Massive gravitino decays and the cosmological lithium problem

- BBN and the WMAP determination of η , $\Omega_{\rm B}h^2$
- Observations and Comparison with Theory
 D/H ⁴He ⁷Li
- The Li Problem
- Solutions?

Massive gravitino decays and the cosmological lithium problem or

- BBN and the WMAP determination of η , $\Omega_{\rm B}h^2$
- Observations and Comparison with Theory
 D/H ⁴He ⁷Li
- The Li Problem
- Solutions?

Massive gravitino decays and the cosmological lithium problem or How to best reconcile Big Bang Nucleosynthesis with Li abundance determinations

- BBN and the WMAP determination of η , $\Omega_B h^2$
- Observations and Comparison with Theory - D/H - ⁴He - ⁷Li
- The Li Problem
- Solutions?

Tuesday, October 19, 2010

WMAP best fit

$$\Omega_B h^2 = 0.0226 \pm 0.0005$$
$$\eta_{10} = 6.19 \pm 0.15$$

D/H abundances in Quasar apsorption systems

BBN Prediction: $10^{5} \text{ D/H} = 2.52 \pm 0.17$

Obs Average: $10^5 \text{ D/H} = 2.82 \pm 0.21$

Measured in low metallicity extragalactic HII regions (~100) together with O/H and N/H

⁴He Prediction: 0.2487 ± 0.0002

Data: Regression: 0.2561 ± 0.0108

Mean: 0.2566 ± 0.0028

Li/H

Measured in low metallicity dwarf halo stars (over 100 observed)

17% increase in the cross section
⇒ 16% increase in Li

Cyburt, Fields, KAO

Tuesday, October 19, 2010

In addition, 1.5% increase in η , leads to 3% increase in Li (Li ~ $\eta^{2.12}$) plus another ~1% from pn

Net change in Li: 4.26 x 10⁻¹⁰ to 5.24 x 10⁻¹⁰ or 23%

Cyburt, Fields, KAO

Tuesday, October 19, 2010

Possible sources for the discrepancy

- Nuclear Rates
 - Restricted by solar neutrino flux

Coc et al. Cyburt, Fields, KAO

BBN Li sensitivites
$^7Li/^7Li_0=\Pi_iR_i^{lpha_i}$
Key Rates: ³ He (α,γ) ⁷ Be

Reaction/Parameter	sensitivities (α_i)
$\eta_{10}/6.14$	+2.04
$n(p,\gamma)d$	+1.31
${}^{3}\mathrm{He}(lpha,\gamma){}^{7}\mathrm{Be}$	+0.95
${}^{3}\mathrm{He}(d,p){}^{4}\mathrm{He}$	-0.78
$d(d,n)^3$ He	+0.72
$^{7}\mathrm{Be}(n,p)^{7}\mathrm{Li}$	-0.71
Newton's G_N	-0.66
$d(p,\gamma)^3$ He	+0.54
n-decay	+0.49
$N_{\nu, eff} / 3.0$	-0.26
$^{3}\mathrm{He}(n,p)t$	-0.25
d(d,p)t	+0.078
$^{7}\mathrm{Li}(p,\alpha)^{4}\mathrm{He}$	-0.072
$t(lpha,\gamma)^7 { m Li}$	+0.040
$t(d,n)^4 \mathrm{He}$	-0.034
$t(p,\gamma)^4 { m He}$	+0.019
$^{7}\mathrm{Be}(n,\alpha)^{4}\mathrm{He}$	-0.014
$^{7}\mathrm{Be}(d,p)2^{4}\mathrm{He}$	-0.0087

Require:

$$S_{34}^{NEW}(0) = 0.267 \text{ keVb} \\ \frac{\Delta S_{34}}{S_{34}} = -0.47 \end{bmatrix} \text{globular cluster Li}$$
Or
$$S_{344}^{NEW}(0) = 0.136 \text{ keVb} \\ \frac{\Delta S_{34}}{S_{34}} = -0.73 \end{bmatrix} \text{halo star Li} \qquad \begin{array}{c} \text{New }^{3}\text{He}(\alpha,\gamma)^{7}\text{Be measurements} \\ 0.7 \\ 0.6 \\ 0.7 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.7 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.7 \\ 0.6$$

Require:

 $\begin{array}{rcl} S^{NEW}_{34}(0) &=& 0.267 \ \mathrm{keVb} \\ \frac{\Delta S_{34}}{S_{34}} &=& -0.47 \end{array} \right\} \mathrm{globular} \ \mathrm{cluster} \ \mathrm{Li} \end{array}$

or

$$S_{34}^{NEW}(0) = 0.136 \text{ keVb} \\ \frac{\Delta S_{34}}{S_{34}} = -0.73$$
 halo star Li

Constrained from solar neutrinos

$$S_{34} > 0.35$$
 keV barn
at 95% CL

Resonant Reactions

Cyburt, Pospelov Chakraborty, Fields, Olive

Is there a missing excited state providing a resonant reaction? $^{7}\text{Be} + A \rightarrow C^{*} \rightarrow B + D$

If energy released in producing C* is

$$Q_C = \Delta(^7 \text{Be}) + \Delta(A) - \Delta(C^{\text{g.s.}})$$

 $\Delta = m - Am_{\rm u}$

mass defect

$$E_{\rm res} \equiv E_{\rm ex} - Q_C$$

Resonant enhancements will occur if $|E_{res}| \leq \Gamma_{init}$

$$\sigma(E) = \frac{\omega}{8\pi\mu E} \frac{\Gamma_{\rm init}\Gamma_{\rm fin}}{(E - E_{\rm res})^2 - (\Gamma_{\rm tot}/2)^2}$$

leading to a thermally averaged cross section (in the narrow width approximation)

$$\langle \sigma v \rangle = \left(\frac{2\pi}{\mu T}\right)^{3/2} \hbar^2 (\omega \Gamma_{\text{eff}})_{res} \exp\left(-\frac{E_{\text{res}}}{T}\right)$$

Possible sources for the discrepancy

- Nuclear Rates
 - Restricted by solar neutrino flux

Coc et al. Cyburt, Fields, KAO

- Stellar Depletion
 - lack of dispersion in the data, ⁶Li abundance
 - standard models (< .05 dex), models (0.2 0.4 dex)

Vauclaire & Charbonnel Pinsonneault et al. Richard, Michaud, Richer Korn et al. Stellar Depletion in the Turbulence Model of Korn et al.

Possible sources for the discrepancy

• Nuclear Rates

Coc et al. Cyburt, Fields, KAO

- Restricted by solar neutrino flux

- Stellar Depletion
 - lack of dispersion in the data, ⁶Li abundance
 - standard models (< .05 dex), models (0.2 0.4 dex)
- Stellar parameters

Vauclaire & Charbonnel Pinsonneault et al. Richard, Michaud, Richer

Possible sources for the discrepancy

• Nuclear Rates

Coc et al. Cyburt, Fields, KAO

- Restricted by solar neutrino flux

- Stellar Depletion
 - lack of dispersion in the data, ⁶Li abundance
 - standard models (< .05 dex), models (0.2 0.4 dex)

Vauclaire & Charbonnel Pinsonneault et al. Richard, Michaud, Richer

• Stellar parameters

 $\frac{dLi}{dlng} = \frac{.09}{.5} \qquad \qquad \frac{dLi}{dT} = \frac{.08}{100K}$

Claim:

New evaluation of surface temperatures in 41 halo stars with systematically higher temperatures (100-300 K)

Melandez & Ramirez

 $[Li] = 2.37 \pm 0.1$ Li/H = 2.34 ± 0.54 x 10⁻¹⁰

BBN Prediction: 10^{10} Li/H = $(5.12^{+0.71}_{-0.62}) \times 10^{-10}$

Recent dedicated temperature determinations (excitation energy technique)

Use Fe I lines: population of a given state $\propto \exp(-\chi_i/T)$

Hosford, Ryan, Garcia-Perez, Norris, Olive

Comparison

Possible sources for the discrepancy

- Nuclear Rates
 - Restricted by solar neutrino flux

Coc et al. Cyburt, Fields, KAO

- Stellar parameters $\frac{dLi}{dlng} = \frac{.09}{.5} \qquad \frac{dLi}{dT} = \frac{.08}{100K}$
- Particle Decays

Limits on Unstable particles due to Electromagnetic/Hadronic Production and Destruction of Nuclei

3 free parameters

$$\begin{aligned} \zeta_X &= n_X \, m_X / n \gamma = m_X \, Y_X \, \eta, \quad m_X \, , \\ & \text{and} \, \tau_X \end{aligned}$$

•Start with non-thermal injection spectrum (Pythia)

•Evolve element abundances including thermal (BBN) and non-thermal processes.

E.g., Gravitino decay

Cyburt, Ellis, Fields, Luo, Olive, Spanos

 $\widetilde{G} \to \widetilde{f} f, \widetilde{G} \to \widetilde{\chi}^+ W^-(H^-), \widetilde{G} \to \widetilde{\chi}_i^0 \gamma(Z), \widetilde{G} \to \widetilde{\chi}_i^0 H_i^0 \widetilde{G} \to \widetilde{g} g.$

plus relevant 3-body decays

Tuesday, October 19, 2010

Jedamzik

Based on $m_{1/2} = 300$ GeV, tan $\beta = 10$; $B_h \sim 0.2$

CMSSM

co-annihilation strip, tan $\beta = 10$; $m_{3/2} = 250$ GeV

co-annihilation strip, tan $\beta = 10$; $m_{3/2} = 1000$ GeV

co-annihilation strip, tan $\beta = 10$; m_{3/2} = 5000 GeV

Benchmark point C, tan $\beta = 10$; $m_{1/2} = 400$ GeV

Uncertainties

There are only a few non-thermal rates which affect the result

 $(n^4 \text{He} \rightarrow npt)$

How well can you do

$$\chi^2 \equiv \left(\frac{Y_p - 0.256}{0.011}\right)^2 + \left(\frac{\frac{D}{H} - 2.82 \times 10^{-5}}{0.27 \times 10^{-5}}\right)^2 + \left(\frac{\frac{7\text{Li}}{H} - 1.23 \times 10^{-10}}{0.71 \times 10^{-10}}\right)^2 + \sum_i s_i^2,$$

SBBN: $\chi^2 = 31.7$ - field stars SBBN: $\chi^2 = 21.8$ - GC stars

	$m_{3/2}[\text{GeV}]$	$\mathrm{Log}_{10}(\zeta_{3/2}/[\mathrm{GeV}])$	Y_p	$D/H (\times 10^{-5})$	$^{7}\text{Li/H} (\times 10^{-10})$	$\sum s_i^2$	χ^2
BBN			0.2487	2.52	5.12		31.7
С	4380	-9.69	0.2487	3.15	2.53	0.26	5.5
\mathbf{E}	4850	-9.27	0.2487	3.20	2.42	0.29	5.5
\mathbf{L}	4380	-9.69	0.2487	3.21	2.37	0.26	5.4
М	4860	-10.29	0.2487	3.23	2.51	1.06	7.0
С	4680	-9.39	0.2487	3.06	2.85	0.08	2.0
М	4850	-10.47	0.2487	3.11	2.97	0.09	2.7
С	3900	-10.05	0.2487	3.56	1.81	0.02	2.8
С	4660	-9.27	0.2487	3.20	2.45	0.16	1.1

Tuesday, October 19, 2010

Effects of Bound States

- \bullet In SUSY models with a $\widetilde{\tau}$ NLSP, bound states form between ^4He and $\widetilde{\tau}$
- •The ⁴He (D, γ) ⁶Li reaction is normally highly suppressed (production of low energy γ)
- •Bound state reaction is not suppressed

Cyburt, Ellis, Fields, KO, Spanos

Cyburt, Ellis, Fields, KO, Spanos

Possible sources for the discrepancy

• Stellar parameters

dLi	09	dLi	.08
dlng	5	$\overline{dT} =$	$\overline{100K}$

• Particle Decays

• Variable Constants

Limits on α from BBN

Contributions to Y come from n/p which in turn come from Δm_N

Contributions to Δm_N :

$$\Delta m_N \sim a \alpha_{em} \Lambda_{QCD} + b v$$

Kolb, Perry, & Walker Campbell & Olive Bergstrom, Iguri, & Rubinstein

Changes in α , Λ_{QCD} , and/or vall induce changes in Δm_N and hence Y

$$\frac{\Delta Y}{Y} \simeq \frac{\Delta^2 m_N}{\Delta m_N} \sim \frac{\Delta \alpha}{\alpha} < 0.05$$

If $\Delta \alpha$ arises in a more complete theory the effect may be greatly enhanced:

$$\frac{\Delta Y}{Y} \simeq O(100) \frac{\Delta \alpha}{\alpha}$$
 and $\frac{\Delta \alpha}{\alpha} < \mathbf{few} \times 10^{-4}$

Approach:

Consider possible variation of Yukawa, h, or fine-structure constant, α

Include dependence of Λ on α ; of v on h, etc.

Consider effects on: $Q = \Delta m_{N,} \tau_{N,} B_D$

Coc, Nunes, Olive, Uzan, Vangioni Dmitriev & Flambaum

Approach:

Consider possible variation of Yukawa, h, or fine-structure constant, α

Include dependence of Λ on α ; of v on h, etc.

Consider effects on: $Q = \Delta m_{N, \tau_{N, T}} B_D$

and with
$$\frac{\Delta h}{h} = \frac{1}{2} \frac{\Delta \alpha_U}{\alpha_U}$$

 $\frac{\Delta B_D}{B_D} = -[6.5(1+S) - 18R] \frac{\Delta \alpha}{\alpha}$
 $\frac{\Delta Q}{Q} = (0.1 + 0.7S - 0.6R) \frac{\Delta \alpha}{\alpha}$
 $\frac{\Delta \tau_n}{\tau_n} = -[0.2 + 2S - 3.8R] \frac{\Delta \alpha}{\alpha}$

Coc, Nunes, Olive, Uzan, Vangioni Dmitriev & Flambaum

Effect of variations of h (S = 160)

Mass fraction

Notice effect on ⁷Li

S = 240, R = 0, 36, 60, $\Delta \alpha / \alpha = 2 \Delta h / h$

 $-1.6 \times 10^{-5} < \frac{\Delta h}{h} < 2.1 \times 10^{-5}$

For S = 240, R = 36,

Summary

- D, He are ok -- issues to be resolved
- Li: Problematic
 - BBN ⁷Li high compared to observations
- Important to consider:
 - Nuclear considerations
 - Resonances ¹⁰C (15.04) !
 - Depletion (tuned)
 - Li Systematics T scale unlikely
 - Particle Decays?
 - Variable Constants???
- ⁶Li: Another Story