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Relevant features for flavour

• m    ~O(10 TeV)

• m    ~O(few TeV)

• m   ~O(1TeV)

Most part of the 
contributions 

are o.k. but 
bounds on Y , 
a ij  and m ij 

can be obtained
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Flavour in SUGRA

• Knowing the form W, K, f      then we can 
calculate
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Figure 2: Diagram relevant for the Kähler potential.

and the effective Kähler potential
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where we have omitted MP-suppressed terms proportional to ζ and terms suppressed
by higher powers of messenger masses. Thus, we obtain non-minimal terms sup-
pressed by messenger masses. This can be visualised by diagrams like the one shown
in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
not aspire high-precision calculations including the running of parameters between
MP and Mχ.

3. From the effective potentials we calculate the scalar potential. It contains ∂WO

∂φ̄
, which

yields an important contribution to the trilinear scalar couplings. The minimisation
of the potential yields vevs for all hidden sector fields and their F terms, breaking
both SUSY and the family symmetry.

4. We take the flat limit, i.e. MP → ∞ and m2
3/2 = 〈eKH/M2

P |WH|2〉 /M4
P = const. [16].

This removes the dynamical degree of freedom h from the theory. In contrast, both
the flavon vevs 〈φ̄〉 and the dynamical fields φ̄ are still present, since they have
couplings to the observable sector that are suppressed by Mχ rather than MP. It is
only at the scale 〈φ̄〉 < MP that they decouple. Again, this should not be a problem
as long as we do not aim to calculate the running of parameters between MP and
〈φ̄〉.

5. We rescale the superpotential of the visible sector,
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This is necessary in order to obtain the usual globally supersymmetric contribution∑
α |∂W ′

O/∂Cα|2 to the scalar potential. The rescaling is absorbed in the effective
Yukawa couplings,
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Mχf

0
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Yfc
i FjHf

denotes the ij component of the matrix Yαβγ coupling the fields Cα = f c,
Cβ = F and Cγ = Hf . Note that the rescaled Yukawa couplings Y ′ are the ones
directly related to observable quantities (up to canonical normalisation) that are
determined by the fit to the fermion masses.

6. The scalar potential now consists of the globally supersymmetric part and soft SUSY
breaking terms. Assuming that no D terms contribute to SUSY breaking, we deter-
mine the latter using Eqs. (11, 12) of [17], which in our notation become
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where K̃ᾱβ ≡ ∂2K
∂C†

ᾱ∂Cβ
with C = (F, f c†, Hf ) and where K̃γδ̄ denotes the elements of

the inverse matrix. Besides, ∂m ≡ ∂/∂hm, ∂∗
m̄ ≡ ∂/∂h∗

m̄, and e.g. 〈F φ̄1〉 ∂/∂φ̄1 ≡
〈F φ̄1i〉 ∂/∂φ̄1i. We have expressed the formula for the trilinear couplings in terms of
Y ′ for convenience, where it is possible without ambiguity. Primes denote parameters
before canonical normalisation. There are different F -term vevs associated to each
flavon, 〈F φ̄n〉 = cnm3/2 〈φ̄n〉 [2, 3], where cn &= cm for n &= m.4

As mentioned, we are treating the flavons as part of the hidden sector associated to
the breaking of SUSY and therefore there are also non-zero vevs for their F terms,
although they are not the main contribution to SUSY breaking, the leading source
of course being the family-blind field h. It is also important to note that if there was
only one flavon in the theory and thus only one F term, then we can immediately see
from Eqs. (9) that when going to the canonical basis there would be no off-diagonal
terms, even with a non-trivial Kähler metric. On the other hand it can be quickly
computed [4] that with at least two different flavons and consequently different F
terms, the soft mass matrices have the same structure as the Kähler metric but with
different O(1) coefficients in each component,
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〉 , (10)

4 Here we use 〈Fm〉 = 〈eK/(2M2
P) |WH|

M2
P
〉 〈Kmn̄
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W∗ )〉. For the flavons 〈|F φ̄n |2〉 behaves as
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2
n
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+

Wφ̄n
W 〉

∣∣∣2, then it is assumed that the term containing |Kφ̄n
|2 is the dominant one. Formally

the coefficients cn should be determined from the process that sets completely the minimum of the scalar
potential and so depends on details of how SUSY is broken. However, since the F terms in general are
proportional to φ̄n the coefficients cn are expected to be O(1).
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where of course the precise values of the O(1) coefficients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F → F̂ ≡ V −1
F F , f c → f̂ c ≡ f c V −1

fc

†
, Hf → Ĥf ≡ K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m′2
F̃ †F̃ → m̂2

F̃ †F̃ ≡ V †
F m′2

F̃ †F̃ VF , (13a)

m′2
f̃cf̃c† → m̂2

f̃cf̃c† ≡ V †
fc m′2

f̃cf̃c† Vfc , (13b)

a′
f̃cF̃Hf

→ âf̃cF̃Hf
≡ K̃

− 1
2

H†
fHf

V †
fc a′f̃cF̃Hf

VF , (13c)

Y ′
fcFHf

→ ŶfcFHf
≡ K̃

− 1
2

H†
fHf

V †
fc Y ′

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

ỸfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

ãf̃cF̃Hf
= U f

R

†
âf̃cF̃Hf

U f
L , (15a)

m̃2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃U
f
L , (15b)

m̃2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
effective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix different fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a different matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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5At the order we are considering the Kähler potential does not mix different fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a different matrix. Likewise,
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Soft-squared masses The running of (M̂2
f̃
)ij are carachterized by the following contri-

butions to their beta functions

β(1)
(M2

f̃
)ij

=
[(

α1(M
2
f̃
)ij + α2m

2
Hf

1
)

Y †
f Yf

]
ij

+
[
Y †

f Yf

(
α3(M

2
f̃
)ij + α4m

2
Hf ′

1
)]

ij

+
∑
f ′ !=f

(
α1f ′(M2

f̃ ′Y
†
f ′Yf ′)ij + α2f ′(Y †

f ′Yf ′M2
f̃ ′)ij

)
+ Gfδij (9)

where αi are coefficients and the G functions are the contribution to the running from
the gauge couplings and the masses of the gauginos. Off diagonal elements are pretty
insensitive to the running of gauginos, at one-loop this is clear.

In the SCKM basis we have

β(1)
(M2

Q̃
)

= Uu
L(m2

Q + 2m2
Hu

)Uu†
L |Ŷ u|2 + Uu

L(m2
Q + 2m2

Hd
)Uu†

L VCKM|Ŷ d|2V †
CKM

+ (|Ŷ u|2 + V |Ŷ d|V †)Uu
Lm2

QUu†
L + 2Ŷ u(Uu

Rm2
uU

u†
R )Ŷ u

+ 2VCKMŶ d(Ud
Rm2

dU
d†
R )Ŷ dV †

CKM + 2Uu
La†

uauU
u †L +2Uu

La†
dadU

u†
L

+ 2Uu
L(au†au)Uu†

L + 2Uu
L(ad†ad)Uu†

L + GM2
Q
1

β(1)
(M2

f̃R
)

= Uf
R(2m2

f + 4m2
Hf

)Uf†
R (Ŷ f )2 + 4Ŷ fULm2

QUf†
L

+ 2(Ŷ f )2(Uf
Rm2

fU
f†
R ) + 4Uf

R(afa
f†)Uf†

R + GM2
f
1, (10)

for f = u, d. Note that at an arbirtrary scale µ != MG, the terms which go like

Uu
L(m2

Q)Uu†
L , Uf

R(2m2
f + 4m2

Hf
)Uf†

R (11)

are not diagonal, because the different running of the diagonal elements in m2
Q and m2

f .
Therefore necessarily there will be induced off-diaognal terms, once Yukawa couplings are
allowed to be arbitary.

2.4.2 Only Yukawa couplings are non diagonal at the MG scale

Trilinear terms This case is some one ad-hoc because presumabily the structure of the
Yukawa couplings will be inherited in some way to the trilinear terms and soft-squared
masses, however let us analyze the consequences of it, to check, where there could be hint
for a possible structure of this type.

In this case off-diagonal trilinear terms are generated via the running of the off-diagonal
Yukawa couplings. At a scale µb just below the MG scale we will have af(µb)i!=j != 0, then
from µb down to the scale µ where the flavour violating effects take place we have

af (µ)i!=j ≈ af(µb)i!=j − 1

16π2
log

[
µ

µb

] [
Y fF1(a

f , Y f ) + afF2(a
f , Y f )

]
i!=j

, (12)

at µ = 10 TeV it is safe to neglect the second term, i.e. the one that goes like af . This is
because at that scale the trilinear terms generated by the running from µb down to µ of
the second term can just account up to the 10 % of the running of the first term in β(1)

af
ij

(we can get a quick estimate just comparing the log functions).
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Soft-squared matrices As we have seen in the previous section, the running of (M2
f̃
)ij

is determined by the running of Y †
f Yf , therefore we could parameterize a possible non zero

value for i != j at MG as follows:

(M2
f̃
)ij(µ) = αMf

ij m2
0

[
Y †

f Yf

]
ij

, (17)

where the αij can be different for different generations. In the SCKM basis we have:

(M̂2
f̃
)Lij(µG2) = m2

0 Uf
L ikα

Mf

L k!

(
Y f†Y f

)
k!

Uf†
L!j

(M̂2
f̃
)R ik(µG2) = m2

0 Uf
R ikα

Mf

R k!

(
Y f†Y f

)
k!

Uf†
R !j

(18)

3 Constraints from the stability of the scalar poten-

tial

In general the bounds coming from the stability of the scalar potential against charge and
color breaking (CCB) and run-away behaviour (UFB: unbounded from below) on flavour
violating trilinear soft terms are stronger than those imposed from the absence of neutral
flavour changing currents (FCNC) [1]. The exceptions to this statement are the FCNC
bounds coming from the lepton decays "i → ljγ and the bounds coming from the b decays
b → sγ and b → "+"−γ. In some cases also the bounds coming from the Bs mixings.

It is a good starting point to check these bounds when considering the

arbitrary cases of §2.4.2 and §2.4.3.

The CCB and UFB most important caractheristics are that:

1. the UFB bounds are genuine effects of nondiagonal trilinear couplings

2. contrary to the FCNC bounds, the strength of the CCB and UFB bounds does not
decrease as the scale of supersymmetry breaking increases.

Therefore these bounds are relevant for the G2-MSSM models.
For the trilinear terms af

ij we have:∣∣∣a(u)
ij

∣∣∣2 ≤ 1

4
y2

uk

(
m2

ũLi
+ m2

ũRj
+ m2

2

)
, k = max (i, j)∣∣∣a(d)

ij

∣∣∣2 ≤ 1

4
y2

dk

(
m2

d̃Li

+ m2
d̃Rj

+ m2
1

)
, k = max (i, j)∣∣∣a(l)

ij

∣∣∣2 ≤ 1

4
y2

ek

(
m2

ẽLi
+ m2

ẽRj
+ m2

1

)
, k = max (i, j) (19)

where yfk
is the Yukawa coupling of the fk fermion: |14yfk

H̃0
f f̃Rk|2 ∈ V , V being the scalar

potential of the MSSM and k the family index. [Check the notation of [1] with that of [2],
in particular Eq. 3.50 of this last reference. We are following as much as possible the
notation in [2]]
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ũLi
+ m2
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where of course the precise values of the O(1) coefficients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F → F̂ ≡ V −1
F F , f c → f̂ c ≡ f c V −1

fc

†
, Hf → Ĥf ≡ K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m′2
F̃ †F̃ → m̂2

F̃ †F̃ ≡ V †
F m′2

F̃ †F̃ VF , (13a)

m′2
f̃cf̃c† → m̂2

f̃cf̃c† ≡ V †
fc m′2

f̃cf̃c† Vfc , (13b)

a′
f̃cF̃Hf

→ âf̃cF̃Hf
≡ K̃

− 1
2

H†
fHf

V †
fc a′f̃cF̃Hf

VF , (13c)

Y ′
fcFHf

→ ŶfcFHf
≡ K̃

− 1
2

H†
fHf

V †
fc Y ′

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

ỸfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

ãf̃cF̃Hf
= U f

R

†
âf̃cF̃Hf

U f
L , (15a)

m̃2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃U
f
L , (15b)

m̃2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
effective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix different fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a different matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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Therefore at scales µ < 105 TeV, according to what it was discussed with respect to
Eq. (7) in the SCKM basis we have:

âu(µ)ij ≈ âu(MG)ijδij − 1

16π2
log

[
µ

MG

] [
Ŷ u

ii Tr
[
6(Uu

RauUu†
L )Ŷ u†

]
+ Ŷ u

ii G
u
1δij

+ 4Ŷ u 2
ii Uu

Rira
u
rrU

u∗
Ljr + 2Ŷ u

ii VCKMisŶ
d
ssU

d
Rsra

d
rrU

u∗
Ljr

]
(13)

âd(µ)ij ≈ âd(MG)ijδij − 1

16π2
log

[
µ

MG

] [
Ŷ d

ii Tr
[
6(Ud

RadUu†
L )Ŷ d† + 2aeY e†

]
+ Ŷ d

ii G
d
1δij

+ 4Ŷ d 2
ii Ud

Rira
d
rrU

d∗
Ljr + 2Ŷ d

iiV
†
CKMisŶ

u
ssU

u
Rsra

u
rrU

d∗
Ljr

]
. (14)

The functions Gaf depend on the running of the gauge couplings and gaugino masses
and therefore just relevant to the diagonal elements. In the G2-MSSM models due to the
hierarchy of the gauginos with respect to the soft masses, the diagonal terms are practically
insensitive to them and provided they are not zero, their main contribution it is its value
at MG. Therefore we expect af

rr to be the same at any scale µ.

Soft squared masses In this case, we can parameterize the size of the soft squared
masses coming from the leading terms of the running as follows:

(̂M2
Q̃
)i"=j ≈ − 1

16π2
log

[
µ

MG

] [
(m2

Qi
+ 2m2

Hd
)
(
VCKM|Ŷ d|2V †

CKM

)
ij

+ (VCKM|Ŷ d|2V †
CKM)ijm

2
Qj

+ 2(m2
d)i(VCKM|Ŷ d|2V †

CKM)ij + 2VCKM|Ŷ d|2ijV †
CKM|Ad|2

+ (∆Q
1 )ij|Ŷ f |2jj + |Ŷ u|2ii(∆Q

2 )ij

]
,

(̂M2
f̃
)i"=j ≈ 1

16π2
log

[
µ

MG

] [
(∆f

1)ij |Ŷ u|2jj + 4|Ŷ f |i(∆f
2)ij

+ 2|Ŷ f |i(∆f
3)ij

]
(15)

with (∆f
α) ∼ O(m2

f).

2.4.3 Soft parameters related to Yukawa matrices, but not necessarily pro-

portional to them

Trilinears

(af )ij = cf
ijAf̃Y

f
ij → âf

ij = Uf
Rikc

f
ksY

f
ksU

f†
Lsj (16)

where it is not assumed that the coefficients cf
ij are the same for all i, j and therefore af is

not a priori proportional to the matrix Y f . Here we do not assume a particular form for
the Yukawa matrices. In this case, provided cf

ij %= 0 their value at MG would provide their
main contribution at an arbitrary scale µ.

5

at 1-loop at a given scale in the SCKM basis are

β(1)
au = Ŷ uTr

[
6âuŶ u†

]
+ 4Au(Ŷ u)3 + 2AdŶ uVCKM(Ŷ d)2V †

CKM + Ŷ uGu
1(g

2
i , M

2
i )

+ âu3Tr
[
(Ŷ u)2

]
+ 5Au(Ŷ

u)3 + AuŶ
uVCKM(Ŷ d)2V †

CKM + AuŶ uGu
2(g

2
i , M

2
i )

β(1)
ad = Ŷ dTr

[
6âdŶ d† + 2âeŶ e†

]
+ 4Ad(Ŷ d)3 + 2AuŶ dV †

CKM(Ŷ u)2VCKM + Ŷ dGd
1(g

2
i , M

2
i ),

+ âd3Tr
[
3(Ŷ d)2 + (Ŷ e)2

]
+ 5Ad(Ŷ d)3 + AdŶ dV †

CKM(Ŷ u)2VCKM + AdŶ dGd
2(g

2
i , M

2
i )

(4)

where Gf
i are the diagonal functions of the running of the gauginos and gauge couplings.

Recall that β(1)
af can be decomposed as

β(1)
af =

[
Y fF1(a

f , Y f) + afF2(a
f , Y f)

]
, (5)

the first lines in Eq. (4), in β(1)
af for f = u, d correspond to the first term in Eq. (5), while

the second lines in β(1)
af for f = u, d to the second term in Eq. (5).

Eqs. (4) were obtained assuming that also at the scale µ we could write

af (µ) = Y f(µ)Af , (6)

with universality of the Af terms ∀f this is possible to achieve (this is because the ap-

pearence of af ′

terms for f ′ "= f in β(1)

af
ij

). This is difficult to achieve because Af should

not be too large in comparison to other soft parameters, such that its own running does
ont affect Eq. (6). Thus in general we will have a small contibution in β(1)

af :

β(1)
au ⊃ 4(Ŷ u)2Uu

RbuUu†
L + 2Ŷ uVCKMŶ dUd

RbdUd†
L

+ Uu
Rbu

(
5Uu†

L (Ŷ u)2 + Ud†
L (Ŷ d)2V †

CKM

)
β(1)

ad ⊃ 4(Ŷ d)2Ud
RbuUd†

L + 2Ŷ dV †
CKMŶ uUu

RbuUu†
L

+ Ud
Rbd

(
5Ud†

L (Ŷ d)2 + Uu†
L (Ŷ u)2VCKM

)
(7)

where

bf = af (µ) − Y f(µ)Af . (8)

Here the matrices Uf
R,L are the matrices diagonalizing the Yukawa couplings, for this and

in general all notation we refer to the set of notes: Notation. It is pretty safe to ignore the
contributions of Eq. (7) when truly Af is the same for all families and types of fermions.
Notice that in general the flavour violating contributions to the trilinears have the structure
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The functions Gaf depend on the running of the gauge couplings and gaugino masses
and therefore just relevant to the diagonal elements. In the G2-MSSM models due to the
hierarchy of the gauginos with respect to the soft masses, the diagonal terms are practically
insensitive to them and provided they are not zero, their main contribution it is its value
at MG. Therefore we expect af

rr to be the same at any scale µ.

Soft squared masses In this case, we can parameterize the size of the soft squared
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where it is not assumed that the coefficients cf
ij are the same for all i, j and therefore af is

not a priori proportional to the matrix Y f . Here we do not assume a particular form for
the Yukawa matrices. In this case, provided cf

ij %= 0 their value at MG would provide their
main contribution at an arbitrary scale µ.
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where of course the precise values of the O(1) coefficients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,
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F F , f c → f̂ c ≡ f c V −1
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†
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1
2
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Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5
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Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by
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8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,
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and we have the corresponding transformations for the soft terms,
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In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
effective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix different fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a different matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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Soft-squared matrices As we have seen in the previous section, the running of (M2
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is determined by the running of Y †
f Yf , therefore we could parameterize a possible non zero

value for i != j at MG as follows:
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3 Constraints from the stability of the scalar poten-

tial

In general the bounds coming from the stability of the scalar potential against charge and
color breaking (CCB) and run-away behaviour (UFB: unbounded from below) on flavour
violating trilinear soft terms are stronger than those imposed from the absence of neutral
flavour changing currents (FCNC) [1]. The exceptions to this statement are the FCNC
bounds coming from the lepton decays "i → ljγ and the bounds coming from the b decays
b → sγ and b → "+"−γ. In some cases also the bounds coming from the Bs mixings.

It is a good starting point to check these bounds when considering the

arbitrary cases of §2.4.2 and §2.4.3.

The CCB and UFB most important caractheristics are that:

1. the UFB bounds are genuine effects of nondiagonal trilinear couplings

2. contrary to the FCNC bounds, the strength of the CCB and UFB bounds does not
decrease as the scale of supersymmetry breaking increases.

Therefore these bounds are relevant for the G2-MSSM models.
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where yfk
is the Yukawa coupling of the fk fermion: |14yfk

H̃0
f f̃Rk|2 ∈ V , V being the scalar

potential of the MSSM and k the family index. [Check the notation of [1] with that of [2],
in particular Eq. 3.50 of this last reference. We are following as much as possible the
notation in [2]]
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ũRj
+ m2

2

)
, k = max (i, j)∣∣∣a(d)

ij

∣∣∣2 ≤ 1

4
y2

dk

(
m2

d̃Li

+ m2
d̃Rj

+ m2
1

)
, k = max (i, j)∣∣∣a(l)

ij

∣∣∣2 ≤ 1

4
y2

ek

(
m2
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• In G2-MSSM?

Therefore at scales µ < 105 TeV, according to what it was discussed with respect to
Eq. (7) in the SCKM basis we have:
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iiV
†
CKMisŶ

u
ssU

u
Rsra

u
rrU

d∗
Ljr

]
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The functions Gaf depend on the running of the gauge couplings and gaugino masses
and therefore just relevant to the diagonal elements. In the G2-MSSM models due to the
hierarchy of the gauginos with respect to the soft masses, the diagonal terms are practically
insensitive to them and provided they are not zero, their main contribution it is its value
at MG. Therefore we expect af

rr to be the same at any scale µ.

Soft squared masses In this case, we can parameterize the size of the soft squared
masses coming from the leading terms of the running as follows:
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with (∆f
α) ∼ O(m2

f).

2.4.3 Soft parameters related to Yukawa matrices, but not necessarily pro-

portional to them

Trilinears

(af )ij = cf
ijAf̃Y

f
ij → âf

ij = Uf
Rikc

f
ksY

f
ksU

f†
Lsj (16)

where it is not assumed that the coefficients cf
ij are the same for all i, j and therefore af is

not a priori proportional to the matrix Y f . Here we do not assume a particular form for
the Yukawa matrices. In this case, provided cf

ij %= 0 their value at MG would provide their
main contribution at an arbitrary scale µ.
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where of course the precise values of the O(1) coefficients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F → F̂ ≡ V −1
F F , f c → f̂ c ≡ f c V −1

fc

†
, Hf → Ĥf ≡ K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m′2
F̃ †F̃ → m̂2

F̃ †F̃ ≡ V †
F m′2

F̃ †F̃ VF , (13a)

m′2
f̃cf̃c† → m̂2

f̃cf̃c† ≡ V †
fc m′2

f̃cf̃c† Vfc , (13b)

a′
f̃cF̃Hf

→ âf̃cF̃Hf
≡ K̃

− 1
2

H†
fHf

V †
fc a′f̃cF̃Hf

VF , (13c)

Y ′
fcFHf

→ ŶfcFHf
≡ K̃

− 1
2

H†
fHf

V †
fc Y ′

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

ỸfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

ãf̃cF̃Hf
= U f

R

†
âf̃cF̃Hf

U f
L , (15a)

m̃2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃U
f
L , (15b)

m̃2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
effective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix different fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a different matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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âf̃cF̃Hf

U f
L , (15a)

m̃2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃U
f
L , (15b)

m̃2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
effective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix different fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a different matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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Soft-squared masses The running of (M̂2
f̃
)ij are carachterized by the following contri-

butions to their beta functions

β(1)
(M2

f̃
)ij

=
[(

α1(M
2
f̃
)ij + α2m

2
Hf

1
)

Y †
f Yf

]
ij

+
[
Y †

f Yf

(
α3(M

2
f̃
)ij + α4m

2
Hf ′

1
)]

ij

+
∑
f ′ !=f

(
α1f ′(M2

f̃ ′Y
†
f ′Yf ′)ij + α2f ′(Y †

f ′Yf ′M2
f̃ ′)ij

)
+ Gfδij (9)

where αi are coefficients and the G functions are the contribution to the running from
the gauge couplings and the masses of the gauginos. Off diagonal elements are pretty
insensitive to the running of gauginos, at one-loop this is clear.

In the SCKM basis we have

β(1)
(M2

Q̃
)

= Uu
L(m2

Q + 2m2
Hu

)Uu†
L |Ŷ u|2 + Uu

L(m2
Q + 2m2

Hd
)Uu†

L VCKM|Ŷ d|2V †
CKM

+ (|Ŷ u|2 + V |Ŷ d|V †)Uu
Lm2

QUu†
L + 2Ŷ u(Uu

Rm2
uU

u†
R )Ŷ u

+ 2VCKMŶ d(Ud
Rm2

dU
d†
R )Ŷ dV †

CKM + 2Uu
La†

uauU
u †L +2Uu

La†
dadU

u†
L

+ 2Uu
L(au†au)Uu†

L + 2Uu
L(ad†ad)Uu†

L + GM2
Q
1

β(1)
(M2

f̃R
)

= Uf
R(2m2

f + 4m2
Hf

)Uf†
R (Ŷ f )2 + 4Ŷ fULm2

QUf†
L

+ 2(Ŷ f )2(Uf
Rm2

fU
f†
R ) + 4Uf

R(afa
f†)Uf†

R + GM2
f
1, (10)

for f = u, d. Note that at an arbirtrary scale µ != MG, the terms which go like

Uu
L(m2

Q)Uu†
L , Uf

R(2m2
f + 4m2

Hf
)Uf†

R (11)

are not diagonal, because the different running of the diagonal elements in m2
Q and m2

f .
Therefore necessarily there will be induced off-diaognal terms, once Yukawa couplings are
allowed to be arbitary.

2.4.2 Only Yukawa couplings are non diagonal at the MG scale

Trilinear terms This case is some one ad-hoc because presumabily the structure of the
Yukawa couplings will be inherited in some way to the trilinear terms and soft-squared
masses, however let us analyze the consequences of it, to check, where there could be hint
for a possible structure of this type.

In this case off-diagonal trilinear terms are generated via the running of the off-diagonal
Yukawa couplings. At a scale µb just below the MG scale we will have af(µb)i!=j != 0, then
from µb down to the scale µ where the flavour violating effects take place we have

af (µ)i!=j ≈ af(µb)i!=j − 1

16π2
log

[
µ

µb

] [
Y fF1(a

f , Y f ) + afF2(a
f , Y f )

]
i!=j

, (12)

at µ = 10 TeV it is safe to neglect the second term, i.e. the one that goes like af . This is
because at that scale the trilinear terms generated by the running from µb down to µ of
the second term can just account up to the 10 % of the running of the first term in β(1)

af
ij

(we can get a quick estimate just comparing the log functions).
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Soft-squared matrices As we have seen in the previous section, the running of (M2
f̃
)ij

is determined by the running of Y †
f Yf , therefore we could parameterize a possible non zero

value for i != j at MG as follows:

(M2
f̃
)ij(µ) = αMf

ij m2
0

[
Y †

f Yf

]
ij

, (17)

where the αij can be different for different generations. In the SCKM basis we have:

(M̂2
f̃
)Lij(µG2) = m2

0 Uf
L ikα

Mf

L k!

(
Y f†Y f

)
k!

Uf†
L!j

(M̂2
f̃
)R ik(µG2) = m2

0 Uf
R ikα

Mf

R k!

(
Y f†Y f

)
k!

Uf†
R !j

(18)

3 Constraints from the stability of the scalar poten-

tial

In general the bounds coming from the stability of the scalar potential against charge and
color breaking (CCB) and run-away behaviour (UFB: unbounded from below) on flavour
violating trilinear soft terms are stronger than those imposed from the absence of neutral
flavour changing currents (FCNC) [1]. The exceptions to this statement are the FCNC
bounds coming from the lepton decays "i → ljγ and the bounds coming from the b decays
b → sγ and b → "+"−γ. In some cases also the bounds coming from the Bs mixings.

It is a good starting point to check these bounds when considering the

arbitrary cases of §2.4.2 and §2.4.3.

The CCB and UFB most important caractheristics are that:

1. the UFB bounds are genuine effects of nondiagonal trilinear couplings

2. contrary to the FCNC bounds, the strength of the CCB and UFB bounds does not
decrease as the scale of supersymmetry breaking increases.

Therefore these bounds are relevant for the G2-MSSM models.
For the trilinear terms af

ij we have:∣∣∣a(u)
ij

∣∣∣2 ≤ 1

4
y2

uk

(
m2

ũLi
+ m2

ũRj
+ m2

2

)
, k = max (i, j)∣∣∣a(d)

ij

∣∣∣2 ≤ 1

4
y2

dk

(
m2

d̃Li

+ m2
d̃Rj

+ m2
1

)
, k = max (i, j)∣∣∣a(l)

ij

∣∣∣2 ≤ 1

4
y2

ek

(
m2

ẽLi
+ m2

ẽRj
+ m2

1

)
, k = max (i, j) (19)

where yfk
is the Yukawa coupling of the fk fermion: |14yfk

H̃0
f f̃Rk|2 ∈ V , V being the scalar

potential of the MSSM and k the family index. [Check the notation of [1] with that of [2],
in particular Eq. 3.50 of this last reference. We are following as much as possible the
notation in [2]]
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ẽLi
+ m2
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where of course the precise values of the O(1) coefficients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F → F̂ ≡ V −1
F F , f c → f̂ c ≡ f c V −1

fc

†
, Hf → Ĥf ≡ K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m′2
F̃ †F̃ → m̂2

F̃ †F̃ ≡ V †
F m′2

F̃ †F̃ VF , (13a)

m′2
f̃cf̃c† → m̂2

f̃cf̃c† ≡ V †
fc m′2

f̃cf̃c† Vfc , (13b)

a′
f̃cF̃Hf

→ âf̃cF̃Hf
≡ K̃

− 1
2

H†
fHf

V †
fc a′f̃cF̃Hf

VF , (13c)

Y ′
fcFHf

→ ŶfcFHf
≡ K̃

− 1
2

H†
fHf

V †
fc Y ′

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

ỸfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

ãf̃cF̃Hf
= U f

R

†
âf̃cF̃Hf

U f
L , (15a)

m̃2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃U
f
L , (15b)

m̃2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
effective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix different fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a different matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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1.3 Fermion–sfermion interactions

1.3.1 Quark–squark–gluino interactions

The interaction between quarks, squarks, and gluinos is described by the Lagrangian (which is
consistent with references [?, ?, ?])

Lq−q̃−g̃ = i
√

2g3T
a
αβ

[
q̄′αi PLg̃aq̃′

β
Ri + q̄α

i PRg̃aq̃
β
Li + h.c.

]
, (13)

in the electroweak-color basis, where PR,L = (1 ± γ5)/2, a is the gluino color index, α, β are the
quark-squark color indices and i is the generation index. In the gauge basis, the couplings at the
quark-squark-gluino vertex are given by, for incoming gluinos to sfermion-fermion, Cg̃f̃(2l−1)(f

′
L)l

=

−ig3

√
2T = −i 2√

3
g3. In this basis the effective mass Lagrangian that we construct from the soft

Lagrangian of Eq. (6) is

Leff
mq̃

= −(q̃′L, q̃′R)i(M2
q̃′)ij

(
q̃
′∗
L

q̃
′∗
R

)
j

, (14)

where

(M2
f̃
)ij =

[
M2

LL M2†
LR

M2
LR M2

RR

]
ij

=

[
(M2

Q̃
)ij + (M2

f )ij + Df
L −(af ijvf + µ∗ tanp β(Mf)ij)

−(a∗
f ij

vf + µ tanp β(M∗
f )ij) (M2

f̃R
)ij + (M2

f )ij + Df
R

]

Df
L,R = cos 2βM2

Z(T 3
f −QfL,R

sin2 θW ), p =

{
1, f = d

−1, f = u.
(15)

In Eq. (13) i, j = 1, 2, 3 are the family indices, and (Mf )ij are the non-diagonalized fermion mass
matrices. Note that according to the notation of Eqs. (4–6) µ and the trilinear terms a have the
same sign.

tan β =
v2

v1
=

vu

vd
, v =

√
v2
1 + v2

2 ≈ 174 GeV . (16)

We recall that in the eigenmass formalism all the interactions are computed with the particles
that are mass eigenstates. Hence the effective soft mass matrix of Eq. (12), with the corresponding
family elements Eq. (13), needs to be rotated where the fermions are mass eigenstates, i.e. to the
so-called super CKM (SCKM) basis. For the diagonalization of fermions we adopt the convention

(uL,R)i = (V u†
L,R)ij(u

′
L,R)j, (dL,R)i = (V d†

L,R)ij(d
′
L,R)j, → VCKM = V u†

L V d
L , (17)

and thus the sfermions must be rotated similarly:

(ũL,R)i = (V u†
L,R)ij(ũ

′
L,R)j , (d̃L,R)i = (V d†

L,R)ij(d̃
′
L,R)j. (18)
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family elements Eq. (13), needs to be rotated where the fermions are mass eigenstates, i.e. to the
so-called super CKM (SCKM) basis. For the diagonalization of fermions we adopt the convention

(uL,R)i = (V u†
L,R)ij(u

′
L,R)j, (dL,R)i = (V d†

L,R)ij(d
′
L,R)j, → VCKM = V u†

L V d
L , (17)

and thus the sfermions must be rotated similarly:

(ũL,R)i = (V u†
L,R)ij(ũ

′
L,R)j , (d̃L,R)i = (V d†

L,R)ij(d̃
′
L,R)j. (18)

4

M GUT

Ew, decay 
scalesTo avoid further confusions, let us change

V f
L,R −→ Uf†

L,R (19)

such that we can recognize immediately the standard notation for the CKM matrix:

VCKM = Uu
LUd†

L . (20)

In this notation the soft squared matrix Eq. (13) becomes

(MSCKM
f̃

)2
ij =

[
MSCKM2

LL MSCKM†2
LR

MSCKM2
LR MSCKM2

RR

]
ij

≡ (M̂2
f̃
)ij

=

[
(Uf

LM2
Q̃
Uf†

L )ij + M̂2
fi
δij + Df

L −((Uf
RafU

f†
L )ijvf + µ∗ tanp βM̂fi

δij)

−((Uf
La†

fU
f†
R )ijvf + µ tanp βM̂fi

δij) (Uf
RM2

f̃R
Uf†

R )ij + M̂2
fi
δij + Df

R

]
,

(21)

where Df
L,R remain diagonal, and M̂f is the diagonal matrix of the f type fermions and of course

the trilinear terms are in the RL notation. The sources of flavor violation then come from(
MSCKM2

Q̃

)
ij

= (Uf
LM2

Q̃
Uf†

L )ij(
aSCKM

f

)
ij

= −(Uf
RafU

f†
L )ij(

MSCKM2
f̃R

)
ij

= (Uf
RM2

f̃R
Uf†

R )ij , (22)

since these matrices are not generically diagonal in the SCKM basis. For the case of 1 family the
matrix (MSCKM

f̃
)2
ij is the usual 2 × 2 soft mass matrix whose diagonalization is obtained through

[
f̃L, f̃R

] [
MSCKM2

LL MSCKM†2
LR

MSCKM2
LR MSCKM2

RR

] [
f̃ ∗

L

f̃ ∗
R

]
=

[
f̃L, f̃R

]
K†

[
M2

f̃1

M2
f̃2

]
K

[
f̃ ∗

L

f̃ ∗
R

]
, (23)

where then the sfermion mass eigenstates, q̃i are defined by[
f̃L

f̃R

]
= KT

[
f̃1

f̃2

]
. (24)

Analogously, for three families we have

M̂2†
f̃

=


(M̂2

f̃
)11 (M̂2

f̃
)12 (M̂2

f̃
)13

(M̂2
f̃
)†12 (M̂2

f̃
)22 (M̂2

f̃
)23

(M̂2
f̃
)†13 (M̂2

f̃
)†23 (M̂2

f̃
)33

 , ũ′ =


ũL

ũR

c̃L

c̃R

t̃L
t̃R

 , d̃′ =


d̃L

d̃R

s̃L

s̃R

b̃L

b̃R

 . (25)
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VCKM

where Af is a universal mass parameter for all families. MFV and its limitations can
easily be understood by studying the functional form on Y f of its β functions.1 The β(1)

af
ij

at 1-loop at a given scale in the SCKM basis are

β(1)
au = Ŷ uTr

[
6âuŶ u†

]
+ 4Au(Ŷ u)3 + 2AdŶ uVCKM(Ŷ d)2V †

CKM + Ŷ uGu
1(g

2
i , M

2
i )

+ âu3Tr
[
(Ŷ u)2

]
+ 5Au(Ŷ

u)3 + AuŶ
uVCKM(Ŷ d)2V †

CKM + AuŶ uGu
2(g

2
i , M

2
i )

β(1)
ad = Ŷ dTr

[
6âdŶ d† + 2âeŶ e†

]
+ 4Ad(Ŷ d)3 + 2AuŶ dV †

CKM(Ŷ u)2VCKM + Ŷ dGd
1(g

2
i , M

2
i ),

+ âd3Tr
[
3(Ŷ d)2 + (Ŷ e)2

]
+ 5Ad(Ŷ d)3 + AdŶ dV †

CKM(Ŷ u)2VCKM + AdŶ dGd
2(g

2
i , M

2
i )

(5)

where

Y f = Uf†
R Ŷ fUf

L (6)

and Gf
i are the diagonal functions of the running of the gauginos and gauge couplings.

Recall that β(1)
af can be decomposed as

β(1)
af =

[
Y fF1(a

f , Y f) + afF2(a
f , Y f)

]
, (7)

the first lines in Eq. (5), in β(1)
af for f = u, d correspond to the first term in Eq. (6), while

the second lines in β(1)
af for f = u, d to the second term in Eq. (6).

Eqs. (5) were obtained assuming that also at the scale µ we could write

af (µ) = Y f(µ)Af , (8)

with universality of the Af terms ∀f this is possible to achieve (this is because the ap-

pearence of af ′

terms for f ′ "= f in β(1)

af
ij

). This is difficult to achieve because Af should

not be too large in comparison to other soft parameters, such that its own running does
ont affect Eq. (7). Thus in general we will have a small contibution in β(1)

af :

β(1)
au ⊃ 4(Ŷ u)2Uu

RbuUu†
L + 2Ŷ uVCKMŶ dUd

RbdUd†
L

+ Uu
Rbu

(
5Uu†

L (Ŷ u)2 + Ud†
L (Ŷ d)2V †

CKM

)
β(1)

ad ⊃ 4(Ŷ d)2Ud
RbuUd†

L + 2Ŷ dV †
CKMŶ uUu

RbuUu†
L

+ Ud
Rbd

(
5Ud†

L (Ŷ d)2 + Uu†
L (Ŷ u)2VCKM

)
(9)

where

bf = af (µ) − Y f(µ)Af . (10)

Here the matrices Uf
R,L are the matrices diagonalizing the Yukawa couplings, for this and

in general all notation we refer to the set of notes: Notation. It is pretty safe to ignore the
contributions of Eq. (8) when truly Af is the same for all families and types of fermions.
Notice that in general the flavour violating contributions to the trilinears have the structure
(plus the terms included in the traces of Eq. (5) when bf "= 0) of Eq. (8) and could be the
leading ones, depending on the structure of Eq. (9).

1One could start working in the basis where Y d is diagonal and Y u is not, recall that it is not possible
to work in the basis where both are diagonal due to precisely the CKM matrix but for a better exposition
on clarity let us start just in the basis where both are not diagonal.
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Non-diagonal a ij and m ij FCNC 2
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Figure 1: Flavour changing ∆F = 1 penguin diagrams, q′ represents a different kind of quark than q, e.g.
q = b then q′ = t.

with the loop functions Fi as given in the Appendix of [3] and

xp1p2
≡ M2

p1

M2
p2

. (27)

Then we can just measure the deviations from the SM by taking the ratio to the SM
amplitude. From the comparison to the SM and experimental values, B(b → sγ) =
(3.15 ± 0.23) × 10−4 and B(b → sγ) = (3.55 ± 0.24+0.09

−0.10) × 10−4 respectively, we can
estimate that ratio to the amplitude including just the supersymmetric contributions to
that of the SM can vary up to %3 percent. In what it follows we comment the constraints
from the possible contributing diagrams from figure 1.

1a. The Charged Higgs contribution has the same flavour violating couplings as
those of the SM, thus the ratio to the SM contribution is simply given in terms of loop
functions and related to the C7 Wilson Coefficients as follows

Aγ
H−(MW )

Aγ
SM(MW )

=
CH−

7 (MW )

CSM
7 (MW )

∈ (−0.03, 0.03)

=
xtH [cot2 β (2/3F1(tH) + F2(tH)) + (2/3F3(tH) + F4(tH))]

3xtW (2/3F1(tW ) + F2(tW ))
, (28)

9

3.2 Constraints on §2.4.3

4 FCNC observables from which bounds can be ob-

tained

1. ∆F = 1 processes

(a) li → ljγ

(b) b → sγ

(c) b → sl+l−, in particular l = µ and l = ν

(d) s → dγ

(e) top decays

2. ∆F = 2 processes

(a) Bq − B̄q, in particular q = s

(b) K0 − K̄0 mixing (εk)

(c) D0 − D̄0 mixing

3. g − 2

4. B− → τ−ν̄τ

5. Precision observables

(a) MW

(b) sin2 θeff

(c) Mz

(d) mh

4.1 ∆F = 1 processes

4.1.1 b → sγ

The standard way in which a theoretical prediction to B(b → sγ) is compared to experi-
mental measurements is to obtain Γ(b → sγ) and then get B(b → sγ) = Γ(b → sγ)/Γ(b →
ceν̄)B(b → ceν̄)exp. With

Γ(b → sγ) =
m5

b

16π
|Aγ(µb)|2 , (26)

Aγ(µb) is the effective QCD corrected amplitude at the decay scale µb. For our purposes
it is just enough to compare the supersymmetric contributions to Aγ(MW ), leaded by the

8
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Figure 1: Flavour changing ∆F = 1 penguin diagrams, q′ represents a different kind of quark than q, e.g.
q = b then q′ = t.

contributions to the operator Oγ
LR = imb εµs̄ [i/2[γµ, γν ]qν ] b, with q the outgoing photon

momentum. Following the notation of [3] we have for the SM contribution

Aγ
SM(MW ) =

αW

4

√
αs

π
V ∗

tsVtb3xtW

[
2

3
F1(xtW ) + F2(xtW )

]
, (28)

with the loop functions Fi as given in the Appendix of [3] and

xp1p2
≡ M2

p1

M2
p2

. (29)

Then we can just measure the deviations from the SM by taking the ratio to the SM
amplitude. From the comparison to the SM and experimental values, B(b → sγ) =
(3.15 ± 0.23) × 10−4 and B(b → sγ) = (3.55 ± 0.24+0.09

−0.10) × 10−4 respectively, we can
estimate that ratio to the amplitude including just the supersymmetric contributions to
that of the SM can vary up to %3 percent. In what it follows we comment the constraints
from the possible contributing diagrams from figure 1.

1a. The Charged Higgs contribution has the same flavour violating couplings as
those of the SM, thus the ratio to the SM contribution is simply given in terms of loop
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4.2 ∆F = 2 processes

The box diagrams associate to ∆F = 2 processes are given in figure
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Figure 2: Flavour changing ∆F = 2 box diagrams, q′ represents a different kind of quark than q, e.g.
q = b then q′ = t.

4.2.1 K0 − K̄0 mixing

In the SM that CP-violating parameter εK is

|εK |SM = κεCεB̂K |Vcb|2|Vus|2
(

1

2
|Vcb|2R2

t sin 2βηttS0(xt) + Rt sin β(ηctS0(xc, xt) − ηccxc)

)
,

(33)

where

Cε =
G2

FM2
W F 2

KmK0

6
√

2π2∆MK

# 3.655 × 104 (34)

εSM
K = (0.00198 ± 0.00026)

εexp
K = (0.00229 ± 0.00010) (35)
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Kε 

(35)

where

Cε =
G2

FM2
W F 2

KmK0

6
√

2π2∆MK

" 3.655 × 104 (36)

εSM
K = (0.00198 ± 0.00026)

εexp
K = (0.00229 ± 0.00010) (37)

The gluino contribution plays a crucial role, and in this case of heavy scalars, the
leading one, so we can test:

εK = εSM
K + εSUSY

K

εSUSY
K ∝ Im

{
< K̄|H g̃|K >

}
(38)

{
m3/2, mg̃

}
= {30000, 645} GeV (39)

Choosing:

Yd = Ŷd.V
†
CKM (40)

To understand first the behaviour with the loop functions, we can compare what hap-
pens in the SM

1

M2
W

{S0[xt], S0[xc, xt], xc} , xf =
m2

f

M2
W{

0.00038, 3.0819× 10−7, 3.8969 × 10−8
}

(41)

For a value of

{md̃, mg̃} = {1610, 1518}GeV

i.e, comparable size we have that the loop function for the gluino is

1

m2
g̃

(
11

18
G[xd̃,g̃] +

2

9
G[xd̃,g̃])

= 6.6 × 10−8 (42)

whereas for

{md̃, mg̃} = {21041., 1518} GeV → 5.5 × 10−9

Thus a comparable contribution to that of the SM is still possible with md̃ ∼ O(104)
and assuming that also the relevant couplings are of comparable order of m.
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Figure 2: Predictions for BR(µ → eγ) in the (m0, M1/2) plane, for tan β = 10 (left) and tan β = 40 (right),

A0 = 0, εν = 0.3.

We have performed a numerical evaluation of the RG running and the LFV decay

rates. The results are plotted in Fig. 2 in the (m0, M1/2) plane, for A0 = 0 and tan β = 10

(left panel) and tan β = 40 (right panel). In both cases, we took εν = 0.3, a value which

can account for the measured baryon asymmetry, as we will see in the next section. The

green dashed-line represents the current LEP bound on the Higgs boson mass (taking into

account a theoretical error of 3 GeV). The unknown O(1) coefficients in the soft mass

matrix of Eq. (3.25) have been taken to be 1, therefore variations of the δe
RR contribution

are possible. We can see that the moderate tan β regime is practically not constrained by the

current experimental limit BR(µ → eγ) < 1.2 × 10−11, while the final sensitivity (# 10−13)

of the MEG experiment [29] will be able to test a large portion of the parameter space.

In the large tan β regime the parameter space is already rather constrained and MEG will

test it up to SUSY masses well beyond the LHC sensitivity reach. In case of A0 $= 0, we

have found that the large contribution from (δe
LR)12 already excludes the parameter space

for m0 ! 0.8− 1 TeV even in the moderate tan β regime, if A0/m0 # 1. This result is valid

up to variations of the unknown O(1) coefficients in the soft matrices m2
ẽ, Ae.

Regarding the LFV τ decays, we have found that the present bound on BR(µ → eγ)

excludes the possibility of observing LFV τ decays in the foreseeable experiments. In fact,

for instance:

BR(τ → µγ) # O(10) × BR(µ → eγ) ,

which is a consequence of the fact that MIs in the sector 2 − 3 are not much larger than

those in the sector 1 − 2: indeed, we have (δe
LL)23 ∼ (δe

LL)12 and (δe
RR)23 ∼ (δe

RR)12/εd, as

we can see from Table 2 and Eqs. (5.5, 5.6).

Finally, we briefly comment about the flavour violation in the squark sector. The same

expressions of the mass insertions given in Table 2 can be used for the down-quark sector,

since we are not taking into account the O(1) coefficients that make the differences in these

two sectors. In order to obtain the numerical value of the hadronic mass insertions, we need
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Example Kε 

We have that

|Kd
53| ≤


ArcTan


(M̂2

f̃
)23

(M̂2
f̃
)22




 (34)

How relevant this is, we exemplify it for P1 and P4 of table 1 in 0801.0478. First at all,
if we had equal couplings in both terms of Eq. (30) the dominant contribution would come
from the second. For P1 and P4 we have respectively that θd

23 is O(10−4) and O(10−3),
compared to the order of magnitude of |V ∗

tsVtb| = 0.035, we see that this can be relevant
to limited cases

4.2 ∆F = 2 processes

The box diagrams associate to ∆F = 2 processes are given in figure
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Easy to understand why this may be not that supressed:

1.3 Fermion–sfermion interactions

1.3.1 Quark–squark–gluino interactions

The interaction between quarks, squarks, and gluinos is described by the Lagrangian (which is
consistent with references [?, ?, ?])

Lq−q̃−g̃ = i
√

2g3T
a
αβ

[
q̄′αi PLg̃aq̃′

β
Ri + q̄α

i PRg̃aq̃
β
Li + h.c.

]
, (13)

in the electroweak-color basis, where PR,L = (1 ± γ5)/2, a is the gluino color index, α, β are the
quark-squark color indices and i is the generation index. In the gauge basis, the couplings at the
quark-squark-gluino vertex are given by, for incoming gluinos to sfermion-fermion, Cg̃f̃(2l−1)(f

′
L)l

=

−ig3

√
2T = −i 2√

3
g3. In this basis the effective mass Lagrangian that we construct from the soft

Lagrangian of Eq. (6) is

Leff
mq̃

= −(q̃′L, q̃′R)i(M2
q̃′)ij

(
q̃
′∗
L

q̃
′∗
R

)
j

, (14)

where

(M2
f̃
)ij =

[
M2

LL M2†
LR

M2
LR M2

RR

]
ij

=

[
(M2

Q̃
)ij + (M2

f )ij + Df
L −(af ijvf + µ∗ tanp β(Mf)ij)

−(a∗
f ij

vf + µ tanp β(M∗
f )ij) (M2

f̃R
)ij + (M2

f )ij + Df
R

]

Df
L,R = cos 2βM2

Z(T 3
f −QfL,R

sin2 θW ), p =

{
1, f = d

−1, f = u.
(15)

In Eq. (13) i, j = 1, 2, 3 are the family indices, and (Mf )ij are the non-diagonalized fermion mass
matrices. Note that according to the notation of Eqs. (4–6) µ and the trilinear terms a have the
same sign.

tan β =
v2

v1
=

vu

vd
, v =

√
v2
1 + v2

2 ≈ 174 GeV . (16)

We recall that in the eigenmass formalism all the interactions are computed with the particles
that are mass eigenstates. Hence the effective soft mass matrix of Eq. (12), with the corresponding
family elements Eq. (13), needs to be rotated where the fermions are mass eigenstates, i.e. to the
so-called super CKM (SCKM) basis. For the diagonalization of fermions we adopt the convention

(uL,R)i = (V u†
L,R)ij(u

′
L,R)j, (dL,R)i = (V d†

L,R)ij(d
′
L,R)j, → VCKM = V u†

L V d
L , (17)

and thus the sfermions must be rotated similarly:

(ũL,R)i = (V u†
L,R)ij(ũ

′
L,R)j , (d̃L,R)i = (V d†

L,R)ij(d̃
′
L,R)j. (18)
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W F 2

KmK0
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√

2π2∆MK

" 3.655 × 104 (36)

εSM
K = (0.00198 ± 0.00026)

εexp
K = (0.00229 ± 0.00010) (37)

The gluino contribution plays a crucial role, and in this case of heavy scalars, the
leading one, so we can test:

εK = εSM
K + εSUSY

K

εSUSY
K ∝ Im

{
< K̄|H g̃|K >

}
(38)

{
m3/2, mg̃

}
= {30000, 645} GeV (39)

Choosing:

Yd = Ŷd.V
†
CKM (40)

To understand first the behaviour with the loop functions, we can compare what hap-
pens in the SM

1

M2
W

{S0[xt], S0[xc, xt], xc} , xf =
m2

f

M2
W{

0.00038, 3.0819× 10−7, 3.8969 × 10−8
}

(41)

For a value of

{md̃, mg̃} = {1610, 1518}GeV

i.e, comparable size we have that the loop function for the gluino is

1

m2
g̃

(
11

18
G[xd̃,g̃] +

2

9
G[xd̃,g̃])

= 6.6 × 10−8 (42)

whereas for

{md̃, mg̃} = {21041., 1518} GeV → 5.5 × 10−9

Thus a comparable contribution to that of the SM is still possible with md̃ ∼ O(104)
and assuming that also the relevant couplings are of comparable order of m.
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†
CKM (40)

To understand first the behaviour with the loop functions, we can compare what hap-
pens in the SM

1

M2
W

{S0[xt], S0[xc, xt], xc} , xf =
m2

f

M2
W{

0.00038, 3.0819× 10−7, 3.8969 × 10−8
}

(41)

For a value of

{md̃, mg̃} = {1610, 1518}GeV

i.e, comparable size we have that the loop function for the gluino is

1

m2
g̃

(
11

18
G[xd̃,g̃] +

2

9
G[xd̃,g̃])

= 6.6 × 10−8 (42)

whereas for

{md̃, mg̃} = {21041., 1518} GeV → 5.5 × 10−9

Thus a comparable contribution to that of the SM is still possible with md̃ ∼ O(104)
and assuming that also the relevant couplings are of comparable order of m.

12

(35)

where

Cε =
G2

FM2
W F 2

KmK0

6
√

2π2∆MK

" 3.655 × 104 (36)

εSM
K = (0.00198 ± 0.00026)

εexp
K = (0.00229 ± 0.00010) (37)

The gluino contribution plays a crucial role, and in this case of heavy scalars, the
leading one, so we can test:

εK = εSM
K + εSUSY

K

εSUSY
K ∝ Im

{
< K̄|H g̃|K >

}
(38)

{
m3/2, mg̃

}
= {30000, 645} GeV (39)

Choosing:

Yd = Ŷd.V
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How relevant this is, we exemplify it for P1 and P4 of table 1 in 0801.0478. First at all,
if we had equal couplings in both terms of Eq. (30) the dominant contribution would come
from the second. For P1 and P4 we have respectively that θd

23 is O(10−4) and O(10−3),
compared to the order of magnitude of |V ∗

tsVtb| = 0.035, we see that this can be relevant
to limited cases

4.2 ∆F = 2 processes

The box diagrams associate to ∆F = 2 processes are given in figure
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Figure 2: Flavour changing ∆F = 2 box diagrams, q′ represents a different kind of quark than q, e.g.
q = b then q′ = t.

4.2.1 K0 − K̄0 mixing

In the SM that CP-violating parameter εK is

|εK |SM = κεCεB̂K |Vcb|2|Vus|2
(

1

2
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t sin 2βηttS0(xt) + Rt sin β(ηctS0(xc, xt) − ηccxc)

)
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For a value of
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i.e, comparable size we have that the loop function for the gluino is
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whereas for
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Thus a comparable contribution to that of the SM is still possible with md̃ ∼ O(104)
and assuming that also the relevant couplings are of comparable order of m.
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But as long as we have deviations, we can easily get a bound on 
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where of course the precise values of the O(1) coefficients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F → F̂ ≡ V −1
F F , f c → f̂ c ≡ f c V −1

fc

†
, Hf → Ĥf ≡ K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m′2
F̃ †F̃ → m̂2

F̃ †F̃ ≡ V †
F m′2

F̃ †F̃ VF , (13a)

m′2
f̃cf̃c† → m̂2

f̃cf̃c† ≡ V †
fc m′2

f̃cf̃c† Vfc , (13b)

a′
f̃cF̃Hf

→ âf̃cF̃Hf
≡ K̃

− 1
2

H†
fHf

V †
fc a′f̃cF̃Hf

VF , (13c)

Y ′
fcFHf

→ ŶfcFHf
≡ K̃

− 1
2

H†
fHf

V †
fc Y ′

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

ỸfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

ãf̃cF̃Hf
= U f

R

†
âf̃cF̃Hf

U f
L , (15a)

m̃2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃U
f
L , (15b)

m̃2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
effective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix different fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a different matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.

6

Our example Bound

(δdRR)12
ε̃ 2d εd
30 ∼ 7 · 10−5 9 · 10−3

(δdLL)12
ε̃ 2Q εd
30 ∼ 7 · 10−5 1 · 10−2

(δdLR,RL)12
v√

1+tan 2β

[
−nA0ε3d

30m2
0

]
∼ 4n · 10−6 1 · 10−5

(δdLL)23
ε̃ 2Q
30 ∼ 6 · 10−4 2 · 10−1

(δeLL)12
ε̃ 2L εd
4 ∼ 6 · 10−4 6 · 10−4

(δdLR,RL)23
v√

1+tan 2β

[
−nA0ε2d

30m2
0

]
∼ 4n · 10−4 1 · 10−3

Table 1: An example for the flavour violating parameters δ for the SPS 1a point, together with the
corresponding experimental limit. For a detailed description of the formulas see the text in this section.

transformation will not change the corresponding order of magnitude in âf̃c
i F̃jHf

:

ãf̃c
i F̃jHf

=
[
U f
R

†
âf̃cF̃Hf

U f
L

]
ij
=

[
U f
R

†
K̃

− 1
2

H†
fHf

V †
fc a′f̃cF̃Hf

VFU
f
L

]
ij

= O
([

Tf̃c
i F̃jHf

+ Th
| 〈h〉 |2
M2

P

]
Ŷf̃c

i F̃jHf

)
m3/2. (37)

Note that since we do not have the relations of the CMSSM case, we need to redefine an
A0 depending on each element of a′fc

i fjHf
but, since Tf̃c

i F̃jHf
are expected to be O(1), its

order of magnitude can be estimated. What we have assumed in the numerical estimates
in Table 1 is that we can express (Th

|〈h〉|2
M2

P
+ Tf̃c

i F̃jHf
) = nA0/m3/2 for a factor n of O(1)

that depends on each element (i, j). In our example under consideration, n can be a factor
of a few (i.e. 1 + pijn in Eq. (21c)) which can be well within the range to be probed by the
forthcoming experiments.

In order to estimate the size of FCNCs in our setup, let us consider a very simple
example 12:

ε̃Q = ε̃L = εd ≈ 0.13 ⇒ ε̃d = ε̃e = εd ≈ 0.13 , ε̃u =
ε2u
εd

≈ 0.012 . (38)

An example for the flavour violating parameters δ using the relations above is listed in
Tab. 1 for the SPS 1a point, together with the corresponding experimental limits. We see
that the constraints in the squark sector are easily satisfied for flavour violating parameters
of the form (δdXX) but for (δ

d
XY) we have an important dependence on what values are chosen

for A0, m0 and tan β. If A0 is comparatively larger than m0 then (δdXY) could be easily
above the limit for it. Also for a large tan β this could be a problem. Taking εd ∼ 0.15,
the values of (δdLR)12,23 are comfortably within the limits for the point SPS1a, while, for
A0 = −1100 GeV, m0 = 200 GeV and tan β = 10, (δd12) is at the limit but (δd23) satisfies
all bounds.

12We have taken the numerical values of εd and εu from the latest fit [8] of the kind of Yukawa matrices
we are using.
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Due to the hierarchical Yukawa couplings, the transformation to the SCKM basis is
given to a very good approximation at low energy as follows:

m̃2
d̃,RR

∼ m2
0

Rd̃,RR ε̃2d εd ε̃2d εd + ε3d
· Rd̃,RR ε̃2d + ε2d
· · Rd̃,RR

 , (33)

where the factor Rd̃,RR corresponds to the RGE evolution increase at low energy. The
matrices m̃2

Q̃,LL
, m̃2

L̃,LL
and m̃2

ẽ,RR are analogous to Eq. (33) with the replacements ε̃d → ε̃Q,
ε̃d → ε̃L and ε̃d → ε̃e respectively and for the leptonic cases also the RGE factors RL̃ and
Rẽ are different.

We present an example using the benchmark point SPS 1a, with values m0 = 100GeV,
m1/2 = 250 GeV, A0 = −100 GeV and tan β = 10, for which the estimate of [24] yields

(m̃2
q̃,LL)ii ∼ 30m2

0 , (m̃2
ẽ,LL)ii ∼ 4m2

0 , (m̃2
ẽ,RR)ii ∼ 2m2

0 , (34)

i.e. Rd̃,RR ∼ 30, Rẽ,LL ∼ 4 and Rẽ,RR ∼ 2 for the quarks, lepton doublet and charged
lepton singlets respectively.

Here we have ignored signs and assumed no severe cancellations, which can occur in
fine-tuned cases. We also neglect all complex phases, so that there are no contributions to
electric dipole moments and CP-violating parameters in meson mixing.

The quantities m̃2
ũ,LL are less interesting due to the weaker experimental constraints

(coming from D rather than K mixing).
We use the experimental constraints from ∆mK , b → sγ, µ → eγ etc. given in [25,26].

In the mass insertion approximation, they can be translated into constraints on the δ
flavour violating parameters:

(δfRR)ij :=
(m̃2

f̃ ,RR
)ij

(m̃2
f̃ ,RR

)ii
,

(
δfLR,RL

)
ij

:=
(m̃2

f̃ ,LR,RL
)ij√

(m̃2
f̃ ,LL

)ii(m̃2
f̃ ,RR

)jj
. (35)

Then the (δfXY) parameters are given by

(
δdLR,RL

)
ij

=
v√

1 + tan2 β

[
− ãd̃ci Q̃jHf

30m2
0

+
µ∗ tan β Ỹ diag

dciQj

30m2
0

√
2

]
,

(
δuLR,RL

)
ij

=
v tan β√
1 + tan2 β

[
− ãũc

i Q̃jHf

30m2
0

+
µ∗Ỹ diag

uc
iQj

30m2
0 tan β

√
2

]
, (36)

where ˜ denotes the quantities in the SCKM basis. Following our discussion on the trans-
formation of the trilinear couplings âf̃c

i F̃jHf
due to canonical normalisation, in our example

the leading terms of the trilinear couplings are always proportional to the correspond-
ing Yukawa coupling Ŷf̃c

i F̃jHf
, i.e. the first line of Eq. (21a) dominates. Then the SCKM
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Our example Bound

(δdRR)12
ε̃ 2d εd
30 ∼ 7 · 10−5 9 · 10−3

(δdLL)12
ε̃ 2Q εd
30 ∼ 7 · 10−5 1 · 10−2

(δdLR,RL)12
v√

1+tan 2β

[
−nA0ε3d

30m2
0

]
∼ 4n · 10−6 1 · 10−5

(δdLL)23
ε̃ 2Q
30 ∼ 6 · 10−4 2 · 10−1

(δeLL)12
ε̃ 2L εd
4 ∼ 6 · 10−4 6 · 10−4

(δdLR,RL)23
v√

1+tan 2β

[
−nA0ε2d

30m2
0

]
∼ 4n · 10−4 1 · 10−3

Table 1: An example for the flavour violating parameters δ for the SPS 1a point, together with the
corresponding experimental limit. For a detailed description of the formulas see the text in this section.

transformation will not change the corresponding order of magnitude in âf̃c
i F̃jHf

:

ãf̃c
i F̃jHf

=
[
U f
R

†
âf̃cF̃Hf

U f
L

]
ij
=

[
U f
R

†
K̃

− 1
2

H†
fHf

V †
fc a′f̃cF̃Hf

VFU
f
L

]
ij

= O
([

Tf̃c
i F̃jHf

+ Th
| 〈h〉 |2
M2

P

]
Ŷf̃c

i F̃jHf

)
m3/2. (37)

Note that since we do not have the relations of the CMSSM case, we need to redefine an
A0 depending on each element of a′fc

i fjHf
but, since Tf̃c

i F̃jHf
are expected to be O(1), its

order of magnitude can be estimated. What we have assumed in the numerical estimates
in Table 1 is that we can express (Th

|〈h〉|2
M2

P
+ Tf̃c

i F̃jHf
) = nA0/m3/2 for a factor n of O(1)

that depends on each element (i, j). In our example under consideration, n can be a factor
of a few (i.e. 1 + pijn in Eq. (21c)) which can be well within the range to be probed by the
forthcoming experiments.

In order to estimate the size of FCNCs in our setup, let us consider a very simple
example 12:

ε̃Q = ε̃L = εd ≈ 0.13 ⇒ ε̃d = ε̃e = εd ≈ 0.13 , ε̃u =
ε2u
εd

≈ 0.012 . (38)

An example for the flavour violating parameters δ using the relations above is listed in
Tab. 1 for the SPS 1a point, together with the corresponding experimental limits. We see
that the constraints in the squark sector are easily satisfied for flavour violating parameters
of the form (δdXX) but for (δ

d
XY) we have an important dependence on what values are chosen

for A0, m0 and tan β. If A0 is comparatively larger than m0 then (δdXY) could be easily
above the limit for it. Also for a large tan β this could be a problem. Taking εd ∼ 0.15,
the values of (δdLR)12,23 are comfortably within the limits for the point SPS1a, while, for
A0 = −1100 GeV, m0 = 200 GeV and tan β = 10, (δd12) is at the limit but (δd23) satisfies
all bounds.

12We have taken the numerical values of εd and εu from the latest fit [8] of the kind of Yukawa matrices
we are using.
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where of course the precise values of the O(1) coefficients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F → F̂ ≡ V −1
F F , f c → f̂ c ≡ f c V −1

fc

†
, Hf → Ĥf ≡ K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m′2
F̃ †F̃ → m̂2

F̃ †F̃ ≡ V †
F m′2

F̃ †F̃ VF , (13a)

m′2
f̃cf̃c† → m̂2

f̃cf̃c† ≡ V †
fc m′2

f̃cf̃c† Vfc , (13b)

a′
f̃cF̃Hf

→ âf̃cF̃Hf
≡ K̃

− 1
2

H†
fHf

V †
fc a′f̃cF̃Hf

VF , (13c)

Y ′
fcFHf

→ ŶfcFHf
≡ K̃

− 1
2

H†
fHf

V †
fc Y ′

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

ỸfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

ãf̃cF̃Hf
= U f

R

†
âf̃cF̃Hf

U f
L , (15a)

m̃2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃U
f
L , (15b)

m̃2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
effective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix different fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a different matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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the Kähler potential and the F terms.
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Y ′
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→ ŶfcFHf
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− 1
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H†
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V †
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8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

ỸfcFHf
= U f
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†
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U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,
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L , (15b)
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= U f
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†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
effective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix different fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a different matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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Our example Bound

(δdRR)12
ε̃ 2d εd
30 ∼ 7 · 10−5 9 · 10−3

(δdLL)12
ε̃ 2Q εd
30 ∼ 7 · 10−5 1 · 10−2

(δdLR,RL)12
v√

1+tan 2β

[
−nA0ε3d

30m2
0

]
∼ 4n · 10−6 1 · 10−5

(δdLL)23
ε̃ 2Q
30 ∼ 6 · 10−4 2 · 10−1

(δeLL)12
ε̃ 2L εd
4 ∼ 6 · 10−4 6 · 10−4

(δdLR,RL)23
v√

1+tan 2β

[
−nA0ε2d

30m2
0

]
∼ 4n · 10−4 1 · 10−3

Table 1: An example for the flavour violating parameters δ for the SPS 1a point, together with the
corresponding experimental limit. For a detailed description of the formulas see the text in this section.

transformation will not change the corresponding order of magnitude in âf̃c
i F̃jHf

:

ãf̃c
i F̃jHf

=
[
U f
R

†
âf̃cF̃Hf

U f
L

]
ij
=

[
U f
R

†
K̃

− 1
2

H†
fHf

V †
fc a′f̃cF̃Hf

VFU
f
L

]
ij

= O
([

Tf̃c
i F̃jHf

+ Th
| 〈h〉 |2
M2

P

]
Ŷf̃c

i F̃jHf

)
m3/2. (37)

Note that since we do not have the relations of the CMSSM case, we need to redefine an
A0 depending on each element of a′fc

i fjHf
but, since Tf̃c

i F̃jHf
are expected to be O(1), its

order of magnitude can be estimated. What we have assumed in the numerical estimates
in Table 1 is that we can express (Th

|〈h〉|2
M2

P
+ Tf̃c

i F̃jHf
) = nA0/m3/2 for a factor n of O(1)

that depends on each element (i, j). In our example under consideration, n can be a factor
of a few (i.e. 1 + pijn in Eq. (21c)) which can be well within the range to be probed by the
forthcoming experiments.

In order to estimate the size of FCNCs in our setup, let us consider a very simple
example 12:

ε̃Q = ε̃L = εd ≈ 0.13 ⇒ ε̃d = ε̃e = εd ≈ 0.13 , ε̃u =
ε2u
εd

≈ 0.012 . (38)

An example for the flavour violating parameters δ using the relations above is listed in
Tab. 1 for the SPS 1a point, together with the corresponding experimental limits. We see
that the constraints in the squark sector are easily satisfied for flavour violating parameters
of the form (δdXX) but for (δ

d
XY) we have an important dependence on what values are chosen

for A0, m0 and tan β. If A0 is comparatively larger than m0 then (δdXY) could be easily
above the limit for it. Also for a large tan β this could be a problem. Taking εd ∼ 0.15,
the values of (δdLR)12,23 are comfortably within the limits for the point SPS1a, while, for
A0 = −1100 GeV, m0 = 200 GeV and tan β = 10, (δd12) is at the limit but (δd23) satisfies
all bounds.

12We have taken the numerical values of εd and εu from the latest fit [8] of the kind of Yukawa matrices
we are using.
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Due to the hierarchical Yukawa couplings, the transformation to the SCKM basis is
given to a very good approximation at low energy as follows:

m̃2
d̃,RR

∼ m2
0

Rd̃,RR ε̃2d εd ε̃2d εd + ε3d
· Rd̃,RR ε̃2d + ε2d
· · Rd̃,RR

 , (33)

where the factor Rd̃,RR corresponds to the RGE evolution increase at low energy. The
matrices m̃2

Q̃,LL
, m̃2

L̃,LL
and m̃2

ẽ,RR are analogous to Eq. (33) with the replacements ε̃d → ε̃Q,
ε̃d → ε̃L and ε̃d → ε̃e respectively and for the leptonic cases also the RGE factors RL̃ and
Rẽ are different.

We present an example using the benchmark point SPS 1a, with values m0 = 100GeV,
m1/2 = 250 GeV, A0 = −100 GeV and tan β = 10, for which the estimate of [24] yields

(m̃2
q̃,LL)ii ∼ 30m2

0 , (m̃2
ẽ,LL)ii ∼ 4m2

0 , (m̃2
ẽ,RR)ii ∼ 2m2

0 , (34)

i.e. Rd̃,RR ∼ 30, Rẽ,LL ∼ 4 and Rẽ,RR ∼ 2 for the quarks, lepton doublet and charged
lepton singlets respectively.

Here we have ignored signs and assumed no severe cancellations, which can occur in
fine-tuned cases. We also neglect all complex phases, so that there are no contributions to
electric dipole moments and CP-violating parameters in meson mixing.

The quantities m̃2
ũ,LL are less interesting due to the weaker experimental constraints

(coming from D rather than K mixing).
We use the experimental constraints from ∆mK , b → sγ, µ → eγ etc. given in [25,26].

In the mass insertion approximation, they can be translated into constraints on the δ
flavour violating parameters:

(δfRR)ij :=
(m̃2

f̃ ,RR
)ij

(m̃2
f̃ ,RR

)ii
,

(
δfLR,RL

)
ij

:=
(m̃2

f̃ ,LR,RL
)ij√

(m̃2
f̃ ,LL

)ii(m̃2
f̃ ,RR

)jj
. (35)

Then the (δfXY) parameters are given by

(
δdLR,RL

)
ij

=
v√

1 + tan2 β

[
− ãd̃ci Q̃jHf

30m2
0

+
µ∗ tan β Ỹ diag

dciQj

30m2
0

√
2

]
,

(
δuLR,RL

)
ij

=
v tan β√
1 + tan2 β

[
− ãũc

i Q̃jHf

30m2
0

+
µ∗Ỹ diag

uc
iQj

30m2
0 tan β

√
2

]
, (36)

where ˜ denotes the quantities in the SCKM basis. Following our discussion on the trans-
formation of the trilinear couplings âf̃c

i F̃jHf
due to canonical normalisation, in our example

the leading terms of the trilinear couplings are always proportional to the correspond-
ing Yukawa coupling Ŷf̃c

i F̃jHf
, i.e. the first line of Eq. (21a) dominates. Then the SCKM
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(δdRR)12
ε̃ 2d εd
30 ∼ 7 · 10−5 9 · 10−3

(δdLL)12
ε̃ 2Q εd
30 ∼ 7 · 10−5 1 · 10−2

(δdLR,RL)12
v√

1+tan 2β

[
−nA0ε3d

30m2
0

]
∼ 4n · 10−6 1 · 10−5

(δdLL)23
ε̃ 2Q
30 ∼ 6 · 10−4 2 · 10−1

(δeLL)12
ε̃ 2L εd
4 ∼ 6 · 10−4 6 · 10−4

(δdLR,RL)23
v√

1+tan 2β

[
−nA0ε2d

30m2
0

]
∼ 4n · 10−4 1 · 10−3

Table 1: An example for the flavour violating parameters δ for the SPS 1a point, together with the
corresponding experimental limit. For a detailed description of the formulas see the text in this section.

transformation will not change the corresponding order of magnitude in âf̃c
i F̃jHf

:

ãf̃c
i F̃jHf

=
[
U f
R

†
âf̃cF̃Hf

U f
L

]
ij
=

[
U f
R

†
K̃

− 1
2

H†
fHf

V †
fc a′f̃cF̃Hf

VFU
f
L

]
ij

= O
([

Tf̃c
i F̃jHf

+ Th
| 〈h〉 |2
M2

P

]
Ŷf̃c

i F̃jHf

)
m3/2. (37)

Note that since we do not have the relations of the CMSSM case, we need to redefine an
A0 depending on each element of a′fc

i fjHf
but, since Tf̃c

i F̃jHf
are expected to be O(1), its

order of magnitude can be estimated. What we have assumed in the numerical estimates
in Table 1 is that we can express (Th

|〈h〉|2
M2

P
+ Tf̃c

i F̃jHf
) = nA0/m3/2 for a factor n of O(1)

that depends on each element (i, j). In our example under consideration, n can be a factor
of a few (i.e. 1 + pijn in Eq. (21c)) which can be well within the range to be probed by the
forthcoming experiments.

In order to estimate the size of FCNCs in our setup, let us consider a very simple
example 12:

ε̃Q = ε̃L = εd ≈ 0.13 ⇒ ε̃d = ε̃e = εd ≈ 0.13 , ε̃u =
ε2u
εd

≈ 0.012 . (38)

An example for the flavour violating parameters δ using the relations above is listed in
Tab. 1 for the SPS 1a point, together with the corresponding experimental limits. We see
that the constraints in the squark sector are easily satisfied for flavour violating parameters
of the form (δdXX) but for (δ

d
XY) we have an important dependence on what values are chosen

for A0, m0 and tan β. If A0 is comparatively larger than m0 then (δdXY) could be easily
above the limit for it. Also for a large tan β this could be a problem. Taking εd ∼ 0.15,
the values of (δdLR)12,23 are comfortably within the limits for the point SPS1a, while, for
A0 = −1100 GeV, m0 = 200 GeV and tan β = 10, (δd12) is at the limit but (δd23) satisfies
all bounds.

12We have taken the numerical values of εd and εu from the latest fit [8] of the kind of Yukawa matrices
we are using.
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where of course the precise values of the O(1) coefficients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,
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F F , f c → f̂ c ≡ f c V −1

fc

†
, Hf → Ĥf ≡ K̃
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Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m′2
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8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

ỸfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

ãf̃cF̃Hf
= U f

R

†
âf̃cF̃Hf

U f
L , (15a)

m̃2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃U
f
L , (15b)

m̃2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
effective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix different fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a different matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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Therefore at scales µ < 105 TeV, according to what it was discussed with respect to
Eq. (7) in the SCKM basis we have:
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rrU
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Ŷ d

ii Tr
[
6(Ud

RadUu†
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rrU
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iiV
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rrU
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Ljr
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. (14)

The functions Gaf depend on the running of the gauge couplings and gaugino masses
and therefore just relevant to the diagonal elements. In the G2-MSSM models due to the
hierarchy of the gauginos with respect to the soft masses, the diagonal terms are practically
insensitive to them and provided they are not zero, their main contribution it is its value
at MG. Therefore we expect af

rr to be the same at any scale µ.

Soft squared masses In this case, we can parameterize the size of the soft squared
masses coming from the leading terms of the running as follows:
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(15)

with (∆f
α) ∼ O(m2

f).

2.4.3 Soft parameters related to Yukawa matrices, but not necessarily pro-

portional to them

Trilinears

(af )ij = cf
ijAf̃Y

f
ij → âf

ij = Uf
Rikc

f
ksY

f
ksU

f†
Lsj (16)

where it is not assumed that the coefficients cf
ij are the same for all i, j and therefore af is

not a priori proportional to the matrix Y f . Here we do not assume a particular form for
the Yukawa matrices. In this case, provided cf

ij %= 0 their value at MG would provide their
main contribution at an arbitrary scale µ.
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âu(µ)ij ≈ âu(MG)ijδij − 1

16π2
log

[
µ

MG

] [
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CKM|Ad|2

+ (∆Q
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2)ij
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where of course the precise values of the O(1) coefficients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,
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where the (non-unitary) matrices V diagonalise the Kähler metric,5
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8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
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In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
effective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix different fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a different matrix. Likewise,
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Our example Bound

(δdRR)12
ε̃ 2d εd
30 ∼ 7 · 10−5 9 · 10−3

(δdLL)12
ε̃ 2Q εd
30 ∼ 7 · 10−5 1 · 10−2

(δdLR,RL)12
v√

1+tan 2β

[
−nA0ε3d

30m2
0

]
∼ 4n · 10−6 1 · 10−5

(δdLL)23
ε̃ 2Q
30 ∼ 6 · 10−4 2 · 10−1

(δeLL)12
ε̃ 2L εd
4 ∼ 6 · 10−4 6 · 10−4

(δdLR,RL)23
v√

1+tan 2β

[
−nA0ε2d

30m2
0

]
∼ 4n · 10−4 1 · 10−3

Table 1: An example for the flavour violating parameters δ for the SPS 1a point, together with the
corresponding experimental limit. For a detailed description of the formulas see the text in this section.

transformation will not change the corresponding order of magnitude in âf̃c
i F̃jHf

:

ãf̃c
i F̃jHf

=
[
U f
R

†
âf̃cF̃Hf

U f
L

]
ij
=

[
U f
R

†
K̃

− 1
2

H†
fHf

V †
fc a′f̃cF̃Hf

VFU
f
L

]
ij

= O
([

Tf̃c
i F̃jHf

+ Th
| 〈h〉 |2
M2

P

]
Ŷf̃c

i F̃jHf

)
m3/2. (37)

Note that since we do not have the relations of the CMSSM case, we need to redefine an
A0 depending on each element of a′fc

i fjHf
but, since Tf̃c

i F̃jHf
are expected to be O(1), its

order of magnitude can be estimated. What we have assumed in the numerical estimates
in Table 1 is that we can express (Th

|〈h〉|2
M2

P
+ Tf̃c

i F̃jHf
) = nA0/m3/2 for a factor n of O(1)

that depends on each element (i, j). In our example under consideration, n can be a factor
of a few (i.e. 1 + pijn in Eq. (21c)) which can be well within the range to be probed by the
forthcoming experiments.

In order to estimate the size of FCNCs in our setup, let us consider a very simple
example 12:

ε̃Q = ε̃L = εd ≈ 0.13 ⇒ ε̃d = ε̃e = εd ≈ 0.13 , ε̃u =
ε2u
εd

≈ 0.012 . (38)

An example for the flavour violating parameters δ using the relations above is listed in
Tab. 1 for the SPS 1a point, together with the corresponding experimental limits. We see
that the constraints in the squark sector are easily satisfied for flavour violating parameters
of the form (δdXX) but for (δ

d
XY) we have an important dependence on what values are chosen

for A0, m0 and tan β. If A0 is comparatively larger than m0 then (δdXY) could be easily
above the limit for it. Also for a large tan β this could be a problem. Taking εd ∼ 0.15,
the values of (δdLR)12,23 are comfortably within the limits for the point SPS1a, while, for
A0 = −1100 GeV, m0 = 200 GeV and tan β = 10, (δd12) is at the limit but (δd23) satisfies
all bounds.

12We have taken the numerical values of εd and εu from the latest fit [8] of the kind of Yukawa matrices
we are using.
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Due to the hierarchical Yukawa couplings, the transformation to the SCKM basis is
given to a very good approximation at low energy as follows:

m̃2
d̃,RR

∼ m2
0

Rd̃,RR ε̃2d εd ε̃2d εd + ε3d
· Rd̃,RR ε̃2d + ε2d
· · Rd̃,RR

 , (33)

where the factor Rd̃,RR corresponds to the RGE evolution increase at low energy. The
matrices m̃2

Q̃,LL
, m̃2

L̃,LL
and m̃2

ẽ,RR are analogous to Eq. (33) with the replacements ε̃d → ε̃Q,
ε̃d → ε̃L and ε̃d → ε̃e respectively and for the leptonic cases also the RGE factors RL̃ and
Rẽ are different.

We present an example using the benchmark point SPS 1a, with values m0 = 100GeV,
m1/2 = 250 GeV, A0 = −100 GeV and tan β = 10, for which the estimate of [24] yields

(m̃2
q̃,LL)ii ∼ 30m2

0 , (m̃2
ẽ,LL)ii ∼ 4m2

0 , (m̃2
ẽ,RR)ii ∼ 2m2

0 , (34)

i.e. Rd̃,RR ∼ 30, Rẽ,LL ∼ 4 and Rẽ,RR ∼ 2 for the quarks, lepton doublet and charged
lepton singlets respectively.

Here we have ignored signs and assumed no severe cancellations, which can occur in
fine-tuned cases. We also neglect all complex phases, so that there are no contributions to
electric dipole moments and CP-violating parameters in meson mixing.

The quantities m̃2
ũ,LL are less interesting due to the weaker experimental constraints

(coming from D rather than K mixing).
We use the experimental constraints from ∆mK , b → sγ, µ → eγ etc. given in [25,26].

In the mass insertion approximation, they can be translated into constraints on the δ
flavour violating parameters:

(δfRR)ij :=
(m̃2

f̃ ,RR
)ij

(m̃2
f̃ ,RR

)ii
,

(
δfLR,RL

)
ij

:=
(m̃2

f̃ ,LR,RL
)ij√

(m̃2
f̃ ,LL

)ii(m̃2
f̃ ,RR

)jj
. (35)

Then the (δfXY) parameters are given by

(
δdLR,RL

)
ij

=
v√

1 + tan2 β

[
− ãd̃ci Q̃jHf

30m2
0

+
µ∗ tan β Ỹ diag

dciQj

30m2
0

√
2

]
,

(
δuLR,RL

)
ij

=
v tan β√
1 + tan2 β

[
− ãũc

i Q̃jHf

30m2
0

+
µ∗Ỹ diag

uc
iQj

30m2
0 tan β

√
2

]
, (36)

where ˜ denotes the quantities in the SCKM basis. Following our discussion on the trans-
formation of the trilinear couplings âf̃c

i F̃jHf
due to canonical normalisation, in our example

the leading terms of the trilinear couplings are always proportional to the correspond-
ing Yukawa coupling Ŷf̃c

i F̃jHf
, i.e. the first line of Eq. (21a) dominates. Then the SCKM
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where the (non-unitary) matrices V diagonalise the Kähler metric,5
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In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
effective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix different fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a different matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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To avoid further confusions, let us change

V f
L,R −→ Uf†

L,R (19)

such that we can recognize immediately the standard notation for the CKM matrix:

VCKM = Uu
LUd†

L . (20)

In this notation the soft squared matrix Eq. (13) becomes

(MSCKM
f̃

)2
ij =

[
MSCKM2

LL MSCKM†2
LR

MSCKM2
LR MSCKM2

RR

]
ij

≡ (M̂2
f̃
)ij

=

[
(Uf

LM2
Q̃
Uf†

L )ij + M̂2
fi
δij + Df

L −((Uf
RafU

f†
L )ijvf + µ∗ tanp βM̂fi

δij)

−((Uf
La†

fU
f†
R )ijvf + µ tanp βM̂fi

δij) (Uf
RM2

f̃R
Uf†

R )ij + M̂2
fi
δij + Df

R

]
,

(21)

where Df
L,R remain diagonal, and M̂f is the diagonal matrix of the f type fermions and of course

the trilinear terms are in the RL notation. The sources of flavor violation then come from(
MSCKM2

Q̃

)
ij

= (Uf
LM2

Q̃
Uf†

L )ij(
aSCKM

f

)
ij

= −(Uf
RafU

f†
L )ij(

MSCKM2
f̃R

)
ij

= (Uf
RM2

f̃R
Uf†

R )ij , (22)

since these matrices are not generically diagonal in the SCKM basis. For the case of 1 family the
matrix (MSCKM

f̃
)2
ij is the usual 2 × 2 soft mass matrix whose diagonalization is obtained through

[
f̃L, f̃R

] [
MSCKM2

LL MSCKM†2
LR

MSCKM2
LR MSCKM2

RR

] [
f̃ ∗

L

f̃ ∗
R

]
=

[
f̃L, f̃R

]
K†

[
M2

f̃1

M2
f̃2

]
K

[
f̃ ∗

L

f̃ ∗
R

]
, (23)

where then the sfermion mass eigenstates, q̃i are defined by[
f̃L

f̃R

]
= KT

[
f̃1

f̃2

]
. (24)

Analogously, for three families we have

M̂2†
f̃

=


(M̂2

f̃
)11 (M̂2

f̃
)12 (M̂2

f̃
)13

(M̂2
f̃
)†12 (M̂2

f̃
)22 (M̂2

f̃
)23

(M̂2
f̃
)†13 (M̂2

f̃
)†23 (M̂2

f̃
)33

 , ũ′ =


ũL

ũR

c̃L

c̃R

t̃L
t̃R

 , d̃′ =


d̃L

d̃R

s̃L

s̃R

b̃L

b̃R

 . (25)

5

VCKM
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Im

Im



• While we know flavour effects should be 
small, we need to quantify them

• Sensitive observables (e.g.     )can put 
bounds on the off-diagonal elements of 

Idea of this analysis

Kε 

Y , a ij  and m ijij

Thank you!


