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WMAP best fit 

ΩBh2 = 0.0226± 0.0005
η10 = 6.19± 0.15
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D/H abundances in
Quasar apsorption 

systems 

Q0347-3819Q1243+3047

PKS1937-1009

Q2206-199

SDSS1558-0331

Q0913+072

BBN Prediction:
 105 D/H = 2.52 ± 0.17

Obs Average:
105 D/H = 2.82 ± 0.21
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4He
Measured in low metallicity extragalactic HII 

regions (~100)  together with O/H and N/H

Aver, Olive, Skillman
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4He Prediction: 
0.2487 ± 0.0002

Data: Regression: 
0.2561 ± 0.0108

Mean: 
0.2566 ± 0.0028
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Li/H
Measured in low metallicity dwarf halo stars 
(over 100 observed)
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Cyburt, Fields, KAO

17% increase in the 
cross section

⇒ 16% increase in Li
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In addition, 
1.5% increase in η,
leads to 3% increase 
in Li  (Li ~ η2.12)
plus another ~1%
from pn 

Net change in Li:
4.26 x 10-10   to 
5.24 x 10-10 or 23%

Cyburt, Fields, KAO
Tuesday, October 19, 2010



At the WMAP7 value 
for η:  
Li/H = 

Cyburt, Fields, KAO

(5.12+0.71
−0.62)× 10−10
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Possible sources for the discrepancy

• Nuclear Rates

- Restricted by solar neutrino flux Coc et al.
Cyburt, Fields, KAO
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can see that the most important reaction that directly creates or destroys 7Li (or rather
7Be, and subsequently 7Li) is the reaction 3He(α, γ)7Be (S34

2). The reactions n(p, γ)d,
3He(d, p)4He, d(d, n)3He, and d(p, γ)3He are important in determining the deuterium, 3He

and 4He abundances, and thus the source and sink rates that determine 7Li. We mention

here the non-impact of the reaction 7Be(p, γ)8B (S17) only because we will discuss this

particular reaction later in this paper. This reaction is suppressed rather strongly by the

Coulomb potential between the 7Be and proton. It is this fact that no significant abundance

of heavier elements is produced during primordial nucleosynthesis. The time required to

form such elements is too long compared with the 350 second epoch of nucleosynthesis in

the early universe.

Table 2: BBN 7Li Sensitivities to the top 15 reaction rates and other parameters, given in
terms of the logarithmic derivatives of the predicted 7Li abundance with respect to each
rate or parameter. 7Li/7Li0 =

∏

i R
αi

i , where Ri represents a reaction or parameter, relative
to its fiducial value. The reaction 7Be(p, γ)8B is completely negligible, with its logarithmic
derivative about α17 ∼ −10−6.

Reaction/Parameter sensitivities (αi)
η10/6.14 +2.04
n(p, γ)d +1.31

3He(α, γ)7Be +0.95
3He(d, p)4He −0.78
d(d, n)3He +0.72

7Be(n, p)7Li −0.71
Newton’s GN −0.66

d(p, γ)3He +0.54
n-decay +0.49

Nν,eff/3.0 −0.26
3He(n, p)t −0.25
d(d, p)t +0.078

7Li(p, α)4He −0.072
t(α, γ)7Li +0.040
t(d, n)4He −0.034
t(p, γ)4He +0.019

7Be(n, α)4He −0.014
7Be(d, p)24He −0.0087

The question of interest to us here, is which of these reactions can be altered to enhance or

2The S-factor is defined by the cross section: S(E) = σ(E)E exp(8π2αZ1Z2/v). The last term is the
Coulomb penetration factor, in which Zi are the charges of the incoming nuclei and v their relative velocity.

6

BBN Li sensitivites
7Li/7Li0 = ΠiR

αi

i

Key Rates:
3He (α,γ) 7Be
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diminish the 7Be (7Li) abundance and be consistent with observational constraints. We wish

to choose a reaction for which 7Li has a large sensitivity, as well as large enough uncertainties

to question its absolute normalization. The 3He(α, γ)7Be reaction meets this criteria, both

strongly influencing the 7Li prediction and having large enough uncertainties in the nuclear

data to let its absolute normalization float.

The determination of the BBN light element yields is from [7], where new normaliza-

tions and errors to the NACRE [25] rates important for primordial nucleosynthesis have

been assigned. For 3He(α, γ)7Be, the BBN calculation uses the renormalized NACRE rate

SOLD
34 (0) = 0.504 ± 0.0534 keV b. Other compilations yield higher values, with the original

NACRE value SNAC
34 (0) = 0.54±0.09 keV b [25] and the Adelberger SADL

34 (0) = 0.53±0.05keV

b [24]. One can see that these compilations will yield 7Li values about 7% larger than [7],

if the S(E) shapes are assumed to be the same. Given this reaction, we now address how

much this reaction must change to meet concordance with the light element observations. As

discussed above, there are two sets of 7Li observations we can try to match by renormalizing

the 3He(α, γ)7Be reaction. Using the 7Li measurements of a metal poor globular cluster [35]

would require a change of

SNEW
34 (0) = 0.267 keVb

∆S34

S34
= −0.47

}

globular cluster Li (3)

Using the 7Li measurements of metal poor stars in the Galactic halo [29] would require a

change of
SNEW

34 (0) = 0.136 keVb
∆S34

S34
= −0.73

}

halo star Li (4)

As one can see, shifts in the 3He(α, γ)7Be cross section as large as that necessary to produce

SNEW
34 (0) are strongly excluded given the cited uncertainties for this reaction. Although ad-

justments in the nuclear cross-sections of this size are unlikely given the stated experimental

errors, one could worry that additional systematic effects are present, particularly given the

difficulties in establishing the absolute normalization for this reaction. As stated in the In-

troduction, these rates in particular can be bounded by another means. In the next section,

we will determine the maximum possible downward adjustment to S34 which is consistent

with solar neutrino fluxes.

The effect of changing the yields of certain BBN reactions was recently considered by

Coc et al. [27]. In particular, they concentrated on the set of cross sections which affect 7Li

and are poorly determined both experimentally and theoretically. In many cases however,

the required change in cross section far exceeded any reasonable uncertainty. Nevertheless,

it may be possible that certain cross sections have been poorly determined. In [27], it was
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Require:

or New 3He(α,γ)7Be measurements  
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Require:

or New 3He(α,γ)7Be measurements  

Constrained from solar 
neutrinos

Table 4: Shown are the constraints placed on S34 using reaction rates from various sources.
Column 1 lists the adopted S17 constraint used, while Columns 2 and 3 show the compilation
used for the S11 and S33 reaction rates. The S34 numbers cited are the most likely values
and their 68% (95%) confidence intervals.

Adopted S17 (eV b) Adelberger-based [24] NACRE-based [25]

Adelberger [24]

S17 = 19.0+4.0
−2.0 S34 = 0.51+0.15 (0.34)

−0.12 (0.21) N.A.

NACRE [25]

S17 = 21.0 ± 2.31 N.A. S34 = 0.51+0.17 (0.38)
−0.12 (0.22)

Junghans [43]

S17 = 21.4 ± 0.5(expt) ± 0.6(theor) S34 = 0.48+0.10 (0.23)
−0.08 (0.15) S34 = 0.49+0.14 (0.30)

−0.11 (0.19)

Davids [44]

S17 = 18.6 ± 0.4(expt) ± 1.1(extrp) S34 = 0.57+0.13 (0.30)
−0.11 (0.19) S34 = 0.59+0.17 (0.39)

−0.13 (0.24)

systematic errors in the normalization of S34, in an attempt to fix the BBN 7Li problem, we

will adopt various experimentally-determined values of S17 to place constraints on S34. Once

a value of S17 is adopted, we convolve the x likelihood distribution with the experimental

S17 distribution to get our S34 likelihood.

Besides using the Adelberger and NACRE rate compilations for S17, we also use two

more recent determinations. We use the recommended values from Junghans et al. [43], and

Davids and Typel [44]. The Junghans quoted value, S17 = 21.4 ± 0.5(expt) ± 0.6(theor)

eV b, is based on several direct capture data sets. The Davids and Typel value, S17 =

18.6±0.4(expt)±1.1(extrp) eV b, is based on both direct capture and Coulomb dissociation

measurements, excluding the Junghans data set because it is systematically higher than the

other data sets. Had the Junghans data been used, the value of S17 would lie between the

two cited values. We will adopt the cited numbers, keeping in mind that the difference in

their values are a measure of this systematic difference.

Our constraints in Table 4 are based on the likelihood functions in figure 3. We find that,

S34 > 0.35 keV barn (20)

at 95% CL for the case of the NACRE S17 value. Other choices give slightly higher limits,

e.g., Adelberger with the Davids S17 gives S34 > 0.42 keV barn.

As shown in Table 2, these limits on S34 place essentially identical limits to 7Li produc-

tion in BBN. One way to illustrate this is to fix the reaction normalization to its 95%CL

limit of S34 = 0.35 keV barn, and then to propagate the other nuclear uncertainties in the

16

at 95% CL
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Coc et al. consider large variations of certain rates.
     3H (p,γ) 4He	

 increase x1000	

 	

 low η	

 XX

4He (α,n) 7Be	

 small compared with	

 destruction X
7Li (d,n) 24He	

 increase x100 	

 	

 low η	

 XX
7Be (d,p) 24He	

 increase >x100	

 	

 high η  ✓? X

Table 3 lists the few reactions for which a variation of their
rates by up to an arbitrary factor of 1000 induces a variation of
the yields by more than 0.01 dex for 4He, D, 3He, and 7Li. It
shows that there are only four reactions that can lead to a
factor of at least 3 (0.5 dex) on 7Li yield when their rates are
artificially increased by up to a factor of 1000: 3H( p, !)4He,
4He(" , n)7Be, 7Li(d, n)2 4He, and 7Be(d, p)2 4He. It remains
to be checked whether such a huge increase in these reaction

rates is possible. As we see below, this is generally ruled out
by existing data.
A factor of !1000 increase of the 3H( p, !)4He rate would

be needed to reduce the 7Li yield by a factor of 3. This is
excluded because, since CF88, this reaction cross section has
been measured precisely by Hahn, Brune, & Kavanagh (1995)
and Canon et al. (2002) over the SBBN energy range. The
small changes in S-factor brought by these experiments (e.g., a
!40% reduction relative to CF88 at a Gamow peak energy
corresponding to T9 ¼ 1) rule out any possible influence in
SBBN. In any case, as seen in Figure 3, this reaction could
only affect the low baryonic density branch, 3H(" , !)7Li, and
not the WMAP density region.
The reaction rate for 7Li(d, n)2 4He comes from an analysis

by Boyd, Mitchell, & Meyer (1993) of 7Li destruction in
SBBN. A factor of 100 increase could reduce the 7Li
production by a factor of !3. Even though no rate
uncertainties are provided by Boyd et al., this seems quite
unlikely, since their analysis is based on experimental data
available in the SBBN energy range. Nevertheless, as for the
previous reaction, this could only influence the direct 7Li
formation, i.e., the low baryonic density region.
On the contrary, the 4He(" , n)7Be reaction (Q ¼ #18:99

MeV) could affect 7Li production at high #, at which it is
formed as 7Be (Fig. 3), and through 7Be destruction by the
reverse reaction, 7Be(n, "!)4He. However, the rate of this
latter is negligible compared to the main destruction mecha-
nism: 7Be(n, p)7Li (Fig. 3), where an l ¼ 0 resonance
dominates, while l ¼ 0 is forbidden in 7Be(n, "!)4He because
of the symmetry of the outgoing channel.
The last reaction in Table 3, 7Be(d, p)8Be(" )4He, is then

the most promising in view of reducing the discrepancy
between SBBN, 7Li, and CMB observations, and 7Beþ d

Fig. 4.—Same as Fig. 1 (bottom), but including the effect of 7Be(d, p)2 4He rate variations, while other reaction rates are set to their nominal values. The solid
curve is the reference for which the 7Be(d, p)2 4He rate from CF88 is used, while the dot-dashed curves correspond to an increase of the rate by factors of 30, 100,
300, and 1000. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 3.—The 12 main SBBN reactions plus 7Be(d, p)2 4He. [See the
electronic edition of the Journal for a color version of this figure.]
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Resonant Reactions
Cyburt, Pospelov

Chakraborty, Fields, Olive

Is there a missing excited state providing a resonant 
reaction?

If the new reaction is to be important in solivng the Li problem, it must reduce the 7Be
abundance by a factor of Y new

7Be
/Y old

7Be
∼ 3 − 4 . This in turn demands via eq. (7) that

〈σv〉7BeCYC/〈σv〉7BenYn ∼ 2 − 3, i.e., the rate for the new reaction exceeds that of the usual
n − p interconversion reaction rate. A similar estimate can be made for 7Li.

This reasoning would exclude non-resonant rates as they would be required to have un-
physically large astrophysical S-factors in the range of order 105 − 109 keV - barn depending
on the channel. Thus we would expect that only resonant reactions can produce the req-
uisite high rates. Possible resonant reactions along with their properties namely, resonance
strength, Γeff and energy, Eres in appropriate ranges capable of achieving the required de-
struction of mass 7 are listed in the next section. For those with known resonance energies,
this semi-analytical estimate can be extended trivially using the narrow resonance approx-
imation, to give an approximate expected strength. The details of these calculations are
in Appendix A. One can easily see, that known photonic channels with typical resonance
strengths of order few eVs or much less, are unlikely to have any effect. With these pointers,
the list in the next section is reduced and numerical analysis of the remaining promising
rates is done.

3 Systematic Search for Resonances

In this section we describe a systematic search for nuclear resonances which could affect
primordial lithium production. We first begin with general considerations, then catalog the
candidate resonances.

3.1 General Considerations

We breifly review the basic physics of resonant reactions to establish notation and highlight
the key physical ingredients. Consider a process 7Be + A → C∗ → B + D which destroys
7Be via a resonant compound state; a similar expression can be written for 7Li desruction.

In the entrance channel 7Be + A → C∗ the energy released in producing the compound
state is QC = ∆(7Be) + ∆(A)−∆(Cg.s.), with ∆ = m−Amu the mass defect. If an excited
state C∗ in the compound nucleus lies at energy Eex, then the difference

Eres ≡ Eex − QC (8)

determines the effectiveness of the resonance. We can expect resonant production of C∗ if the
|Eres| <∼ Γinit, where Γinit is the width of the initial state. In an ordinary (“superthreshold”)
resonance we then have Eres > 0, while a subthreshold resonance has Eres < 0.

Once formed, the excited C∗ level can in decay via some set of channels. The cross section
for 7Be + A → C∗ → B + D is given by the Breit-Wigner expression

σ(E) =
ω

8πµE

ΓinitΓfin

(E − Eres)2 − (Γtot/2)2
(9)
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strength, Γeff and energy, Eres in appropriate ranges capable of achieving the required de-
struction of mass 7 are listed in the next section. For those with known resonance energies,
this semi-analytical estimate can be extended trivially using the narrow resonance approx-
imation, to give an approximate expected strength. The details of these calculations are
in Appendix A. One can easily see, that known photonic channels with typical resonance
strengths of order few eVs or much less, are unlikely to have any effect. With these pointers,
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rates is done.
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In this section we describe a systematic search for nuclear resonances which could affect
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Resonant enhancements will occur if |Eres| < Γinit~
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qualify to be broad resonances. This implies that the narrow resonance formula used to see
their effect is not precise, but still gives a rough idea of whether the resonance is obviously
ineffective or not. The thermally averaged cross-section under this approximation is given
by [29],

〈σv〉 =

(

2π

µT

)3/2

!
2(ω Γeff)res exp

(

−
Eres

T

)

, (10)

where Eres = Eex − Q with Eex showing the position of the resonant energy level in the
compound nucleus and Q is the energy released for the reaction, in MeV. A negative value of
Eres indicates that the resonance is sub-threshold. µ is the reduced mass, ω is the statistical
spin factor of the resonant level. Γeff = Γ1Γ2

Γtot
is the resonance strength, with Γ1 and Γ2

being the entrance and exit widths of a particular reaction, and Γtot the sum of widths of
all possible channels. Of these widths, the smaller of Γ1 and Γ2 along with Γtot are listed
in the table above. The resonance strength, Γeff ≈ Γ1, if Γ2 dominates the total width. If
Γ1 and Γ2 are the dominant partial widths and they are comparable to each other, then the
strength is even higher. In typically useful units, eq. (10) can be re-expressed as [29],

〈σv〉 = 2.65 × 10−13µ−3/2(ω Γeff)T−3/2
9 exp(−11.605 Eres/T9) cm3s−1 (11)

As mentioned before, Cyburt and Pospelov, [15] recently attempted to solve the lithium
problem using this nuclear resonance approach. and concentrated on the 16.71 MeV level in
the 9B compound nucleus. The resonance properties of this resonance are not well studied
experimentally. They attribute certain qualities (narrowness) to this resonance based on the
16.671 MeV level in the mirror nucleus of 9Be. Then parametrizing the resonance strength
and energy, they find that atleast a partial if not complete (see the values they quote)
solution, to the lithium problem is plausible through this resonance for certain values of
these parameters. According to [15], for range of values of resonance energy from 170 -
220 keV and resonance width of 10 - 40 keV, the mass 7 abundance can be reduced to the
observed value. This requires a large deuteron seperation width, a27 > 9 fm.

Our analysis of this resonance yields results consistent with Cyburt and Pospelov, [15] as
is evident from figure 2. However, there is a possible caveat. There are alternate channels
out of the 16.71 MeV level such as the 6Li channel and beta decay to 9Be. The former
while energetically disfavoured, its width is unknown. And the latter despite being a weak
reaction can produce some 9Be. And there are observational upper limits [24] (cite 6Li)
on both 6Li and 9Be. Apriori, exceeding these limits would be a concern even before the
specific properties of these channels are examined. But it turns out that maximal production
of either 6Li or 9Be via the respective channels does not exceed these limits. Thus, the 16.71
MeV resonance remains a potential solution to the lithium problem.

However, it is possible that experiment rules out the parameter values which solve the
problem. Hence, it is important to make a systematic and comprehensive search for all pos-
sible experimentally identified resonances capable of removing this discrepancy. In addition,
it is possible that resonances and indeed energy levels themselves were missed, especially at
the higher energies, where uncertainties are greater. Therefore it is useful to map the param-
eter space where the lithium discrepancy is removed to apriori lay down our expectations of

8

leading to a thermally averaged cross section 
(in the narrow width approximation)
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7Be + d  → 9B (16.71)

Figure 2: The above figure shows the effect of the resonances in the 9B compound nucleus.
In particular, the 16.71 MeV level is of interest. The proton channel as well as the α channel
are exit channels of interest. The red contour indicates the observed mass 7 abundance.
As evaluated by [15], more than a factor of 2 destruction of 7A is achieved with a strength
of 40 keV and resonance energy of 220 keV. The black solid line at 40 keV indicates the
narrow resonance approximation limit. The vertical dashed line at 220 keV indicates the
experimental central value of the resonance energy. The width for either channel is unknown
experimentally and therefore, both the channels are potential solutions.
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15.0
7Be + 3He

eg. if a 1- or 2- excited 
state of 10C were near 
15.0 MeV .....
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Possible sources for the discrepancy

• Nuclear Rates

- Restricted by solar neutrino flux

• Stellar Depletion
- lack of dispersion in the data, 6Li abundance
- standard models (< .05 dex), models (0.2 - 0.4 dex)

Coc et al.
Cyburt, Fields, KAO

Vauclaire & Charbonnel
Pinsonneault et al.

Richard, Michaud, Richer
Korn et al.
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Figure 1: Trends of iron and lithium as a function of the effective temperatures of the observed stars compared to the
model predictions. The grey crosses are the individual measurements, while the bullets are the group averages. The solid
lines are the predictions of the diffusion model, with the original abundance given by the dashed line. In b, the grey-shaded
area around the dotted line indicates the 1σ confidence interval of CMB + BBN1: log[ε(Li)] = log (NLi/NH) + 12 = 2.64 ±

0.03. In a, iron is treated in non-equilibrium20 (non-LTE), while in b, the equilibrium (LTE) lithium abundances are plotted,
because the combined effect of 3D and non-LTE corrections was found to be very small29. For iron, the error bars are the
line-to-line scatter of Fe I and Fe II (propagated into the mean for the group averages), whereas for the absolute lithium
abundances 0.10 is adopted. The 1σ confidence interval around the inferred primordial lithium abundance (log[ε(Li)] =
2.54 ± 0.10) is indicated by the light-grey area.We attribute the modelling shortcomings with respect to lithium in the
bRGB and RGB stars to the known need for extra mixing30, which is not considered in the diffusion model.

Stellar Depletion in the Turbulence 
Model of Korn et al.

Note new BBN Li result 
pushes primordial value up from 
2.63 to 2.72  
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González Hernández et al.: Cosmological Li problem unsolved. 3

treated in non-local thermodynamical equilibrium (NLTE) using
the same code and model atom used in Cayrel et al. (2007). The
model atom consists of 8 energy levels and 11 transitions. Full
details will be given in Sbordone et al. (in preparation). To derive
3D-NLTE Li abundances we used the analytical fit as a function
of stellar parameters and EW also provided in Sbordone et al. (in
preparation). The analysis was also done with 1D model atmo-
spheres, providing essentially the same picture, although Teff in
1D show lower values. We also tried using the Carlsson et al.
(1994) NLTE corrections, rather than our own, with no signifi-
cant difference in the general picture.

In Fig. 2 we display the derived Li abundances versus the
effective temperatures of MSs and SGs of the globular cluster
NGC 6397. The Li abundance decreases with decreasing tem-
perature, although more rapidly for MSs than for SGs. This
Li abundance pattern is different from what is found among
field stars (Meléndez & Ramı́rez 2004; Bonifacio et al. 2007a;
González Hernández et al. 2008). The lithium-temperature cor-
relations have a probability of 99.9% and 99.5% for MSs and
SGs, respectively, according to the non parametric rank correla-
tion test, Kendall’s τ test. We performed a Kolmogorov-Smirnov
test and obtained a probability of 8 × 10−6. Therefore, the pos-
sibility that the two sets (MSs and SGs) have been drawn from
the same population (same Li abundance) can be rejected. Even
ignoring the trend in A(Li) one can deduce that there is a real
difference in the A(Li) of MSs and SGs by computing the mean
A(Li) and the standard deviation of the mean for the two sam-
ples. For SGs we find 2.37 ± 0.01, while for MSs 2.30 ± 0.01.
Such a result is also evident in the analysis of Lind et al. (2009)
who find only a 0.03 dex difference between the mean A(Li)
in MSs and SGs, which is still significant at 1σ. The signal
is partly erased by the very narrow range of Teff for MSs de-
duced by Lind et al. (2009) (∼ 80 K) compared to the wide range
(∼ 450 K) for the SGs (see Fig. 7). Such a difference in the
Teff range spanned by MSs and SGs is inconsistent with the very
similar B − V colours of the two sets of stars. In Fig. 8 online,
the lack of correlation between colour and Teff is fully com-
patible with the photometric and reddening uncertainties. The
Teff values adopted by Lind et al. (2009) for the MSs are on the
lower Teff side of the range spanned by the sample; this results
in an artificial increase of the deduced A(Li) for the MSs, which
reduces the difference with SGs, without totally erasing it. We
conjecture that this is because the Teff estimates of Lind et al.
(2009) are derived by interpolating our V magnitudes onto the
cluster fiducial sequence, ignoring any colour information. This
necessarily compresses the Teff scale into a range smaller than
what is implied by the range in colour, when photometric errors
and variations in reddening are taken into account.

4. Discussion and conclusions
Our results imply unambiguously that the Li surface abundance
changes with evolutionary status. The fact that A(Li) is higher
in SG stars suggests a scenario in which lithium sinks be-
low the photosphere during the MS phase, but to a depth low
enough to prevent Li distruction, so that it can be restored in
the photosphere, when the stars evolve beyond the TO. The
slope of A(Li) with Teff among MS stars suggests that the
amount by which Li is depleted in the atmospheres is differ-
ent for stars of different mass (Teff on the MS). The similar
slope found among SG stars suggests that after being restored
in the atmosphere at the TO, lithium is then decreased by some
other mechanism, possibly mixing linked to the convective mo-
tions which are more pronounced for the cooler Teff of the
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Fig. 2. 3D NLTE Li abundances versus 3D effective temperatures of
the observed MS (filled circles) and SG (open circles) stars together
with Li isochrones for different turbulent diffusion models. The stars
have been divided into five effective temperature bins. The error bar in
A(Li) shows the dispersion divided by the square root of the number
of stars in each bin. In each isochrone, the dashed and solid stretch of
the line shows the Li abundance in MS and SG stars, respectively. The
horizontal dashed line depicts the cosmological Li abundance.

SGs. Although the above described scenario is plausible, we
have so far no detailed understanding of the physical processes
that bring it about. Diffusive processes may alter the elemen-
tal composition of stars. Diffusion has been studied for decades
(Aller & Chapman 1960; Michaud et al. 1984), but only a few
years ago, detailed element-by-element predictions from mod-
els including effects of atomic diffusion and radiative accelera-
tions have become available (Richard et al. 2002). These models
produced strong abundance trends that are not compatible with
the Spite plateau, and only with the recent inclusion of turbu-
lent mixing, some of the model predictions roughly agree with
observations (Richard et al. 2005).

Pure diffusion models (Richard et al. 2005), with no turbu-
lence, predict A(Li) differences as large as 0.4 dex between MSs
and SGs of the same age and temperature. The inclusion of tur-
bulence can change this trend, and the SGs may exhibit a A(Li)
which is higher, lower, or almost equal to that of the MSs, de-
pending on the precise value of the turbulence parameter.

In Fig. 2 we show the Li isochrones for different turbu-
lent diffusion models (Richard et al. 2005). These models have
been shifted up by 0.14 dex in Li abundance to make the
initial abundance of the models, log(Li/H) = 2.58, coincide
with the primordial Li abundance predicted from fluctuations
of the microwave background measured by the WMAP satellite
(Cyburt et al. 2008).

The models assuming pure atomic diffusion, and, among
those including turbulent mixing, T6.0 and T6.09, are ruled out
by our observations. All such models predict that in MS stars Li
should be either more abundant or the same as in subgiant stars.
The only model that predicts a A(Li) pattern which is qualita-
tively similar to that observed, is the T6.25 model. For this model
there is a trend of decreasing A(Li) with decreasing Teff and at
the cool side MSs show less Li than SGs. However, the model
fails quantitatively because A(Li) of the warmest stars is about
0.05 dex lower than what is observed. The slope of A(Li) with
Teff is not perfectly reproduced. Models that include atomic dif-
fusion and tachocline mixing (Piau 2008) do not seem to re-
produce our observations, since they provide a constant A(Li)

But,

from Gonzáles Hernández et al.
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Possible sources for the discrepancy

• Nuclear Rates

- Restricted by solar neutrino flux

• Stellar Depletion
- lack of dispersion in the data, 6Li abundance
- standard models (< .05 dex), models (0.2 - 0.4 dex)

• Stellar parameters 

Coc et al.
Cyburt, Fields, KAO

Vauclaire & Charbonnel
Pinsonneault et al.

Richard, Michaud, Richer
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Possible sources for the discrepancy

• Nuclear Rates

- Restricted by solar neutrino flux

• Stellar Depletion
- lack of dispersion in the data, 6Li abundance
- standard models (< .05 dex), models (0.2 - 0.4 dex)

• Stellar parameters 
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New evaluation of surface temperatures
in 41 halo stars with systematically higher
temperatures (100-300 K) 

[Li] = 2.37 ± 0.1
Li/H = 2.34 ± 0.54 x 10-10

BBN Prediction: 1010 Li/H = 

Claim:

Melandez & Ramirez

(5.12+0.71
−0.62)× 10−10

– 11 –

Fig. 2.— Temperatures obtained in this work minus the temperatures from R01 (for stars
in common with the present sample) as a function of the metallicities adopted in the present

work. Filled circles: plateau stars (Teff > 6000 K); open circles: stars with Teff < 6000 K.
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Recent dedicated temperature determinations
(excitation energy technique)

Hosford, Ryan, Garcia-Perez, Norris, Olive

Use Fe I lines:
population of a given state ∝ exp(-χi/T)
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Possible sources for the discrepancy

• Nuclear Rates

- Restricted by solar neutrino flux

• Stellar parameters 

• Particle Decays

dLi

dlng
=

.09

.5

dLi

dT
=

.08

100K

Coc et al.
Cyburt, Fields, KAO
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3 free parameters

Limits on Unstable particles due to 

and τX

ζX = nX mX/nγ = mX YX η,    mX ,

Electromagnetic/Hadronic Production and 
Destruction of Nuclei

•Start with non-thermal injection spectrum (Pythia) 

•Evolve element abundances including thermal (BBN) 
and non-thermal processes.
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E.g.,   Gravitino decay 

�G→ f̃ f, �G→ χ̃
+

W
−(H−), �G→ χ̃

0
i γ(Z), �G→ χ̃

0
i H

0
i

�G→ g̃ g.

plus relevant 3-body decays

Cyburt, Ellis, Fields, Luo, Olive, Spanos
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FIG. 2: Abundance yields of D/H, 7Li/H, and 7Li/6Li in
an Ωbh

2 = 0.026 Universe as function of the hadronic de-
cay time τ of a putative primordial relic. The models are
decay of a mχ = 10GeV particle (long-dashed), decay of a
mχ = 200GeV particle (solid), decay of a mχ = 4TeV par-
ticle (dashed-dotted), injection of monoenergetic nucleons of
Ekin = 250 MeV (short-dashed), and extended power-law in-
jection due to a mχ = 200 GeV particle (dotted). Also shown
are the two-sigma ranges of the inferred primordial D/H and
7Li/H abundances [3, 10] as well as the 6Li/7Li ratio as in-
ferred in the low-metallicity star HD84937 [25]. See text for
further details.

scatterings an interconversion of protons to neutrons oc-
curs frequently, such that energetic protons produce sec-
ondary neutrons. For example, though the decay of a
200 GeV particle generates only about ≈ 1 neutron per
annihilation, around ≈ 1, 0.6 secondary neutrons result
at T ≈ 20, 40 keV, respectively [39], and ≈ 3.5 asymptot-
ically at low temperatures T ∼ 0.1−1 keV. Here at higher
temperatures the number of secondary neutrons reduces
due to the rapid Coulomb losses of protons. Neutrons,
on the other hand, do not possess a significant bias to-
wards producing secondary neutrons in np inelastic inter-

actions. Excess neutrons at T ≈ 40 keV are mostly due
to inelastic processes on 4He, accompanied by the pro-
duction of D and 3He (i.e. n+4He → D+p+2n, ...), with
a comparatively smaller amount of neutrons removed in
pionic fusion processes (i.e. np → Dπ0, ...). One thus
obtains approximately a ratio n/D≈ 3.6 for a 200 GeV
particle at T ≈ 40 keV, with similar ratios for n/3H and
n/3He. As the 3H and 3He are energetic they may yield
the production of 6Li. Nevertheless, 6Li production (and
survival) may only be efficient at somewhat lower temper-
atures. Due to Coulomb losses of energetic 3H and 3He
production is only efficient at T <

∼ 20 keV, whereas sur-
vival of the freshly synthesized 6Li against destruction via
6Li(p, α)3He is only nearly complete for T <

∼ 10 keV. The
production of 6Li at temperatures T ≈ 10− 20 keV for a
200 GeV particle is found to be approximately 2 × 10−4

per decaying particle, becoming significantly lower at
lower temperatures (e.g. 3×10−5 at T ≈ 1 keV). Cascade
yields are subject to some nuclear physics data uncertain-
ties which in the case of 6Li may be of the order of a factor
two. In particular, it may be that 6Li yields are under-
estimated due to an experimentally incomplete determi-
nation of the high-energy tail of the energy distribution
of energetic 3H and 3He produced in 4He spallation.

The developed code allows me to present detailed pre-
dictions on the BBN in the presence of decaying parti-
cles. Figure 2 shows the light-element yields for a variety
of decaying particles as a function of particle life time
τ . The panels show, from top-to-bottom, final abun-
dances of D/H, 7Li/H, and 6Li/7Li, with the understand-
ing that Yp is virtually unchanged when compared to
SBBN at the same Ωbh2. In all models Ωbh2= 0.026
has been assumed. Hadronically decaying particle yields
(with the simplifying assumption that χ → qq̄ yields the
production of a pair of quarks, the up-quark for definit-
ness) are shown for three particle masses: mχ = 10 GeV
with Ωχh2 = 7.5 × 10−5 (long-dashed), mχ = 200 GeV
with Ωχh2 = 1 × 10−4 (solid), and mχ = 4 TeV [40]
with Ωχh2 = 6 × 10−4 (dashed-dotted). It is evident
that for decay times around τ ≈ 103s an efficient de-
struction of 7Li is obtained. For τ much shorter than
103s the destroyed 7Be is regenerated, whereas for τ
much longer, incomplete 7Li burning in the reaction chain
7Be(n, p)7Li(p, α)4He results in only partial reduction of
the total 7Li yield. As anticipated, the destruction of 7Li
is accompanied by production of D. When compared to
the injection of thermal neutrons, D/H yields are higher.
This is due to D generated in the nuclear cascade it-
self (i.e. by 4He spallation and pionic fusion). Cascade
generated deuterium (as well as 3H, 3He, and 6Li) is sub-
stantially reduced per injected neutron for sources which
inject nucleons with a soft spectrum. For example, I have
also employed a soft source with monoenergetic nucleons
of 250 MeV. Results for this case are shown by the short-
dashed line, assuming Ωχh2/mχ ≈ 7.5×10−7GeV−1 and
the injection of one np pair per decay [41]. A cascade
n/D≈ 10 ratio at T ≈ 40 keV is obtained in such scenar-
ios. The more pronounced depth of the 7Li dip in Fig.

Jedamzik

Figure 35: Contours of constant 6Li/H. Cosmological and model parameters are the same
as Fig. 32. In the SBBN, the theoreical predication is (6Li/H)SBBN = 1.30 × 10−14.

Figure 36: Contours of constant 7Li/H. Cosmological and model parameters are the same
as Fig. 32. In the SBBN, the theoreical predication of the abundance is (7Li/H)SBBN =
3.81 × 10−10.
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Based on m1/2 = 300 GeV, tan β =10 ; Bh ~ 0.2
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co-annihilation strip, tan β =10 ; m3/2 = 250 GeV
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co-annihilation strip, tan β =10 ; m3/2 = 1000 GeV
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co-annihilation strip, tan β =10 ; m3/2 = 5000 GeV
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Benchmark point C, tan β =10 ; m1/2 = 400 GeV
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Uncertainties

There are only a few non-thermal 
rates which affect the result

Table 1: Nuclear reactions of non-thermal particles, including the most important of the
estimated uncertainties in the cross sections.

Code Reaction Uncertainty ε Reference
1 p4He → d3He Meyer [35]
2 p4He → np3He 20% Meyer [35]
3 p4He → ddp 40% Meyer [35]
4 p4He → dnpp 40% Meyer [35]
5 d4He → 6Liγ Mohr [38]
6 t4He → 6Lin 20% Cyburt et al. [14]
7 3He4He → 6Lip 20% Cyburt et al. [14]
8 t4He → 7Liγ Cyburt [27]
9 3He4He → 7Beγ Cyburt and Davids [39]
10 p6Li → 3He4He Cyburt et al. [14]
11 n6Li → t4He Cyburt et al. [14]
12 pn → dγ Ando, Cyburt, Hong, and Hyun [40]
13 pd → 3Heγ Cyburt et al. [14]
14 pt → n3He Cyburt [27]
15 p6Li → 7Beγ Cyburt et al. [14]
16 p7Li → 8Beγ Cyburt et al. [14]
17 p7Be → 8Bγ Cyburt et al. [32]
18 np → dγ Ando, Cyburt, Hong, and Hyun [40]
19 nd → tγ Cyburt et al. [14]
20 n4He → dt Meyer [35]
21 n4He → npt 20% Meyer [35]
22 n4He → ddn 40% Meyer [35]
23 n4He → dnnp 40% Meyer [35]
24 n6Li → 7Liγ Cyburt et al. [14]
25 n (thermal) —
26 n7Be → p7Li Cyburt et al. [14]
27 n7Be → 4He4He Cyburt et al. [32]
28 p7Li → 4He4He Cyburt et al. [14]
29 nπ+ → pπ0 Meyer [35]
30 pπ− → nπ0 Meyer [35]
31 p4He → ppt 20% Meyer [35]
32 n4He → nn3He 20% Meyer [35]
33 n4He → nnnpp Meyer [35]
34 p4He → nnppp Meyer [35]
35 p4He → N4Heπ Meyer [35]
36 n4He → N4Heπ Meyer [35]
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Figure 5: Similar to Fig. 3, for the reaction 21 (n4He → npt), showing the effects on all
four light elements deuterium (upper left), 3He (upper right), 7Li (lower left) and 6Li (lower
right).
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Figure 5: Similar to Fig. 3, for the reaction 21 (n4He → npt), showing the effects on all
four light elements deuterium (upper left), 3He (upper right), 7Li (lower left) and 6Li (lower
right).
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How well can you do

SBBN: χ2 = 31.7 - field stars
SBBN: χ2 = 21.8 - GC stars
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Recently, there have been several analyses which indicate that the 7Li abundance at
low metallicity falls below the typical plateau value and/or shows a significant amount of
dispersion [61–65]. While these observations apparently provide the first indications of Li
depletion in metal-poor stars, it would appear that it is operative only at extremely low
metallicity, [Fe/H] <∼ −3, whatever the particular depletion mechanism may be, whether in
the star or in the medium prior to the star’s formation. There is no observational evidence
of any depletion at higher metallicity (−3 <∼ [Fe/H] <∼ −1.5) from the standard BBN result
to the plateau value [63, 64], in contrast to the claim of [65] 1.

To obtain our χ2 distribution, we combine the standard BBN uncertainties with the
observational errors in quadrature. In the case of 7Li, where the reported errors are uneven,
we use the upper error bar on the observation, and the lower error bar on the theory, as we
are interested in the region between these two central values. Correspondingly, the likelihood
function that we calculate is

χ2 ≡

(

Yp − 0.256

0.011

)2

+

(

D
H − 2.82 × 10−5

0.27 × 10−5

)2

+





7Li
H − 1.23 × 10−10

0.71 × 10−10





2

+
∑

i

s2
i , (8)

where the si are the contributions to the total χ2 due to the nuisance parameters associated
with varying one or more of the rates listed in Table 1. Standard BBN has a large total
χ2 = 31.7, primarily due to the discrepancy in 7Li. There is a contribution of ∆χ2 ∼ 30
from the 7Li abundance, ∆χ2 ∼ 1.2 from the D/H abundance, and a smaller contribution
from 4He, corresponding to a ∼ 5 − σ discrepancy overall 2.

Our treatments of the hadronic and electromagnetic components of the showers induced
by heavy-particle decays follow those in [32]. Also, we follow the calculations of decay
branching ratios and particle spectra described in [32]. The only differences here are in the
nuclear reaction rates and their uncertainties that were discussed above.

We display in Fig. 1 the effects on the abundances of the light elements deuterium,
3He, 4He, 6Li and 7Li of the decays of a generic metastable particle X with lifetime τX ∈
(1, 1010) sec. For illustration, we assume the decay spectra calculated in [32] for the choice
(m1/2, m3/2, tan β) = (300 GeV, 500 GeV, 10), in which case the proton branching ratio
Bp ≈ 0.2 and the electromagnetic branching rate is BEMm3/2 = 115 GeV. In this figure we
assume the nominal central values of the nuclear reaction rates discussed in the text, and
this figure may be compared directly with Fig. 6 of [32]. The main differences are in the
upper left panel, where the region where the deuterium abundance lies within the favoured
range is now pushed to values of ζX that are lower by a factor of about 2 when τX < 106 sec
as compared with the results of [32], and in the lower middle panel, where the region of
acceptable 7Li abundance extends to lower ζX when τX ∼ 103 sec. Both these effects are

1It was argued in [65] that there are two plateau values corresponding to [Fe/H] above and below -2.5.
However, the evidence for this assertion is not convincing, as these data can be fit equally well with a linear
increase in logLi vs. [Fe/H] as in [54,62,64,66]. This would point to a lower primordial Li abundance and a
more severe problem with respect to standard BBN predictions.

2We find that χ
2 = 21.8 even when the globular cluster value of 7Li/H is used, corresponding to a 4 − σ

effect.

6
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Table 2: Results for the best-fit points for CMSSM benchmarks C, E, L and M. The second
set of results for C and M correspond to the globular cluster value for primordial 7Li/H. The
third and fourth entries for point C correspond to the higher adopted uncertainty for D/H
in field stars and to the globular cluster 7Li abundances, respectively.

m3/2[GeV] Log10(ζ3/2/[GeV]) Yp D/H (×10−5) 7Li/H (×10−10)
∑

s2
i χ2

BBN —— —— 0.2487 2.52 5.12 —— 31.7
C 4380 −9.69 0.2487 3.15 2.53 0.26 5.5
E 4850 −9.27 0.2487 3.20 2.42 0.29 5.5
L 4380 −9.69 0.2487 3.21 2.37 0.26 5.4
M 4860 −10.29 0.2487 3.23 2.51 1.06 7.0
C 4680 −9.39 0.2487 3.06 2.85 0.08 2.0
M 4850 −10.47 0.2487 3.11 2.97 0.09 2.7
C 3900 −10.05 0.2487 3.56 1.81 0.02 2.8
C 4660 −9.27 0.2487 3.20 2.45 0.16 1.1

this case, with values of 2.0 and 2.7 for points C and M respectively. Thus a massive (>∼ 4
TeV) gravitino can provide a potential solution of the lithium problem if globular cluster
data is assumed to represent the primordial 7Li abundance.

As discussed earlier, one may also consider the effect of increasing the size of the uncer-
tainty in the mean D/H abundance. Using an observed abundance of (2.82 ± 0.53) × 10−5,
we obtain the χ2 contours seen in the left panel of Fig. 10, corresponding to point C. In this
case, we can obtain solutions with χ2 = 2.8 and a best-fit point with a 7Li/H abundance of
1.81 ×10−10 coming at the expense of a higher D/H abundance of 3.56 × 10−5. When the
globular cluster value of 7Li/H is used together with the higher D/H uncertainty, we can
even find a best-fit solution with χ2 = 1.1: D/H = 3.20× 10−5 and 7Li/H = 2.45× 10−10, as
seen in the right panel of Fig. 10.

5 Summary and Conclusions

We have presented in this paper an analysis of the modifications of the cosmological light-
element abundances that would be induced by the late decays of massive particles, incorpo-
rating for the first time the uncertainties in relevant nuclear reaction rates. We have analyzed
the possible effects of the 36 different nuclear reactions shown in Table 1, and identified three
as the most important, namely n4He → npt, n4He → dnnp and n4He → nn3He.

It is well known that there is a problem with the cosmological abundance of 7Li in conven-
tional BBN with no late-decaying particles, and a natural question is whether this problem
could be mitigated by some suitable late-decaying particle. As an example of the possible
applications of our uncertainty analysis, we have considered in this paper the late decays of
massive gravitinos in various benchmark supersymmetric scenarios. It had been observed
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Effects of Bound States

2

bound st. |E0
b | a0 Rsc

N |Eb(R
sc
N )| RNc |Eb(RNc)| T0

4HeX− 397 3.63 1.94 352 2.16 346 8.2
6LiX− 1343 1.61 2.22 930 3.29 780 19
7LiX− 1566 1.38 2.33 990 3.09 870 21
7BeX− 2787 1.03 2.33 1540 3 1350 32
8BeX− 3178 0.91 2.44 1600 3 1430 34

4HeX−− 1589 1.81 1.94 1200 2.16 1150 28

DX− 50 14 - 49 2.13 49 1.2

pX− 25 29 - 25 0.85 25 0.6

TABLE I: Properties of the bound states: Bohr a0 and nuclear
radii RN in fm; binding energies Eb and “photo-dissociation
decoupling” temperatures T0 in KeV.

E0
b = Z2α2mN/2 from ∼ 13% in (4HeX) to 50% in

(8BeX). Realistic binding energies are calculated for two
types of nuclear radii assuming a uniform charge distri-
bution: for the simplest scaling formula Rsc

N = 1.22A
1

3 ,
and for the nuclear radius determined via the the root
mean square charge radius, RNc = (5/3)1/3Rc with ex-
perimental input for Rc where available. Finally, as an
indication of the temperature at which (NX) are no
longer ionized, we include a scale T0 where the photo-
dissociation rate Γph(T ) becomes smaller than the Hub-
ble rate, Γph(T0) = H(T0). It is remarkable that sta-
ble bound states of (8BeX) exist, opening up a path to
synthesize heavier elements such as carbon, which is not
produced in SBBN. In addition to atomic states, there
exist molecular bound states (NXX). The binding en-
ergy of such molecules relative to (NX) are not small
(e.g. about 300 KeV for (4HeX−X−)). Such neutral
molecules, along with (8BeX) and (8BeXX), are an im-
portant path for the synthesis of heavier elements in
CBBN. Table 1 also includes the case of doubly-charged
particles, admittedly a much more exotic possibility from
the model-building perspective, which was recently dis-
cussed in [8] where the existence of cosmologically sta-
ble bound states (4HeX−−) was suggested in connection
with the dark matter problem. Although noted in pass-
ing, the change in the BBN reaction rates was not ana-
lyzed in [8]. Yet it should be important for this model, as
any significant amount of stable X−− would lead to a fast
conversion of 4He to carbon and build-up of (8BeX−−)
at T ∼ 20 KeV, possibly ruling out such a scenario. Ref.
[8] also contains some discussion of stable (4HeX−).

The initial abundance of X− particles relative to
baryons, YX(t " τ) ≡ nX−/nb, along with their life-
time τ are the input parameters of CBBN. It is safe to
assume that YX " 1, and to first approximation neglect
the binding of X− to elements such as Be, Li, D, and
3He, as they exist only in small quantities. The binding
to p occurs very late (T0 = 0.6 KeV) and if nX− " n4He,
which is the case for most applications, by that tempera-
ture all X− particles would exist in the bound state with
4He. Therefore, the effects of binding to p can be safely

ignored. For the concentration of bound states (4HeX),
nBS(T ), we take the Saha-type formula,

nBS(T ) =
nb(T )YX exp(−T 2

τ /T 2)

1 + n−1
He (mαT )

3

2 (2π)−
3

2 exp(−Eb/T )
(3)

%
nb(T )YX exp(−T 2

τ /T 2)

1 + T−
3

2 exp(45.34 − 350/T )
,

where we used temperature in KeV and nHe % 0.93 ×
10−11T 3. One can check that the recombination rate
of X− and 4He is somewhat larger than the Hubble
scale, which justifies the use of (3). The border-line
temperature when half of X− is in bound states is
8.3 KeV. Finally, the exponential factor in the numer-
ator of (3) accounts for the decay of X−, and the con-
stant Tτ is determined from the Hubble rate and τ :
Tτ = T (2τH(T ))−1/2.

Li
6

He
4He

4
Li
6

D ! D

X
!X( !)

FIG. 1: SBBN and CBBN mechanisms for producing 6Li.

Photonless production of 6Li. The standard mecha-
nism for 6Li production in SBBN is “accidentally” sup-
pressed. The D-4He cluster description gives a good
approximation to this process, and the reaction rate
of (1) is dominated by the E2 amplitude because the
E1 amplitude nearly vanishes due to an (almost) iden-
tical charge to mass ratio for D and 4He. In the E2
transition, the quadrupole moment of D-4He interacts
with the gradient of the external electromagnetic field,
Vint = Qij∇iEj . Consequently, the cross section at BBN
energies scales as the inverse fifth power of photon wave-
length λ = ω−1 ∼ 130 fm, which is significantly larger
than the nuclear distances that saturate the matrix ele-
ment of Qij , leading to strong suppression of (1) relative
to other BBN cross sections [10]. For the CBBN pro-
cess (2) the real photon in the final state is replaced by
a virtual photon with a characteristic wavelength on the
order of the Bohr radius in (4HeX−). Correspondingly,
one expects the enhancement factor in the ratio of CBBN
to SBBN cross sections to scale as (a0ω)−5 ∼ 5×107. Fig-
ure 1 presents a schematic depiction of both processes.
It is helpful that in the limit of RN " a0, we can ap-
ply factorization, calculate the effective ∇iEj created by
X−, and relate SBBN and CBBN cross sections with-
out explicitly calculating the 〈D4He|Qij |6Li〉 matrix el-
ement. A straightforward quantum-mechanical calcula-
tion with ∇iEj averaged over the Hydrogen-like initial
state of (4HeX) and the plane wave of 6Li in the final
state leads to the following relation between the astro-
physical S-factors at low energy:

SCBBN = SSBBN ×
8

3π2

pfa0

(ωa0)5

(

1 +
mD

m4He

)2

. (4)

• In SUSY models with a τ NLSP, bound states form 
between 4He and τ

•The 4He (D, γ) 6Li reaction is normally highly 
suppressed (production of low energy γ)

•Bound state reaction is not suppressed

~
~

Pospelov
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Figure 2: Some (m1/2, m0) planes for A0 = 0, µ > 0 and tanβ = 10. In the upper (lower)
panels we use m3/2 = 100 GeV (m3/2 = 0.2 m0). In the right panels the effects of the stau
bound states have been included, while in those on the left we include only the effect of the
NSP decays. The regions to the left of the solid black lines are not considered, since there
the gravitino is not the LSP. In the orange (light) shaded regions, the differences between
the calculated and observed light-element abundances are no greater than in standard BBN
without late particle decays. In the pink (dark) shaded region in panel d, the abundances lie
within the ranges favoured by observation, as described in the text. The significances of the
other lines and contours are explained in the text.
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Possible sources for the discrepancy

• Stellar parameters 

• Particle Decays

• Variable Constants

dLi

dlng
=

.09

.5

dLi

dT
=

.08

100K

Tuesday, October 19, 2010



Contributions to Y come from n/p which in turn come from ΔmN 

Limits:

∆Y
Y

<∼
±0.012
0.24 = ±0.05

∆(n/p)
(n/p) " ∆mN

Tf
(
∆Tf
Tf

− ∆2mN
∆mN

)

If the dominant contribution from ∆α
is in ∆mN then:

∆Y
Y " ∆2mN

∆mN
∼ ∆α

α < 0.05

If ∆α arises in a more complete theory
the effect may be greatly enhanced:

∆Y
Y " O(100)∆α

α and ∆α
α < few ×10−4

Contributions to ∆Y : Kolb, Perry, and Walker

Campbell and Olive

Bergstrom, Iguri, and Rubenstein

∆Y
Y ! 1

1+n/p
∆(n/p)
(n/p)

∆(n/p)
(n/p) ! ∆mN

Tf
(
∆Tf
Tf

− ∆2mN
∆mN

)

Contributions to ∆mN :

∆mN ∼ aαemΛQCD + bv

electromagnetic weak
-0.8 MeV 2.1 MeV

Changes in α, ΛQCD, and/or v
all induce changes in ∆mN and hence Y

Contributions to ∆Y : Kolb, Perry, and Walker

Campbell and Olive

Bergstrom, Iguri, and Rubenstein

∆Y
Y ! 1

1+n/p
∆(n/p)
(n/p)

∆(n/p)
(n/p) ! ∆mN

Tf
(
∆Tf
Tf

− ∆2mN
∆mN

)

Contributions to ∆mN :

∆mN ∼ aαemΛQCD + bv

electromagnetic weak
-0.8 MeV 2.1 MeV

Changes in α, ΛQCD, and/or v
all induce changes in ∆mN and hence Y

Kolb, Perry, & Walker
Campbell & Olive

Bergstrom, Iguri, & Rubinstein

Limits on α from BBN
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Approach:

Consider possible variation of Yukawa, h, 
or fine-structure constant, α

Include dependence of Λ on α; of v on h, etc.

Consider effects on:  Q = ΔmN, τN,  BD

Coc, Nunes, Olive, Uzan, Vangioni
Dmitriev & Flambaum
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Approach:

Consider possible variation of Yukawa, h, 
or fine-structure constant, α

Include dependence of Λ on α; of v on h, etc.

Consider effects on:  Q = ΔmN, τN,  BD

Coc, Nunes, Olive, Uzan, Vangioni
Dmitriev & Flambaum

and with 

Also expect variations in Yukawas,

∆h
h = 1

2
∆αU
αU

But in theories with radiative electroweak
symmetry breaking

v ∼ MP exp(−2πc/αt)

Thus small changes in ht
will induce large changes in v

∆v
v ∼ 80∆αU

αU

E.g., predict that:

∆µ
µ ∼ ∆Λ

Λ − ∆v
v ∼ −50∆α

α

or

∆µ
µ ∼ −3 × 10−4

8

5

the relation between h, v and Λ is quite robust and has
been neglected in most studies discussing the effect of
varying v (or varying GF ) [30, 31].

For the quantities we are interested in, we now have

∆BD

BD
= −13

(

∆v

v
+

∆h

h

)

+ 18R
∆α

α
, (15)

∆Q

Q
= 1.5

(

∆v

v
+

∆h

h

)

− 0.6(1 + R)
∆α

α
, (16)

∆τn

τn
= −4

∆v

v
− 8

∆h

h
+ 3.8(1 + R)

∆α

α
. (17)

where we have assumed that all Yukawa couplings vary
identically, ∆hi/hi = ∆h/h. For clarity, we have writ-
ten only rounded values of the coefficients, however,
the numerical computation of the light element abun-
dances uses the more precise values. We also recall that
∆GF /GF = −2∆v/v and ∆me/me = ∆h/h + ∆v/v.

B. Interrelations between fundamental parameters

Secondly, in all models in which the weak scale is de-
termined by dimensional transmutation, changes in the
largest Yukawa coupling, ht, will trigger changes in v [43].
In such cases, the Higgs vev is derived from some unified
mass scale (or the Planck scale) and can be written as
(see Ref. [27])

v = MP exp

(

−
8π2c

h2
t

)

, (18)

where c is a constant of order unity. Indeed, in su-
persymmetric models with unification conditions such as
the constrained minimal supersymmetric standard model
[57], there is in general a significant amount of sensitiv-
ity to the Yukawa couplings and the top quark Yukawa
in particular. This sensitivity can be quantified by a fine-
tuning measure defined by [58]

∆i ≡
∂ lnmW

∂ ln ai
(19)

where mW is the mass of the W boson and can be sub-
stituted with v. The ai are the input parameters of the
supersymmetric model and include ht. In regions of the
parameters space which provide a suitable dark matter
candidate [59], the total sensitivity ∆ =

√

∑

i ∆2
i typi-

cally ranges from 100 – 400 for which the top quark con-
tribution is in the range ∆t = 80− 250. In models where
the neutralino is more massive, ∆ may surpass 1000 and
∆t may be as large as ∼ 500.

Clearly there is a considerable model dependence in
the relation between ∆v and ∆ht. Here we assume a
relatively central value obtained from Eq. (18) with c $
h0 $ 1. In this case we have

∆v

v
= 16π2c

∆h

h3
$ 160

∆h

h
, (20)

but in light of the model dependence, we will set

∆v

v
≡ S

∆h

h
, (21)

hence defining S ≡ d ln v/d lnh ∼ ∆t and keeping in
mind that S $ 160. It follows that the variations of BD,
Q and τn are expressed in the following way

∆BD

BD
= −17(S + 1)

∆h

h
+ 18

∆Λ

Λ
, (22)

∆Q

Q
= 1.6(S + 1)

∆h

h
− 0.6

(

∆α

α
+

∆Λ

Λ

)

, (23)

∆τn

τn
=−(8.8 + 4.8S)

∆h

h
+3.8

(

∆α

α
+

∆Λ

Λ

)

(24)

where we have again assumed common variations in all
of the Yukawa couplings. It also follows that ∆GF /GF =
−2S∆h/h and ∆me/me = (1 + S)∆h/h.

Now, using the relation (14) we arrive at

∆BD

BD
= −13(1 + S)

∆h

h
+ 18R

∆α

α
(25)

∆Q

Q
= 1.5(1 + S)

∆h

h
− 0.6(1 + R)

∆α

α
, (26)

∆τn

τn
= −(8 + 4S)

∆h

h
+ 3.8(1 + R)

∆α

α
. (27)

Finally we can take into account the possibility that
the variation of the constants is induced by an evolv-
ing dilaton [27]. In this scenario, it was shown that
∆h/h = (1/2)∆α/α, therefore the expressions above can
be simplified to

∆BD

BD
= −[6.5(1 + S) − 18R]

∆α

α
(28)

∆Q

Q
= (0.1 + 0.7S − 0.6R)

∆α

α
(29)

∆τn

τn
= −[0.2 + 2S − 3.8R]

∆α

α
, (30)

though these relations will also be affected by model de-
pendent threshold corrections.

C. Sensitivity of BD to the pion mass

An independent calculation suggests a large depen-
dence of the binding energy of the deuteron to the pion
mass [60] parametrized in Ref. [31], for constant Λ, by

∆BD

BD
= −r

∆mπ

mπ
, (31)

where r is a fitting parameter found to be between 6
and 10. The mass of the pion is given by f2

πm2
π = (mu +

md)〈q̄q〉, where fπ ∝ Λ is a coupling and 〈q̄q〉 ∝ Λ3 is the
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h/h = 0 and 1.5×10-5
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For S = 240, R = 36,

S = 240, R = 0, 36, 60, / =2 h/h
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enters as a factor (m−1
p + m−1

n )
1

2 in the p(n, γ)D rate.
For variations of the order we are considering, this effect
is negligible.

C. Allowing for ∆α/α != 0

We now allow the fine structure constant to vary and
we further assume that it is tied to the variation of the
Yukawa couplings according to ∆h/h = (1/2)∆α/α, us-
ing Eqs. (28)–(30). The results are shown in Fig. 4 where
the abundances are depicted for three values of the pa-
rameter R. Comparison of this figure with Fig. 2 shows
the effect of including the variation in α. Not consider-
ing 7Li, the tighter bounds on ∆h/h are again given by
the deuterium abundance and are comparable in order of
magnitude to the ones found in Eq. (39):

−1.6 × 10−5 <
∆h

h
< 2.1 × 10−5 , (40)

for R = 36 and

−3 × 10−5 <
∆h

h
< 4 × 10−5 , (41)

for S = 240 and R = 60.
While these limits are far more stringent than the one

found in Ref. [25], it is consistent with those derived in
Refs. [26, 27] where coupled variations were considered.
Once again, for a variation near the upper end of the
range (40) and (41), we can simultaneously fit all of the
observed abundances.

As noted above, a variation of α induces a multitude
of changes in nuclear cross sections that have not been
included here. We have checked, however, that a varia-
tion of ∆α/α ≈ 4 × 10−5 leads to variations in the reac-
tion rates (numerically fit), mainly through the Coulomb
barrier, of the most important α-dependent reactions in
BBN [25] that never exceed one tenth of a percent in
magnitude.

Before concluding, we return once more to the ques-
tion of model dependence. We have parametrized the
uncertainty between ∆v and ∆h with the quantity S and
the uncertainty between ∆Λ and ∆α through R. In full
generality we ought to include one more unknown, say
T , that parametrizes the relation between ∆α and ∆h,
T ≡ d lnh/d lnα [56]. In this work, however, we focused
our investigation in the dilaton model where T = 1/2. It
is now important to evaluate more precisely how sensitive
our results are to the value these parameters may take.
In Fig. 5 we illustrate the evolution of the primordial
abundances of the light nuclei with S for a fixed value of
the change in the Yukawa couplings assuming ∆α/α = 0.
We clearly see that, in this case, the theoretical 7Li abun-
dance is compatible with its observational measurement
provided 200 ! S ! 370 (for the lower range of observa-
tional 7Li abundances).

We can also evaluate the impact of changing R in the
dilaton model, when we allow a variation in α. To this

S = 240, R = 0, 36, 60, !"/"=2!h/h
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FIG. 4: Primordial abundances of 4He, D, 3He and 7Li as a
function of ∆h/h = (1/2)∆α/α when allowing a variation of
the fine structure constant for three values of the R parameter:
R = 0 (red lines), R = 36 (blue lines) and R = 60 (magenta
lines).

end we show in Fig. 6 the evolution of the primordial
abundances for two different values of ∆h/h. We ob-
serve that when ∆h/h = 1.5 × 10−5, we require R = 6.
On the other hand, if we take ∆h/h = 2.5 × 10−5, the
abundances are more sensitive to the value of R as the
slope of the corresponding curves are steeper, but there
is also a narrow window around R = 45 where all the
light nuclei abundances are compatible with the full ob-
servational data.

V. SUMMARY

In this article, we have considered the influence of
a possible variation of the fundamental constants on
the abundances of the light elements synthesized during
BBN. We have focused our attention on three fundamen-

Tuesday, October 19, 2010



Summary

• D, He are ok -- issues to be resolved

• Li: Problematic
- BBN 7Li high compared to observations
• Important to consider:
- Nuclear considerations 
- Resonances 10C (15.04) !
- Depletion (tuned)
- Li Systematics - T scale - unlikely
- Particle Decays?
- Variable Constants??? 
• 6Li: Another Story
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