Matrix Inflation

Amjad Ashoorioon (Uppsala University)
In collaboration with
Hassan Firouzjahi (IPM)
\&
Shahin Sheikh-Jabbari (IPM)

October 21st, 2010
Non-thermal Cosmology Workshop
Ann Arbor, MI

```
Based on
JCAP 0906:018,2009, arXiv:0903.1481 [hep-th]
and JCAP 1005:002,2010, arXiv:0911.4284 [hep-th]
```


Introduction

- WMAP7 strongly supports the idea of inflation as the theory of early universe and structure formation.
- Inflation is a paradigm and one can construct many inflationary models compatible with the current data.
- In its simplest form, inflation is driven by a scalar field minimally coupled to gravity.
- There has been lots of efforts to realize inflation in string theory, mainly using D-Dbar interactions in a warped throat.

KKLMMT (2003)

- On the other hand, general compactifications with fluxes naturally posses several branes to satisfy constraints like tadpole cancellation.
- In these theories, more than one scalar field is present.
- In multi-field inflationary models, one can usually perform a rotation in the field space, where the inflaton field evolves along the trajectory and the other fields are orthogonal to it.

Introduction

- In this talk, we promote the inflaton fields to general N X N hermitian matrices, and hence the name Matrix Inflation, or M-flation for brevity.
- Working with matrices, we are able to use their commutators in the potential, besides their simple products.
- In our class of Matrix inflation models, we consider three NX N matrices, $\Phi_{i}, i=1,2,3$ We consider the potential which is quadratic in Φ_{i} and their commutators $\left[\Phi_{i}, \Phi_{j}\right\rfloor$. Therefore, we have three types of terms in the potential: $\left.\operatorname{Tr}\left[\Phi_{i}, \Phi_{j}\right]^{2}, \operatorname{Tr} \varepsilon_{i j k} \Phi_{i} \mid \Phi_{j}, \Phi_{k}\right]$, $\operatorname{Tr} \Phi_{i}^{2}$
- As we will see, the model is motivated from string theory and brane dynamics.
- Despite its simple form, Matrix inflation has a rich dynamics:
- It can solve the fine-tuning associated with standard chaotic inflationary models.
- Besides the adiabatic perturbations, we have isocurvature ones.
- The model has an embedded preheating mechanism that uses the isocurvature fields as preheat fields.

Outline

- Matrix Inflation Setup
- Matrix Inflation from String Theory
- Truncation to the SU(2) Sector
- Consistency of the Truncation to the SU(2) Sector
- Analysis of the Matrix Inflation around the Single-Block Vacuum
- Mass and power spectra of isocurvature modes in Matrix Inflation
- Particle Creation and Preheat Scenario
- UV behavior of Matrix Inflation in presence of many species
- Analysis of the potential for n-block vacua
- Conclusion

Matrix Inflation Setup

$$
S=\int d^{4} x \sqrt{-g}\left(\frac{M_{P}}{2} R-\frac{1}{2} \sum_{i} \operatorname{Tr}\left(\partial_{\mu} \Phi_{i} \partial^{\mu} \Phi_{i}\right)-V\left(\Phi_{i},\left[\Phi_{i}, \Phi_{j}\right]\right)\right)
$$

As we will show momentarily, the full potential can be motivated from dynamics of branes In string theory and takes the form:

$$
V=\operatorname{Tr}\left(-\frac{\lambda}{4}\left[\Phi_{i}, \Phi_{j}\right]\left[\Phi_{i}, \Phi_{j}\right]+\frac{i \kappa}{3} \varepsilon_{j k l}\left[\Phi_{k}, \Phi_{l}\right] \Phi_{j}+\frac{m^{2}}{2} \Phi_{i}^{2}\right)
$$

The potential is invariant under $U(N)$ group (acting on the matrices) and $S U(2)$ group acting on i, j indices.

The EOMs are:

$$
\begin{gathered}
H^{2}=\frac{1}{3 M_{P}^{2}}\left(-\frac{1}{2} \operatorname{Tr}\left(\partial_{\mu} \Phi_{i} \partial^{\mu} \Phi_{i}\right)+V\left(\Phi_{i},\left[\Phi_{i}, \Phi_{j}\right]\right)\right) \\
\ddot{\Phi}_{l}+3 H \dot{\Phi}_{l}+\lambda\left[\Phi_{j},\left[\Phi_{l}, \Phi_{j}\right]+i \kappa \varepsilon_{l j}\left[\Phi_{j}, \Phi_{k}\right]+m^{2} \Phi_{l}=0\right. \\
\dot{H}=-\frac{1}{2 M_{P}^{2}} \sum_{i} \operatorname{Tr}_{\mu} \Phi_{i} \partial^{\mu} \Phi_{i}
\end{gathered}
$$

Matrix Inflation from String Theory

In the context of string theory, it is known that the world-volume of N coincident 3 -branes is described by supersymmetric $U(N)$ gauge theory. In this system the transverse position of the branes, $\Phi_{I}, I=4, \ldots .9$ are scalars in the adjoint representation of $U(N)$, and hence $N X N$ matrices. The DBI action for the system in the background of RR six form flux (sourced by distribution of D5 branes) is given by:

$$
\begin{align*}
& S=\frac{1}{(2 \pi)^{3} l_{s}^{4} g_{s}} \int d^{4} x \operatorname{STr}\left(1-\sqrt{-\left|g_{a b}\right|} \sqrt{\left|Q_{J}^{I}\right|}+\frac{i g_{s}}{4 \pi l_{s}^{2}}\left[X^{I}, X^{J}\right] C_{\text {崖 }}^{(6) 123}\right) \tag{1999}\\
& g_{a b}=G_{M N} \partial_{a} X^{M} \partial_{b} X^{N} \quad M, N=0,1, \ldots, 9 \\
& I, J=4,5, \ldots, 9 \\
& a, b=0,1,2,3 \\
& Q^{I J}=\delta^{I J}+\frac{i}{2 \pi l_{s}^{2}}\left[X^{I}, X^{J}\right]
\end{align*}
$$

We consider the the 10-d IIB supergravity background:

$$
\begin{aligned}
& d s^{2}=2 d x^{+} d x^{-}-\hat{m}^{2} \sum_{i=1}^{3}\left(x^{i}\right)^{2}\left(d x^{+}\right)^{2}+\sum_{K=1}^{8} d x_{K} d x_{K} \\
& C_{+123 i j}=\frac{2 \hat{\kappa}}{3} \varepsilon_{i j k} x^{k}
\end{aligned}
$$

$i, j=1,2,3$ parameterize 3 out $6 \mathrm{dim} \perp$ to the D3-branes and x^{K} denotes 3 spatial dim along and five transverse to D3-branes.

Matrix Inflation from String Theory

With $\hat{m}^{2}=\frac{4 g_{s}^{2} \hat{\kappa}^{2}}{9}$ the above background with constant dilaton is solution to the SUGRA
EOM. We compactify the transverse dimensions on a 6d CY manifold with two 3d cycles, one of which is very long and the other one is quite small. In the light-cone gauge on the D3-branes, expanding the action up to fourth order in X^{I} yields

$$
\begin{gathered}
S=\frac{1}{(2 \pi)^{3} l_{s}^{4} g_{s}} \int d^{4} x \operatorname{Tr}\left[-\frac{1}{2} \partial_{\mu} X_{i} \partial^{\mu} X_{i}-V\left(X_{i}\right)\right] \\
V=-\frac{1}{4\left(2 \pi l_{s}^{2}\right)^{2}}\left[X_{i}, X_{j}\right]\left[X_{i}, X_{j}\right]+\frac{i g_{s} \hat{\kappa}}{3.2 \pi l_{s}^{2}} \varepsilon^{i j k} X_{i}\left[X_{j}, X_{k}\right]+\frac{1}{2} \hat{m}^{2} X_{i}^{2}
\end{gathered}
$$

Upon the field redefinition $\Phi_{i} \equiv \frac{X_{i}}{\sqrt{(2 \pi)^{3} g_{s}} l_{s}^{2}}$

$$
\begin{gathered}
V=\operatorname{Tr}\left(-\frac{\lambda}{4}\left[\Phi_{i}, \Phi_{j}\right]\left[\Phi_{i}, \Phi_{j}\right]+\frac{i \kappa}{3} \varepsilon_{j k}\left[\Phi_{k}, \Phi_{l}\right] \Phi_{j}+\frac{m^{2}}{2} \Phi_{i}^{2}\right) \\
\lambda=2 \pi g_{s} \quad \kappa=\hat{\kappa} g_{s} \cdot \sqrt{2 \pi g_{s}}
\end{gathered} \hat{m}^{2}=m^{2} .20
$$

From the brane-theory perspective, it is necessary to choose \hat{m} and $\hat{\kappa}$ such that $\hat{m}^{2}=\frac{4 g_{s}^{2} \hat{\kappa}^{2}}{9}$. However we may also relax this condition and take λ, κ and m^{2} as independent parameters.

Truncation to the SU(2) Sector:

Φ_{i} are $N X N$ matrices and therefore we have $3 N^{2}$ scalars. It makes the analysis very difficult

However from the specific form of the potential and since we have three Φ_{i}, it is possible to show that one can consistently restrict the classical dynamics to a sector with single scalar field:

$$
\Phi_{i}=\hat{\phi}(t) J_{i}, \quad i=1,2,3
$$

J_{i} are N dim. irreducible representation of the $\operatorname{SU}(2)$ algebra:

$$
\left\lfloor J_{i}, J_{j}\right\rfloor=i \varepsilon_{i j k} J_{k} \quad \operatorname{Tr}\left(J_{i} J_{j}\right)=\frac{N}{12}\left(N^{2}-1\right) \delta_{i j}
$$

Plugging these to the action, we have:

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M_{P}}{2} R+\operatorname{Tr} J^{2}\left(-\frac{1}{2} \partial_{\mu} \hat{\phi} \partial^{\mu} \hat{\phi}-\frac{\lambda}{2} \hat{\phi}^{4}+\frac{2 \kappa}{3} \hat{\phi}^{3}-\frac{m^{2}}{2} \hat{\phi}^{2}\right)\right] \quad \operatorname{Tr}\left(J^{2}\right) \equiv \sum_{i=1}^{3} \operatorname{Tr}\left(J_{i}^{2}\right)
$$

Defining $\phi \equiv\left(\operatorname{Tr} J^{2}\right)^{1 / 2} \hat{\phi}$ to make the kinetic term canonical, the potential takes the form

$$
V_{0}(\phi)=\frac{\lambda_{e f f}}{4} \phi^{4}-\frac{2 \kappa_{e f f}}{3} \phi^{3}+\frac{m^{2}}{2} \phi^{2} \quad \lambda_{e f f} \equiv \frac{2 \lambda}{\operatorname{Tr} \boldsymbol{J}^{2}}=\frac{8 \lambda}{N\left(\boldsymbol{N}^{2}-1\right)}, \quad \kappa_{e f f}=\frac{\kappa}{\sqrt{\operatorname{Tr} \boldsymbol{J}^{2}}}=\frac{2 \kappa}{\sqrt{N\left(\boldsymbol{N}^{2}-1\right)}},
$$

Consistency of the Truncation to the SU(2) Sector

- $\mathrm{SU}(2)$ sector is a sector in which the computations are tractable. But is it consistent?

To see that let us defines

$$
\begin{array}{crc}
\Psi_{i}=\Phi_{i}-\hat{\phi} J_{i} & \hat{\phi}=\frac{4}{N\left(N^{2}-1\right)} \operatorname{Ti}\left(\Phi_{i} J_{i}\right) & \operatorname{Tr}\left(\Psi_{i} J_{i}\right)=0 \\
V=V_{0}(\phi)+V_{(2)}\left(\hat{\phi}, \Psi_{i}\right) & V_{(2)}\left(\hat{\phi}, \Psi_{i}=0\right)=0 & \left(\frac{\delta V_{(2)}}{\delta \Psi_{i}}\right)_{\Psi_{i}=0}=0
\end{array}
$$

If we start with the initial consitions $\Psi_{i}=\dot{\Psi}_{i}=0$ and $\hat{\phi} \neq 0, \Psi_{i}$ will remain zero.
-What is the special role of $\operatorname{SU}(2)$ generators among other $N X$ N matrices?

$$
\begin{array}{r}
\Phi_{i}=\Gamma_{i}-\Xi_{i} \quad \operatorname{Tr}\left(\Gamma_{i} \Xi_{i}\right)=0 \\
V=V_{0}\left(\Gamma_{i}\right)+V_{(1)}\left(\Gamma_{i}, \Xi_{i}\right) \\
V_{(1)}=\operatorname{Tr}\left[\left(-\lambda\left[\Gamma_{i}\left[\Gamma_{i}, \Gamma_{k}\right]+i \varepsilon_{i j k}\left[\Gamma_{i}, \Gamma_{j}\right]\right) \Xi_{k}\right]+O\left(\Gamma^{2}\right)\right.
\end{array}
$$

To have Γ_{i}-sector decoupled $\Longrightarrow\left\lfloor\Gamma_{i}, \Gamma_{j}\right] f_{i j k} \Gamma_{k} \Longrightarrow$ Three Γ_{i} should form a Lie-Algebra
a) $f_{i j k}=i \varepsilon_{i j k} \Longrightarrow \Gamma_{i}$ are forming a $S U(2)$ algebra $\Phi_{i}=\sum_{\alpha} \phi_{\alpha} J_{i}^{\alpha}$,
b) $f_{i j k}=0 \Longrightarrow \Gamma_{i}$ are three Abelian subgroups of $U(N) \Longrightarrow$

$$
i=1,2,3 \quad N=\sum_{\alpha} N_{\alpha}
$$

No interesting inflationary dynamics

Analysis of the Matrix Inflation around the Single-Block Vacuum

$\begin{aligned} & V(\phi)=\frac{\lambda_{\text {eff }}}{4} \phi^{2}(\phi-\mu)^{2} \quad \phi_{0}=\mu \equiv \frac{\sqrt{2} m}{\sqrt{\lambda_{\text {eff }}}}\end{aligned} \begin{aligned} & \text { Hill-top or Symmetry-Breakii } \\ & \text { inflation, Linde (t992) } \\ & \text { Lyth \& Boubekeur (2005) }\end{aligned}, \begin{aligned} & 0.14 \\ & \text { Note:This is exactly the same condition we had to satisfy to } \\ & \text { have our 10-d background be a supergravity solution. } \\ & \text { In the stringy picture, we have ND3-branes that are } \\ & \text { blown up into a giant D5-brane under the influence of } R R \\ & \text { 6-form. } \\ & \text { (a) } \phi_{i}>\mu\end{aligned}$

$$
\begin{array}{rlc}
\phi_{i} & \approx 43.57 M_{P} & \phi_{f} \approx 27.07 M_{P}
\end{array} \quad \mu \approx 26 M_{P},
$$

(b) $\mu / 2<\phi_{i}<\mu$

$$
\begin{aligned}
\phi_{i} & \approx 23.5 M_{P} \\
\lambda_{e f f} & \approx 7.18 \times 10^{-14}
\end{aligned}
$$

$$
\phi_{f} \approx 35.03 M_{P}
$$

$$
\mu \approx 36 M_{P}
$$

$$
\Delta \hat{\phi} \approx 10^{-7} M_{P}
$$

$$
m \approx 6.82 \times 10^{6} M_{P}
$$

$$
\kappa_{e f f} \approx 9.57 \times 10^{-13} M_{P}
$$

$$
N \approx 10^{5}
$$

(c) $0<\phi_{i}<\mu / 2$

Due to symmetry $\phi \rightarrow-\phi+\mu$ this inflationary region has the same properties as $\mu / 2<\phi_{i}<\mu$

$$
\kappa^{2}<2 m^{2} \lambda
$$

Chaotic Inflationary scenarios with $\kappa=0$ falls into this category:
a) $V=\frac{1}{2} m^{2} \phi^{2}$

From EFT perspective
φ
To fit the WMAP data $\Delta \phi \approx 10 M_{P}$ super-Planckian excursions are problematic!

$$
\Delta \hat{\phi} \approx N^{-3 / 2} \Delta \phi \Longrightarrow \text { If } N \gg 1 \Longrightarrow \Delta \hat{\phi} \ll M_{p}^{-1}
$$

b) $\quad V=\frac{1}{4} \lambda_{e f f} \phi^{4}$

To fit the WMAP data $\lambda_{\text {eff }} \approx 10^{-14}$ and $\Delta \phi \approx 10 M_{P}$
Assuming $\lambda \approx 1 \& \lambda_{\text {eff }}=\frac{8 \lambda}{N\left(N^{2}-1\right)}$, one needs $N \approx 10^{5}$

Such value of quartic coupling and field displacement are unnatural from EFT perspective!

$$
\Delta \hat{\phi} \approx 10^{-7} M_{P}
$$

Mass Spectrum of Ψ_{i} Modes in Matrix Inflation

The other $3 N^{2}-1$ even though classically frozen, have quantum fluctuations. To compute these effects, let us calculate the mass spectrum of these modes. Expanding the action up to second order, we have:

$$
V_{(2)}=\operatorname{Tr}\left[\frac{\lambda}{2} \hat{\phi}^{2} \Omega_{i} \Omega_{i}+\frac{m^{2}}{2} \Psi_{i} \Psi_{i}+\left(-\frac{\lambda}{2} \hat{\phi}^{2}+\kappa \hat{\phi}\right) \Psi_{i} \Omega_{i}\right]
$$

where

$$
\Omega_{k} \equiv i \varepsilon_{i j k}\left|J_{i}, \Psi_{j}\right|
$$

If we have the eigenvectors of the Ω_{i}

$$
\begin{gathered}
\Omega_{i} \Psi_{i}=\omega \Psi_{i} \\
V_{2}=\left(\frac{\lambda_{e f f}}{4} \phi^{2}\left(\omega^{2}-\omega\right)+\kappa_{e f f} \omega \phi+\frac{m^{2}}{2}\right) \operatorname{Tr} \Psi_{i} \Psi_{i}
\end{gathered}
$$

It turns out that finding the eigenvectors of Ω_{i} is mathematically the same as finding the the vector spherical harmonics:

Mass Spectrum of Ψ, Modes in Matrix Inflation

(a) $N^{2}-1 \quad$ zero modes with $\omega=-1$

$$
M^{2}=\lambda_{e f f} \phi^{2}-2 \kappa_{\text {eff }} \phi+m^{2}=\frac{V^{\prime}}{\phi} \quad \Lambda \text { is an arbitrary traceless matrix }
$$

$$
\text { (b) }(\boldsymbol{N}-1)^{2}-1 \alpha \text {-modes: } \omega=-(\boldsymbol{l}+1), \quad \boldsymbol{l} \in \mathrm{Z} \quad 1 \leq \boldsymbol{l} \leq \boldsymbol{N}-2 \quad \text { Degeneracy of each }
$$

$$
\boldsymbol{M}_{l}^{2}=\frac{1}{2} \boldsymbol{\lambda}_{\text {eff }}(\boldsymbol{l}+2)(\boldsymbol{l}+3) \boldsymbol{\phi}^{2}-2 \boldsymbol{\kappa}_{\text {eff }}(\boldsymbol{l}+2)+\boldsymbol{m}^{2} \quad l \text {-mode is } 2 l+1
$$

$$
\text { (c) }(\boldsymbol{N}+1)^{2}-1 \boldsymbol{\beta} \text {-modes: } \boldsymbol{\omega}=\boldsymbol{l}, \quad \boldsymbol{l} \in \mathrm{Z} \quad 1 \leq \boldsymbol{l} \leq \boldsymbol{N} \quad \text { Degeneracy of each }
$$

$$
\begin{aligned}
& \boldsymbol{M}_{l}^{2}=\frac{1}{2} \boldsymbol{\lambda}_{\text {eff }}(\boldsymbol{l}-2)(\boldsymbol{l}-1) \boldsymbol{\phi}^{2}+2 \boldsymbol{\kappa}_{\text {eff }}(\boldsymbol{l}-1)+\boldsymbol{m}^{2} \\
& M^{2}=\frac{\lambda_{e f f}}{2} \phi^{2}\left(\omega^{2}-\omega\right)+2 \kappa_{e f f} \omega \phi+m^{2} \\
&=V_{0}^{\prime \prime}(\omega+1)^{2}-\frac{V_{0}^{\prime}}{\phi}(4 \omega+3)(\omega+2)+\frac{V_{0}}{\phi^{2}}
\end{aligned}
$$

$$
l \text {-mode is } 2 l+1
$$

Power Spectra in the Presence of $\Psi_{r, l m}$ Modes

$L=-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} \partial_{\mu} \Psi^{*}{ }_{r, l m} \partial^{\mu} \Psi_{r, l m}-V_{0}(\phi)-\frac{1}{2} M_{r, l m}^{2}(\phi) \Psi^{*}{ }_{r, l m} \Psi_{r, l m} \quad r=0, \alpha, \beta$
If you start from the initial condition $\Psi_{r, l m}=\dot{\Psi}_{r, l m}=0$, they remain zero. Therefore the inflationary trajectory is a straight line in the field space and there is no cross-correlation between adiabatic and entropy spectra.

Mukhanov-Sasaki

$$
\begin{aligned}
& \left.\ddot{\boldsymbol{Q}}_{\phi}+3 \boldsymbol{H} \dot{Q}_{\phi}+\frac{\boldsymbol{k}^{2}}{\boldsymbol{a}^{2}} \boldsymbol{Q}_{\phi}+\left(\boldsymbol{V}_{0, \phi \phi}-\frac{1}{\boldsymbol{a}^{3} \boldsymbol{M}_{\boldsymbol{P}}^{2}}\left(\frac{\boldsymbol{a}^{3}}{\boldsymbol{H}} \dot{\phi}^{2}\right)\right)^{\cdot}\right) \boldsymbol{Q}_{\phi}=0 ; \quad Q_{\phi} \equiv \delta \phi+\frac{\dot{\phi}}{H} \Phi \\
& \boldsymbol{\delta} \dot{\Psi}_{r, l m}+3 \boldsymbol{H} \delta \dot{\Psi}_{r, l m}+\left(\frac{\boldsymbol{k}^{2}}{\boldsymbol{a}^{2}}+\boldsymbol{M}_{r, l}(\phi)^{2}\right) \boldsymbol{\delta} \Psi_{r, l m}=0 \quad \Re=\frac{H}{\dot{\phi}} Q_{\phi} \quad S_{r, l m}=\frac{H}{\dot{\phi}} \Psi_{r, l m} \\
& \dot{\mathfrak{R}}=\frac{H}{\dot{H}} \frac{k^{2}}{a^{2}} \Phi \longrightarrow \begin{array}{l}
\text { scalar metric perturbations } \\
\text { in longitudinal gauge }
\end{array} \\
& P_{Q_{\phi}}=\frac{k^{3}}{2 \pi^{2}} \delta^{3}(\mathbf{k}-\mathbf{k})\left\langle Q^{*}{ }_{\phi \mathbf{k}} Q_{\phi \mathbf{k}}\right\rangle \quad P_{\Psi_{r, l m}}=\frac{k^{3}}{2 \pi^{2}} \delta^{3}(\mathbf{k}-\mathbf{k})\left\langle\Psi_{r, l m \mathbf{k}}^{*} \Psi_{r, l m \mathbf{k}}^{*}\right\rangle \\
& C_{\psi^{i} Q_{Q}}=\frac{k^{3}}{2 \pi^{2}} \delta^{3}(\mathbf{k}-\mathbf{k})\left\langle Q^{*}{ }_{\phi \mathbf{k}} \Psi_{r, l m}\right\rangle=0
\end{aligned}
$$

Power Spectra in Symmetry-Breaking Inflation $\phi>\mu$

$$
\lambda_{e f f} \approx 4.91 \times 10^{-14} \quad m \approx 4.07 \times 10^{-6} M_{P} \quad \kappa_{e f f} \approx 9.57 \times 10^{-13} M_{P} \Longrightarrow n_{\Re} \approx 0.959
$$

Zero mode	$\lambda_{\text {eff }} \phi^{2}-$ $2 \kappa_{\text {eff }}$ $+m^{2}$	1.162 $\times 10^{-11}$	0.981	N^{2}
$l=1$ β	\boldsymbol{m}^{2}	1.131 $\times 10^{-12}$	0.978	3
$\boldsymbol{l}=2$ β	$2 \boldsymbol{\kappa}_{\text {eff }} \boldsymbol{\phi}$ $+\boldsymbol{m}^{2}$	8.842 $\times 10^{-18}$	1.002	7

$$
\begin{aligned}
& N^{2} \text { zero modes can be } \\
& \text { removed by gauge } \\
& \text { transformations } \\
& P_{T}\left(k_{60}\right) \approx 4.84 \times 10^{-10} \Longrightarrow r \approx 0.2 \\
& n_{T} \approx-0.025
\end{aligned}
$$

Planck should be able to verify this model.

Power Spectra in Symmetry-Breaking Inflation $\mu / 2<\phi<\mu$

$$
\lambda_{e f f} \approx 7.187 \times 10^{-14} \quad m \approx 6.824 \times 10^{-6} M_{P} \quad \kappa_{e f f} \approx 1.940 \times 10^{-12} M_{P} \Longrightarrow n_{\Re} \approx 0.961
$$

Zero mode	$\boldsymbol{\lambda}_{\text {eff }} \boldsymbol{\phi}^{2}-$ $2 \boldsymbol{\kappa}_{\text {eff }} \boldsymbol{\phi}$ $+\boldsymbol{m}^{2}$	1.46 $\times 10^{-11}$	0.987	N^{2}
$\boldsymbol{l}=1$ β	$2 \boldsymbol{K}_{\text {eff }} \boldsymbol{\phi}$ $+\boldsymbol{m}^{2}$	6.55 $\times 10^{-16}$	1.0545	3
$\boldsymbol{l}=1$ $\boldsymbol{\alpha}$	$6 \boldsymbol{\lambda}_{\text {eff }} \boldsymbol{\phi}^{2}$ $6 \boldsymbol{\kappa}_{\text {eff }} \boldsymbol{\phi}$ $+\boldsymbol{m}^{2}$	4.69 $\times 10^{-19}$	1.007	3

$$
\begin{aligned}
& N^{2} \text { zero modes can be } \\
& \text { removed by gauge } \\
& \text { transformations } \\
& P_{T}\left(k_{60}\right) \approx 1.307 \times 10^{-11} \Longrightarrow r \approx 0.048 \\
& \quad n_{T} \approx-0.006
\end{aligned}
$$

CMBPOL or QUIET should be able to verify this scenario.

Power Spectra in Symmetry-Breaking Inflation $0<\phi<\mu / 2$

The potential is invariant under symmetry $\phi \rightarrow-\phi+\mu$

$$
\lambda_{e f f} \approx 7.187 \times 10^{-14} \quad m \approx 6.824 \times 10^{-6} M_{P} \quad \kappa_{\text {eff }} \approx 1.940 \times 10^{-12} M_{P} \Longrightarrow n_{\Re} \approx 0.961
$$

Zero mode	$\lambda_{\text {eff }} \phi^{2}-$ $2 \kappa_{e f f} \phi$ $+m^{2}$	3.84 $\times 10^{-14}$	1.006	N^{2}
$l=1$ α	$6 \lambda_{e f f} \phi^{2}$ $6 \kappa_{e f f} \phi$ $+m^{2}$	1.23 $\times 10^{-11}$	0.953	3
$l=1$ β	$2 \kappa_{e f f} \phi$ $+m^{2}$	6.558 $\times 10^{-16}$	1.054	3

$$
\begin{aligned}
& N^{2} \text { zero modes can b removed by gauge } \\
& \text { transformations } \\
& P_{T}\left(k_{60}\right) \approx 1.307 \times 10^{-11} \Longrightarrow \quad r \approx 0.048 \\
& \\
& n_{T} \approx-0.006
\end{aligned} ~ . ~ \begin{aligned}
&
\end{aligned}
$$

CMBPOL or QUIET should be able to verify this scenario.

Particle Creation and Preheat Scenario

Even though one can show that backreaction of $\Psi_{r, l m}$ on the inflaton dynamics is not large, It can become important when $\varepsilon, \eta \approx 1$

This could be the bonus of our model, as $\Psi_{r, l m}$ modes help to drain the energy of the inflaton, since their masses are changing very fast.
Preheating in the case of symmetry-breaking inflation is in progress! $\begin{gathered}\text { Ashoorioon \& J.T. Giblin } \\ \text { in preperation }\end{gathered}$
We will focus on $\lambda \phi^{4} / 4$ theory, as its preheating has already been worked out by Greene, Kofman, Linde \& Starobinsky (1997)

$$
V_{\text {eff }}(\phi, \chi)=\frac{1}{4} \lambda \phi^{4}+\frac{1}{2} g^{2} \phi^{2} \chi^{2}
$$

The structure of parametric resonance is completely determined by g^{2} / λ
For $g^{2} / \lambda=n(n+1) / 2$ we have an enhancement in the parametric resonance leading to creation of $\mathcal{\chi}$ particles

$$
\left\{\begin{array}{ccc}
n \in 2 Z+1 & \text { particle creation is peaked around } k=0 & \mu_{k} \propto \ln n_{k \sim 0.15} \\
n \in 2 Z & \text { particle creation is peaked around } k^{2}=\frac{3}{2} H_{\mathrm{inf}}^{2} \varepsilon \sqrt{\frac{g^{2}}{2 \lambda}} \quad \mu_{k \sim 0.5}
\end{array}\right.
$$

Particle Creation and Preheat Scenario

$$
\begin{aligned}
V\left(\phi, \Psi_{r, l m}\right) & =\frac{1}{4} \lambda_{e f f} \phi^{4}+\frac{1}{2} \lambda_{e f f} \phi^{2} \sum_{r, l m} \frac{1}{2}\left(\omega^{2}-\omega\right) \Psi_{r, l m}^{\star} \Psi_{r, l m} \\
& =\frac{1}{4} \lambda_{e f f} \phi^{4}+\frac{1}{2} \lambda_{e f f} \phi^{2} \sum_{m=1}^{N^{2}}\left|\Psi_{0 m}\right|^{2} \\
& +\frac{1}{2} \lambda_{e f f} \phi^{2}\left[\sum_{l=0}^{N-1} \frac{l(l+1)}{2} \sum_{m=1}^{2 l+1}\left|\Psi_{\alpha, l m}\right|^{2}+\sum_{l=1}^{N-1} \frac{l(l-1)}{2} \sum_{m=1}^{2 l+1}\left|\Psi_{\beta, l m}\right|^{2}\right]
\end{aligned}
$$

In this case $g^{2} / \lambda=n(n+1) / 2$ with $n=1, l, l-1$ respectively for zero, α and β modes
For zero mode, odd $l \alpha$-mode and even $l \beta$-mode. $k=0 \quad \mu_{k \sim 0.15}$

For even $l \alpha$-mode and odd $l \beta$-mode. $k^{2}=\frac{3}{4} H_{\text {inf }}^{2} \varepsilon \sqrt{l(l+1)} \quad \mu_{k \sim 0.5}$
This means that large l even α-mode and odd $l \beta$-mode makes the biggest contribution to preheating. Also one should note that their preheating will be more effective here due to their $21+1$ degeneracy

$$
N^{2} T^{4} \sim 3 H^{2} M_{P}^{2}: \xlongequal[N \sim 10^{5}]{H \sim 10^{-5} M_{P}} \quad T \sim 10^{13} \mathrm{Gev}
$$

UV behavior of Matrix Inflation in presence of many species

In a theory with many particles the scale where quantum gravity effects become large is lowered to

$$
\begin{equation*}
\Lambda^{2}=\frac{M_{P}^{2}}{N_{\mathrm{cl}}} \tag{2007}
\end{equation*}
$$

N_{cl} : species with mass below the cutoff, Λ
In matrix inflation:

$$
N_{\mathrm{cl}}=3 N^{2}
$$

Let's compare the amount of excursions of the "physical" inflaton is less than Λ when inflation happens in region $\phi>\mu$

$$
\begin{array}{ccc}
\phi_{i} \approx 43.57 M_{P} & \phi_{f} \approx 27.07 M_{P} & \mu \approx 26 M_{P} \\
\lambda_{e f f} \approx 4.91 \times 10^{-14} & m \approx 4.07 \times 10^{-6} M_{P} & \kappa_{e f f} \approx 9.57 \times 10^{-13} M_{P}
\end{array}
$$

To find the number of species in our case, we assume that $\lambda=1$.

$$
\begin{aligned}
& \lambda_{\text {eff }} \equiv \frac{8 \lambda}{N\left(N^{2}-1\right)}=4.91 \times 10^{-14} \Longrightarrow N=54618 \\
& \Delta \hat{\phi}=\frac{\phi_{f}-\phi_{i}}{\sqrt{N\left(\boldsymbol{N}^{2}-1\right)}}=2.58 \times 10^{-6} \boldsymbol{M}_{P}<\Lambda=1.05 \times 10^{-5} \boldsymbol{M}_{P}
\end{aligned}
$$

Also, one should notice that the mass parameter of the inflaton turns out to be about 40% of the cutoff.

Analysis of the potential for n-block vacua:

In this case, we have n-field inflationary, $\phi_{\alpha}, \alpha=1 . . n$ that are only gravitationally coupled

$$
\begin{array}{rc}
H^{2}=\frac{1}{3 M_{P}^{2}} \sum_{\alpha=1}^{n}\left(\frac{1}{2} \dot{\phi}_{\alpha}^{2}+V_{\alpha}\left(\phi_{\alpha}\right)\right) & V\left(\phi_{\alpha}\right)=\sum_{\sim} \frac{\lambda_{\alpha}}{4} \phi_{\alpha}^{4}-\frac{2 \kappa_{\alpha}}{3} \phi_{\alpha}^{3}+\frac{m^{2}}{2} \phi_{\alpha}^{2} \\
\ddot{\phi}_{\alpha}+3 H \dot{\phi}_{\alpha}+\partial_{\phi_{\alpha}} V_{\alpha}=0, & \lambda_{\alpha}=\frac{8 \lambda}{N_{\alpha}\left(N_{\alpha}^{2}-1\right)}, \quad \kappa_{\alpha}=\frac{2 \kappa}{\sqrt{N_{\alpha}\left(N_{\alpha}^{2}-1\right)}} .
\end{array}
$$

The classical (inflationary) dynamics around the "multi-giant vacua" decouple from each other and one may build an inflationary model around either of these.

If we start with a field which is initially in the sector specified by a given set of $\left\{N_{\alpha}\right\}$, then N_{α} remains a conserved quantity by the classical trajectory of the system. In general various fields in the same sector specified by a set of N_{α} can mix with each other.

That is, in general the inflationary trajectory in the space of ϕ_{α} is curved.

Analysis of the potential for n-block vacua:

Various scenarios can occur in such a n-field inflationary model. Let us consider one two-block example that can arise in Matrix Inflation with

$$
\begin{aligned}
& V=\frac{\lambda_{\phi}}{4} \phi^{2}\left(\phi-\mu_{\phi}\right)^{2}+\frac{\lambda_{\chi}}{4} \chi^{2}\left(\phi-\mu_{\chi}\right)^{2} \\
& \lambda_{\phi}=2 \times 10^{-15}, \quad \mu_{\phi}=196.168 M_{P}, \quad \mu_{\chi}=36 M_{P}, \quad \lambda_{\chi}=\lambda_{\phi}\left(\frac{\mu_{\phi}}{\mu_{\chi}}\right)^{2} \\
& \phi_{i}=209.439 M_{P} \quad, \quad \chi_{i}=26.678 M_{P}
\end{aligned}
$$

Conclusions

- Matrix inflation is an interesting realization of inflation which is strongly supported from string theory. Matrix inflation can solve the fine-tunings associated with chaotic inflation and produce super-Planckian effective field excursions during inflation.
- Due to Matrix nature of the fields there would be many scalar fields in the model. This leads to the production of isocurvature productions at the CMB scales.
- Matrix inflation has a natural built-in mechanism of preheating to end inflation.
- In particular, if there is an isocurvature component (at a level still allowed by present data) but it is ignored in the CMB analysis, the sound horizon and cosmological parameters determination is biased, and, as a consequence, future surveys may incorrectly suggest deviations from a cosmological constant.

Take Isocurvature Perturbations Seriously!

\cdot

Shanti you

