GOLDMAN, RACHEL

(University of Michigan)

Effective Masses in Dilute Nitride Bismide Semiconductor Alloys: Failure of the Band Anti-Crossing Model?

Tassilo Dannecker^{1,2,3}, Yu Jin^{2,3}, Hailing Cheng³, Charlie F. Gorman², John Buckeridge¹, Ctirad Uher³, Stephen Fahy^{1,3}, Cagliyan Kurdak³, <u>Rachel S. Goldman^{2,3}</u>

¹Tyndall National Institute, University College Cork, Cork, Ireland ²Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, USA

³Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

<u>Abstract:</u> The semi-empirical band anti-crossing (BAC) model proposed by Shan et al has successfully explained the bandgap bowing effect in both dilute nitride and dilute bismide semiconductor alloys. Within this model, a higher (lower) lying localized N (Bi) band interacts with the extended host semiconductor band resulting in a split of the CB (VB) into two subbands. Although the BAC model qualitatively predicts the N composition dependence of the GaAsN bandgap, it does not quantitatively explain several extraordinary optical and electronic properties of GaAsN and related alloys. We have investigated the N-composition, x-, and T-dependence of the electron effective mass, m*, of GaAs_{1-r}N_r. Using Seebeck and Hall

measurements, in conjunction with assumptions of parabolic bands and Fermi-Dirac statistics, we find a non-monotonic dependence of m^* on x and an increasing m^* T-dependence with x. These trends are not predicted by the two-state BAC model but instead are consistent with the predictions of the linear-combination of resonant nitrogen states model, which takes into account several N-related states and their interaction with the GaAs conduction-band edge. Similar effects for the hole effective mass will be discussed in the GaAsBi system.