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SUSY BREAKING IN SUGRA

Constraints on realistic models

In a SUGRA model, the scalar potential V should allow for spontaneous
SUSY breaking with certain non-trivial features.

• Phenomenology: To get a viable particle vacuum, need a point
where V >∼ 0, V ′ = 0 and V ′′ > 0.

• Cosmology: To get a viable period of slow-roll inflation, need a
region where V > 0, V ′ ≃ 0 and V ′′ >∼ 0.

The condition on V ′ can be satisfied by adjusting the values of the fields.
But the conditions on V and V ′′ need an adjustment of parameters.

The natural question is then whether these two conditions can be used to
restrict the class of models of potential interest. The answer is yes.
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Algebraic formulation of the problem Denef, Douglas 2005
Gomez-Reino, Scrucca 2006

Consider the critical situation where the scalar fields φ take values such
that V ′ = 0 and leading to broken SUSY. The gravitino mass is m3/2

and the Planck scale is set to 1.

The value of V is linked to SUSY breaking. This gives a first relevant
parameter given by:

γ =
V

3 m2
3/2

The value of V ′′ along a generic direction is not related to SUSY breaking
and can be easily adjusted, whereas along the sGoldstino direction G it
is related to SUSY breaking. This gives a second relevant parameter:

λ =
V ′′(G)

m2
3/2

The structure of SUGRA implies γ ≥ −1 and most importantly that λ is
constrained in terms of γ.
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Necessary conditions

The requirements coming from phenomenology and cosmology imply that
both at the final vacuum and in the rolling region one should have

γ >∼ 0

More quantitatively:

γvac ≪ 1 , γrol ≫ 1

Similarly, since λ defines bounds on the eigenvalues m2 of V ′′, namely
min(m2) ≤ λ m2

3/2
and max(m2) ≥ λ m2

3/2
, one should also have,

again both for vacuum metastablity and inflationary slow rolling:

λ >∼ 0

More quantitatively:

λvac : sizable , λrol : free
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GENERAL METASTABILITY CONSTRAINT

Models with chiral multiplets

A model with chiral multiplets Φi is specified by a real Kähler potential K
and a holomorphic superpotential W . The Lagrangian depends only on

G = K + log |W |2

The value of G determines the gravitino mass scale:

m3/2 = eG/2

The first derivatives of G determine the auxiliary fields:

Fi = −eG/2 Gi

The mixed second derivatives of G define the target-space geometry:

gī = Gī
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Critical points

The scalar potential takes the form

V = eG
(

GkGk − 3
)

Critical points are determined by the stationarity conditions

Vi = eG
(

Gi + ∇iGkGk
)

+ GiV = 0

At such a point, the scalar mass matrix is given by

M2
IJ =

(

Vī Vij

Vı̄̄ Vı̄̄

)

where

Vī = eG
(

gī + ∇iGk∇̄G
k − Rīpq̄GpḠq̄

)

+
(

gī − GiḠ)V

Vij = eG
(

2 Gij + ∇i∇jGkGk
)

+
(

Gij − GiGj)V
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Energy and sGoldstino mass

We assume now that Gi 6= 0 at the critical point, implying that SUSY is
spontaneously broken.

The value of V in units of m2
3/2

is given simply by:

γ =
V

3 m2
3/2

= −1 +
1

3
GkGk

The average of the values of V ′′(G±) in units of m2
3/2

along the two
real sGoldstino directions GI

+ = (Gi, Gı̄) and GI
−

= (iGi, −iGı̄) also
takes a very simple form and is given by:

λ =
Vī GiḠ

m2
3/2

GkGk

= 2 − Rīpq̄ GiḠ̄GpGq̄

GkGk

Imagine now that K is fixed whereas W is arbitrary. Then gī and Rīpq̄

are fixed whereas Gi is arbitrary. We see that γ depends only on the
norm of Gi, whereas λ also depends on the orientation of Gi.
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Metastability constraint Gomez-Reino, Scrucca 2006

For a given γ the value of λ depends on the sectional curvature along the
normalized Goldstino direction f i = Gi/

√

GkGk. One finds:

λ(f) = 3(1 + γ)Σ(f) − 2γ

in terms of the shifted sectional curvature

Σ(f) =
2

3
− Rīpq̄ f if ̄fpf q̄

We see that for γ >∼ 0 the necessary condition λ >∼ 0 implies that:

Σ(f) >∼
2

3

γ

1 + γ
>∼ 0

We thus need to get Σ(f) >∼ 0 by suitably dialing f i at the given point.
In general Σ(f) ≤ Σmax and this implies a condition on the geometry:

Σmax
>∼

2

3

γ

1 + γ
>∼ 0

P-7



Bound on masses

Whenever Σmax is positive but finite, there is a bound on how large λ can
be for a given γ:

λmax = 3(1 + γ)Σmax − 2γ

This implies an upper bound on the mass of the lightest scalar:

m2
lightest

m2
3/2

≤ λmax

Importance for cosmological history Acharya, Kane, Kuflik 2010

The natural scale for the curvature in effective supergravity descriptions
of string models is the Planck scale, corresponding to:

Σmax ∼ 1

This suggest a non-thermal cosmological history of the Universe.
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CONSTANT CURVATURE SPACES

Maximally symmetric case

An other very simple case is the maximally symmetric case with

K = −r log
(

1 − ∑

iΦ
iΦ̄i

)

This corresponds to the following coset manifold

M =
SU(1, n)

U(1) × SU(n)

The sectional curvature depends on r but not on the direction. One gets:

Σ =
2

3
− 2

r

This trivially leads to

Σmax =
2

3

r − 3

r
⇒ positive when r > 3
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Minimally symmetric case

An other very simple example is the minimally symmetric case with:

K = −∑

iri log(1 − ΦiΦ̄i) with
∑

iri = r

This corresponds to the following product of coset manifolds:

M =
∏

i

SU(1, 1)

U(1)

The curvature depends on the ri and n−1 angles parametrizing the Sn

defined by xa = |ea
i f i| with

∑

ax2
a = 1. One finds:

Σ(xa) =
2

3
− ∑

a

2

ra
x4

a

The maximum of this function occurs for xa =
√

ra/r and is equal to

Σmax =
2

3

r − 3

r
⇒ positive when r > 3
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Less symmetric cases

On another interesting example is that of the less symmetric space with

K = −r

2
log

(

1 − 2
∑

iΦ
iΦ̄i +

∑

ij(Φ
iΦ̄j)2

)

This corresponds to the following coset manifold

M =
SO(2, 2n−2)

SO(2) × SO(2n−2)

The sectional curvature depends only on r and 1 angle parametrizing the
S1 defined by x± =

√

1±
√

1−|Pa(e
a
if i)2|2/

√
2 with x2

++x2
−

= 1.
One gets:

Σ(x±) =
2

3
− 4

r

(

x4
++ x4

−

)

The maximum of this function occurs for x± = 1/
√

2 and is equal to

Σmax =
2

3

r − 3

r
⇒ positive when r > 3
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General result Gomez-Reino, Scrucca 2007

For all the coset manifolds the value of Σmax depends in a universal
way on the parameter r defining the overall curvature scale through the
relation

KiKi = r

One always finds:

Σmax =
2

3

r − 3

r
⇒ positive when r > 3
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MODULI IN STRING MODELS

General properties

At leading order in the week-coupling and low-energy expansions, the
form of K for the moduli is fixed by the reduction of the kinetic terms.
The corresponding sigma-model manifold M is related to the geometric
moduli space of the space-time compactification manifold.

The general form of M always involves a factor spanned by the dilaton
S and a factor spanned by one or several Kähler moduli T i. Focusing on
these fields, K involves a homogeneous function Y of degree 3:

K = − log(S + S̄) − log Y (T i + T̄ i)

This corresponds to a manifold of the type

M = MS × MT
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Dilaton domination

The dilaton cannot dominate, because its K is fixed and leads to

Σmax = −4

3
< 0

Kähler moduli domination

The Kähler moduli may instead dominate, because their K is not fixed.
However it satisfies the no-scale constraint KiKi = 3, which implies
that the curvature along the direction ki = Ki/

√
3 takes the value

Rīpq̄kik̄kpkq̄ =
2

3

This implies that Σ(k) = 0. But nothing excludes the possibility that
along other directions one may get Σ(f) > 0. We thus conclude that

Σmax ≥ 0
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Orbifold models

In orbifold models, MT is always a simple coset manifold. The function
Σ(f) does not depend on the point and can be studied easily, as already
seen. One finds that for f i 6= ki the situation always gets worse:

Σmax = 0 in all cases

Calabi-Yau models

In Calabi-Yau models, MT is usually a non-coset manifold. The function
Σ(f) depends on the point and is more difficult to study. One finds that
for f i 6= ki the situation may either improve and worsen:

Σmax

{

= 0 in some cases

> 0 in some cases
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Constraints on the curvature

Since K depends only on T i+T̄ i , we can use a real index notation. The
degree 3 homogeneity of e−K implies that (T i + T̄ i)Ki = −3, which is
stronger than the no-scale condition KiKi = 3 and implies that:

Γijpkp =
2√
3

gij Rijpqkq =
1√
3
Γijp

Rijpqkpkq =
2

3
gij Rijpqkjkq =

2

3
gip

Let us now decompose the Goldstino direction into two orthogonal pieces:

f i = cosθ ki + sinθ ni

One then easily computes:

Σ(θ, n) = sin4θ

[

2

3
+

4

3
ctg2θ− 4√

3
ctg θ Γijpninjnp−Rijpqninjnpnq

]
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Optimal Goldstino direction Covi, Gomez-Reino, Gross, Louis, Palma, Scrucca 2008

To find the optimal Goldstino direction, it is convenient to rewrite Σ in the
following form in terms of P ij = gij − kikj :

Σ(θ, n) = sin4θ

[

(2

3
− Rijpqninjnpnq +

1

2
ΓijrP rsΓpqrninjnpnq

)

−1

2

(

Γrijn
inj − 4√

3
ctg θ nr

)

P rs
(

Γspqnpnq− 4√
3
ctg θ ns

)

]

Given some ni, Σ is maximized for some value of θ, but one must then
find the optimal choice for the direction ni to determine Σmax. To get a
positive result it is certainly necessary that the first term be positive.

To make further progress and compute Σmax, one needs a more detailed
knowledge of the form of K. Fortunately, this is well known for string
models compactified on Calabi-Yau manifolds.
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DETAILED ANALYSIS

Heterotic models Dixon, Kaplunovsky, Louis 1990
Candelas, de la Ossa 1991

For a Calabi-Yau manifold with intersection numbers dijk, one finds:

K = − log
(4

3
dijktitjtk

)

with 2 ti = T i + T̄ i

It follows that:

gij =
√

3 eKdijpkp + 3 kikj

Γijk = −eKdijk +
√

3
(

gijkk + gikkj + gjkki

)

− 3
√

3 kikjkk

Rijpq = gijgpq + giqgpj − e2Kdiprgrsdjqs

We see that MT is Special-Kähler and we deduce that:

P rsΓspqnpnq = − eKP rsdspqnpnq

Rijpqninjnpnq =
5

3
− e2KdiprP rsdjqsn

injnpnq
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Two-field models Covi, Gomez-Reino, Gross, Louis, Palma, Scrucca 2008

In this case ni is uniquely fixed and P ij = ninj . One then finds:

Σ(θ) = sin4θ

[

(3

2
α2− 1

)

− 1

2

(

α − 4√
3
ctg θ

)2
]

where

α = −eKdijkninjnk

We need the first term to be positive. But more explicitly one finds:

a =
3

2
α2− 1 = −9

8
e4Kdet−3gij ∆

in terms of the discriminant associated to the intersection numbers:

∆ =−d2
111d

2
222+3 d2

112d
2
122−4 d111d

3
122−4 d3

112d222+6 d111d112d122d222

Since the rest of a is negative definite, to get a > 0 we need:

∆ < 0
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Bounds on masses Covi, Gomez-Reino, Gross, Palma, Scrucca 2009

Let us find the maximum of Σ(θ) over θ ∈ [0, 2π[ defining the Goldstino
direction, for any fixed a ∈ [0, +∞[ depending on the point, with

Σ(θ) = sin4θ

[

a − 8

3

(

ctg θ −
√

1 + a

8

)2]

The maximum Σmax increases monotonically with a, and one finds:

Σmax ≃















64

81
a , a ≪ 1

2

3
a , a ≫ 1

⇒ Σmax < +∞

We conclude that there is no bound on moduli masses:

m2
lightest

m2
3/2

< +∞
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Orientifold models Grimm, Louis 2004

For a Calabi-Yau manifold with intersection numbers dijk, one finds:

K = − log
( 1

48
dijktitjtk

)2

with
1

8
dijktjtk = T i + T̄ i

It follows that:

gij =
√

3 e−Kdijpkp + 3 kikj

Γijk = e−Kdijk −
√

3
(

gijkk + gikkj + gjkki

)

+ 3
√

3 kikjkk

Rijpq = − giqgpj +e−2K
(

dijrgrsdpqs + diprgrsdjqs

)

−
√

3 e−K
(

dijpkq+p.
)

+ 3
(

gijkpkq+p.
)

+ 9 kikjkpkq

We see that MT is Kähler and we deduce that:

P rsΓspqnpnq = e−KP rsdspqnpnq

Rijpqninjnpnq = −1

3
+ 2 e−2KdiprP rsdjqsn

injnpnq
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Two-field models Covi, Gomez-Reino, Gross, Louis, Palma, Scrucca 2008

In this case ni is uniquely fixed and P ij = ninj . One then finds:

Σ(θ) = sin4θ

[

(

1 − 3

2
α2

)

− 1

2

(

α − 4√
3
ctgθ

)2
]

where α depends only on the point and is given by

α = e−Kdijkninjnk

We need the first term to be positive. But more explicitly one finds:

a = 1 − 3

2
α2 =

9

8
e−4Kdet3gij ∆

in terms of the discriminant associated to the intersection numbers:

∆ =−d1112d2222+3d1122d1222−4d111d1223−4d1123d222+6d111d112d122d222

Since the rest of a is positive definite, to get a > 0 we need

∆ > 0
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Bounds on masses Covi, Gomez-Reino, Gross, Palma, Scrucca 2009

Let us find the extremum of Σ(θ) over θ ∈ [0, 2π[ defining the Goldstino
direction, for any fixed a ∈ [0, 1] depending on the point, with

Σ(θ) = sin4θ

[

a − 8

3

(

ctg θ −
√

1 − a

8

)2]

The maximum Σmax increases monotonically with a, and one finds:

Σmax ≃







64

81
a , a ≪ 1

1 , a → 1

⇒ Σmax ≤ 1

We conclude that there is a bound on moduli masses:

m2
lightest

m2
3/2

≤ 3 + γ
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CONCLUSIONS

• In SUGRA theories, there is a strong necessary condition on K for
the existence of metastable de Sitter vacua or slow-roll inflationary
regions, independently of the form of W .

• In string theories, one can apply this result to the moduli sector
and derive topological constraints on the Calabi-Yau manifolds and
bounds on the possible values of moduli masses.
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