the LHC.
 - Will have to completely ignore all the exciting measurements to be made on *b*-quark hadrons.
- The results discussed in this talk are not my own. Will give an example of the physics done in three areas: Top, Higgs and SUSY.
 - Spin measurements play a very important role even for physics at the energy frontier.
 - Hopefully these will give you a flavor of the many exciting things that are awaiting us in the LHC era.

The Large Hadron Collider

- The world's largest and highest energy particle collider.
 - Will collide protons at a center-of-mass energy of 14 TeV.
- Located 100 m underground, outside Geneva, Switzerland.
- Four major experiments, ATLAS, CMS, ALICE and LHCb.
 - Records and analyzes the LHC proton collisions.
 - Will concentrate on results from ATLAS in this talk.

2. Spin Measurements in Top Quark Physics

- The t is the heaviest known particle with $M_t = 173$ GeV.
- Discovered in 1995 by CDF and DØ at the Tevatron.
- Top quarks produced:
 - Pairs: $gg \rightarrow t\bar{t}, \ q\bar{q} \rightarrow t\bar{t}.$
 - Singles: $q\bar{q}' \rightarrow tb$, $gq \rightarrow tbq$.

- Decays almost 100% through $t \to Wb$, the coupling $V_{tb} \simeq 1$.
 - Final state determined by the decay of the W bosons.
- Decays before hadronization, allows for probing the quark properties. Spin information transferred to the daughters.
- The LHC will be a top quark factory, producing millions of $t\bar{t}$ pairs.
 - Top quark physics will enter the realm of precision physics.

Measuring the W Helicity

• W polarization in the $t \rightarrow Wb$ decay unambiguously predicted by the SM, direct test of the V-A structure of the tWb vertex:

$$F_L = \frac{2M_W^2}{M_t^2 + 2M_W^2} = 0.297 - 0.002 \times (M_t - 175)$$

$$F_0 = \frac{M_t^2}{M_t^2 + 2M_W^2} = 0.703 + 0.002 \times (M_t - 175)$$

$$F_R = 0$$

- Rightmost decay forbidden in SM for massless *b*.
- Sensitive to for example:
 - Anomalous V+A coupling.
 - Charged Higgs in the top decay, $t \to H^{\pm}b$.

The Sensitive Variable

- Define the observable $\cos \theta^*$ (or sometimes called $\cos \Psi$).
 - θ^* angle between charged lepton in W rest frame and W direction in t rest frame.

Sensitivity to Anomalous Couplings

• Do an expansion of the most general CP-conserving \mathcal{L} for the tWb vertex and keep only the lowest two orders:

$$\mathcal{L} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \bar{b} \gamma^{\mu} (f_{1}^{L} P_{L} + f_{1}^{R} P_{R}) t - \frac{g}{\sqrt{2}\Lambda} \partial_{\nu} W_{\mu}^{-} \bar{b} \sigma^{\mu\nu} (f_{2}^{L} P_{L} + f_{2}^{R} P_{R}) t$$

- f_1^L and f_1^R vector-like couplings, f_2^L and f_2^R tensor-like couplings.
- In the Standard Model, $f_1^L = V_{tb} = 1$ and $f_1^R = f_2^L = f_2^R = 0$.

W Helicity Results

- Current results from CDF with 1.9 fb⁻¹ yields $F_0 = 0.66 \pm 0.16$ and $F_R = -0.03 \pm 0.07$. DØ also has similar results.
- With 10 fb^{-1} (one year at nominal luminosity) ATLAS will be able to measure F_0 to 2% accuracy and F_R to 1% accuracy.
 - Set limits on new anomalous couplings in the tWb vertex at $f_1^R < 0.3$, $f_2^L < 0.13$ and $f_2^R < 0.04$ at the 2σ confidence level.

3. The Higgs Boson

- We know the electro-weak symmetry is broken at low energies.
 - Weak force is short ranged,
 W and Z bosons are massive.
- Higgs mechanism proposed in the 60's as explanation for EWSB.
 - Introduces the Higgs field and predicts the Higgs boson.
 - So far there is no direct evidence for its existence.
- All properties of the Higgs boson are predicted from theory.
 - Except the mass, M_H .

• LHC will settle the question of the Higgs boson.

low M_H with 30 fb⁻¹.

CFRN-OPFN-2008-020

ATLAS

Spin and CP of the Higgs

- The SM Higgs boson is a CP-even scalar (spin-0).
- $H \rightarrow WW$ analysis depends on a $\Delta \phi(\ell, \ell)$ correlation.

- The $H \rightarrow ZZ \rightarrow 4\ell$ does not use spin or CP information in discovery.
 - Polarization of Z bosons depend on Higgs mass, for $M_H > 300 \text{ GeV}$ the Z's from the Higgs decay are mostly longitudinally polarized.
- In the center-of-mass of the Z boson, the angle θ follows:

$$\frac{d\Gamma}{d\cos\theta}(Z_L \to \ell\ell) \quad \propto \quad \sin^2\theta$$
$$\frac{d\Gamma}{d\cos\theta}(Z_T \to \ell\ell) \quad \propto \quad 1 + \cos^2\theta$$

• Z from other processes are mostly transversely polarized.

Observables R, α and β

- The distribution of the angle between the 2 Z's decay planes, ϕ , expected to be non-uniform for transversely polarized Z bosons.
 - Correlation starts to disappear for $M_H > 300$, longitudinal Z's.
- Angular distributions for θ and ϕ described by:

$$F(\phi) = 1 + \alpha \cos \phi + \beta \cos 2\phi$$

$$G(\theta) = T(1 + \cos^2 \theta) + L \sin^2 \theta$$

- Define observables α , β and R = (L T)/(L + T).
- Test for:
 - Spin 1, CP +1
 - Spin 1, CP -1
 - Spin 0, CP -1

Measurement of R

- Predicted values of *R* as a function of the Higgs mass.
- Expected precision on the measurement of R (100 fb⁻¹).
- R provides good separation between the SM Higgs boson and the alternative Higgs bosons for $M_H > 230$ GeV.
 - For $M_H \approx 200$ GeV, a measurement of R is only able to exclude the pseudo-scalar alternative.

Eur. Phys. J. C32:209-219

Predictions for α and β

- Measuring α and β helps pin down the CP and spin of the Higgs.
 - Can distinguish between spin-0 and spin-1 for $M_H = 200$ GeV.

• Sensitivity to α and β can be enhanced if information about the signs of the $\cos \theta$ terms for the Z bosons is used.

Eur. Phys. J. C32:209-219

Expected Measurements of α and β

- Expected measurement of α and β when the sign of $\cos \theta_1$ is equal to the sign of $\cos \theta_2$.
- Expected measurement of α and β when the sign of $\cos \theta_1$ is opposite to the sign of $\cos \theta_2$.

Excluding Anomalous Spin and CP

- Exclude anomalous values of spin and CP from:
 - Decay angle θ in the Z boson rest frame.
 - The angle ϕ between the decay planes of the Z's.
- Pseudo-scalar easy to exclude for all $M_H > 200$ GeV.
- 5σ exclusion of the spin-1 hypothesis for $M_H > 230$ GeV.

Eur. Phys. J. C32:209-219

4. Spin Measurements in Supersymmetry

- Perhaps there is no other place where spin plays such a fundamental role as in the theory of Supersymmetry.
 - Postulates that for every known particle there is a super-partner with spin differing by 1/2 unit.
- Phenomenology and (s)particle mass spectra depend on what assumptions are made in the model.
 - SUSY breaking mechanism, unification assumptions and so on.
 - I will be talking mainly about three sparticles: \tilde{q} , $\tilde{\chi}_2^0$ and $\tilde{\ell}$.
- LHC is a discovery machine:
 - SUSY could be found quickly.
- Determining the underlying theory:
 - Spin measurement can discriminate between SUSY or UED.

Measuring Spin Effects from $ilde{\chi}_2^0$

• Define θ^* , the angle between q and ℓ in the $\tilde{\chi}_2^0$ rest frame. Then: $(m_{\ell q}^{near})^2 = 2|\mathbf{p}_\ell||\mathbf{p}_{\mathbf{q}}|(1 - \cos \theta^*)$

$$= \left(m_{\ell q}^{near}\right)_{max}^2 \sin^2(\theta^*/2)$$

- Maximum for $\sin^2(\theta^*/2) = 1$, i.e. $\theta^* = \pi$.
- Defining $\hat{m} \equiv m_{\ell q}^{near}/(m_{\ell q}^{near})_{max} = \sin(\theta^*/2)$, the p.d.f. $dP/d\hat{m}$ is:

$\tilde{q} - \tilde{\bar{q}}$ Production Asymmetry

- Blue triangles:
 - Negative leptons. ¹
- Red circles:
 - Positive leptons.
- Measure asymmetry for ℓ^-/ℓ^+ vs. $m_{\ell a}^{near}$.

- If an equal amount of squarks and anti-squarks were produced, the $m_{\ell q}^{near}$ distribution would look identical for ℓ^- and ℓ^+ .
- At the LHC, a pp collider, the processes $qg \rightarrow \tilde{q}\tilde{g}$ and $\bar{q}g \rightarrow \tilde{\tilde{q}}\tilde{g}$ will produce more \tilde{q} than $\tilde{\tilde{q}}$ because of proton valence quarks.
 - Also the charge-symmetric $q\bar{q}, gg \rightarrow \tilde{q}\tilde{\bar{q}}$ does not dominate.

The Charge Asymmetry at the Parton Level

• Define the charge asymmetry in the differential cross-section:

$$A^{+-} \equiv \frac{s^+ - s^-}{s^+ + s^-}, \quad \text{where} \quad s^{\pm} = \frac{d\sigma}{d(m_{\ell^{\pm}q})}$$

- Experimentally difficult to identify ℓ^{near} and ℓ^{far} :
 - Asymmetry washed out from contamination of ℓ^{far} .

• Charge asymmetry distribution indicative of a $\tilde{\chi}_2^0$ with spin-1/2.

Experimental Asymmetry Results

• Detector smearing effects and background contamination further dilutes the observed charge asymmetry. With $500 \ {\rm fb}^{-1}$:

- Black points measured charge asymmetry as a function of $m_{\ell q}$.
 - Yellow band is parton level result scaled down by 0.6.
 - Green points result if spin correlations are neglected.
- Asymmetry in \tilde{q} vs. $\tilde{\bar{q}}$ production detectable experimentally.

Summary and Conclusions

- Spin measurements are a large part of the LHC physics program.
 - True also in the new physics searches at very high p_T .
- Precision top quark measurements possible, with 10 fb^{-1} the W helicity in top decays will be known at the O(1%) level.
 - Anomalous couplings in the tWb vertex can be searched for.
- If the Higgs boson (the only spin-0 particle in the SM) exist, it should be discovered at last after over 40 years of searching for it.
 - Verify its scalar and CP-even nature from angle measurements in the $H \rightarrow ZZ$ decay for Higgs masses above 200 GeV.
- If SUSY is discovered, attempt to measure the charge asymmetry as a function of $m_{\ell q}^{near}$ to verify spin-1/2 nature of $\tilde{\chi}_2^0$.

With LHC collisions around the corner, exciting times are ahead!