THE TOP PAIR FORWARD-BACKWARD ASYMMETRY IN THE FULL CDF DATASET

David Mietlicki
University of Michigan

On Behalf of the CDF Collaboration
THE TOP ASYMMETRY

- Very large top mass → intriguing possibilities for top quark interactions
 - Special role in EWSB? Enhanced couplings to new physics?
 - Precision top property measurements can provide the answers

- Previous measurements: large forward-backward asymmetry (A_{FB}) in the production angle
 - Equivalent to a charge asymmetry

- Use Δy as a proxy for production angle
 - Invariant to boosts along the beamline
 - A_{FB} measured in top pair rest frame
 - Inclusive A_{FB} is the same in Δy and $\cos \theta$

- A_{FB} measurement is unique to the Tevatron
 - LHC experiments can see a charge asymmetry
 - But it requires different techniques and the expected magnitude is much smaller
The Standard Model Prediction

- **Leading order:** no asymmetry
- **Next-to-leading order:** small positive asymmetry
- Some uncertainty regarding theory predictions
 - E.g., use LO or NLO cross-section for A_{FB} denominator?
- Predictions shown today are from NLO Monte Carlo generator POWHEG
 - Flat correction of 26% in Δy asymmetries for electroweak contributions

\[A_{FB}^{NLO} = 6.6\% \]

POWHEG:

EW Corrections:
Kuhn and Rodrigo, JHEP **1201**, 063 (2012)
A_{FB} Functional Dependencies

- Expected standard model dependence of A_{FB} on $\cos \theta$ (top) and M_{tt} (bottom)
The Asymmetry in ~5 fb$^{-1}$

- Both CDF and D0 measure large inclusive A_{FB}
 - $\sim 3\sigma$ from no asymmetry
 - $\sim 1.5-2\sigma$ above SM prediction
 - Good consistency between measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Parton Level A_{FB} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1CDF Lep+Jets, 5.3 fb$^{-1}$</td>
<td>15.8 ± 7.4</td>
</tr>
<tr>
<td>2CDF Dilepton, 5.1 fb$^{-1}$</td>
<td>42 ± 16</td>
</tr>
<tr>
<td>3CDF Combined</td>
<td>20.1 ± 6.7</td>
</tr>
<tr>
<td>4D0 Lep+Jets, 5.4 fb$^{-1}$</td>
<td>19.6 ± 6.5</td>
</tr>
<tr>
<td>Informal Combination*</td>
<td>19.8 ± 4.7</td>
</tr>
<tr>
<td>NLO (QCD+EW)</td>
<td>6.6</td>
</tr>
</tbody>
</table>

*NOT an official result – just a simple weighted average of the D0 lepton+jets and the combined CDF results (correlations of systematics NOT included)

MASS AND RAPIDITY DEPENDENCE
- Mass and rapidity dependence studied in only 2 bins of M_{tt} and Δy – results are somewhat ambiguous
 - Large mass dependence at CDF, no significant effect at D0
 - Consistent at $\sim 1.7\sigma$ level
 - CDF observes large rapidity dependence, smaller at D0
 - Consistent within 1σ

<table>
<thead>
<tr>
<th>Background-Subtracted A_{FB} (%)</th>
<th>D0 Lep+Jet, 5.4 fb$^{-1}$</th>
<th>CDF Lep+Jet, 5.3 fb$^{-1}$</th>
<th>Informal Combination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{tt} < 450$ GeV/c^2</td>
<td>7.6 ± 4.8</td>
<td>−2.2 ± 4.3</td>
<td>2.1 ± 3.2*</td>
</tr>
<tr>
<td>$M_{tt} \geq 450$ GeV/c^2</td>
<td>11.5 ± 6.0</td>
<td>26.6 ± 6.2</td>
<td>18.6 ± 4.3*</td>
</tr>
<tr>
<td>$</td>
<td>\Delta y</td>
<td>< 1.0$</td>
<td>6.1 ± 4.1</td>
</tr>
<tr>
<td>$</td>
<td>\Delta y</td>
<td>\geq 1.0$</td>
<td>21.3 ± 9.7</td>
</tr>
</tbody>
</table>

*NOT an official result – just a simple weighted average of the D0 and CDF lepton+jets results
Theoretical Responses to a Large A_{FB}

- Some deviation from SM in 5 fb\(^{-1}\) results
 - Largest (CDF, high mass) > 3 σ
 - Much theoretical work followed
- Do we need better understanding of SM?
 - Refined calculations
 - EW corrections
 - NNLO calculations in progress
 - SM prediction increased, but not yet enough to match observed data
- Could it be new physics?
 - Two main classes of models:
 - s-channel mediator (e.g., axigluon)
 - t-channel flavor changing mediator (e.g., W', Z')
 - Mass/rapidity dependence can untangle new physics from QCD
Overview of the CDF Analysis

- Full CDF dataset (8.7 fb\(^{-1}\) with full detector working)
 - New data stream also added
 - Lepton+jets selection: 1 lepton, \(\geq 4\) jets (\(\geq 1\) \(b\)-tag), large missing \(E_T\)
 - 2498 candidate events – doubles the 5.3 fb\(^{-1}\) dataset (1260)
 - 505 predicted background events

- Events reconstructed with \(\chi^2\)-based kinematic fit
 - Lepton charge fixes the charge of all final state objects

- NLO generator POWHEG for signal modeling
 - 5.3 fb\(^{-1}\) analysis used PYTHIA (LO)

- New regularized unfolding method for correction to parton level
THREE MEASUREMENT LEVELS

- A_{FB} at three levels of correction (focus on 2 and 3):
 1. Reconstruction (Raw Data) Level:
 - Observed data, no corrections
 - Includes background contributions
 - *NLO A_{FB} (with backgrounds): 2.6%
 2. Background Subtracted (Signal) Level:
 - Remove predicted backgrounds
 - Pure top sample, but includes selection and reconstruction effects
 - *NLO A_{FB}: 3.3%
 3. Parton Level:
 - Correct for acceptances and reconstruction
 - Direct comparison to theory models
 - *NLO A_{FB}: 6.6%

*NLO predictions in this talk always include flat 26% correction to POWHEG for electroweak contributions
RECONSTRUCTION LEVEL Δy IN 8.7 fb$^{-1}$

CDF Run II Preliminary $L = 8.7$ fb$^{-1}$

- **I+Jets Data**
 - $A_{FB} = 0.066 \pm 0.02$

- **NLO (QCD + EW) $t\bar{t}$ + Bkg**
 - $A_{FB} = 0.026$

- **Bkg**
 - $A_{FB} = -0.0066$

- **Blue: background prediction**
- **Green: NLO POWHEG signal**
- **Stacked with backgrounds**
- **Black: observed data**

- **NLO signal plus backgrounds predict $A_{FB} = 2.6%$**
 - Signal prediction includes reweighting for electroweak contributions

- **Observed inclusive asymmetry is (6.6 ± 2.0)%**
 - $> 3 \sigma$ from no asymmetry
REMOMING THE BACKGROUNDS

- ~20% of selected sample is composed of events from background sources
 - Dominant sources: W+jets, QCD multi-jet events
 - Backgrounds have small inherent asymmetry, but dilute any A_{FB} in top events
- Subtract predicted backgrounds from the observed data to yield the pure top signal
Observed asymmetry after background subtraction is $(8.5 \pm 2.5)\%$

- NLO POWHEG predicts 3.3\%
 - Observation is 3.4σ from no A_{FB}, 2.1σ from prediction
RAPIDITY-DEPENDENT DIFFERENTIAL A_{FB}

Observed \(A_{FB} \) as a function of \(|\Delta y|\) well-described by linear ansatz

\[
A_{FB}(|\Delta y|) = \frac{N(|\Delta y|) - N(-|\Delta y|)}{N(|\Delta y|) + N(-|\Delta y|)}
\]

- **Observed \(A_{FB} \) as a function of \(|\Delta y|\) well-described by linear ansatz**
 - Determine best-fit slope — easily compare data to prediction
 - \(\chi^2 / \text{d.o.f.} = 1.0 \), significant non-zero slope
 - Slope is not a specific theoretical parameter
 - Linear fit motivated by approximate linearity of SM prediction
Mass-Dependent Differential A_{FB}

CDF Run II Preliminary $L = 8.7 \text{ fb}^{-1}$

$A_{FB}(M_{tt}) = \frac{N_F(M_{tt}) - N_B(M_{tt})}{N_F(M_{tt}) + N_B(M_{tt})}$

- Determine A_{FB} as a function of M_{tt} with finer binning
- Again well-described by linear ansatz
 - Determine best-fit slope for data and prediction
 - χ^2/d.o.f. = 0.3
Determining the Significance

- How significant is the discrepancy between the POWHEG SM prediction and observed differential A_{FB}?
 - Evaluate at background-subtracted level – avoid complications from correction procedure
- Quantify by comparing best-fit slopes to find p-value
- Perform simulated experiments with Poisson fluctuations on nominal POWHEG prediction
 - No theory uncertainty included – compare specifically to the NLO POWHEG calculation (with EW corrections)
- p-value: fraction of experiments where $\alpha_{NLO} \geq \alpha_{data}$
P-VALUES FOR DATA SLOPES VS. PREDICTION

CDF Run II Preliminary $L = 8.7 \text{ fb}^{-1}$

$\alpha (M_{tt})$ p-value: 6.46×10^{-3}

$\alpha (\Delta y)$ p-value: 8.92×10^{-3}
BACKGROUND-SUBTRACTED LEPTONIC A_{FB}

- Lepton allows independent measurement of the asymmetry
 - Direction of motion correlated with parent top quark
 - Measurement of lepton direction does not require event reconstruction

- Measure asymmetry in \(q \times \eta_{lep} \)

Table: Predicted vs. Observed

<table>
<thead>
<tr>
<th>Sample</th>
<th>Predicted (A_{FB}) (%)</th>
<th>Observed (A_{FB}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive</td>
<td>1.6</td>
<td>6.6 ± 2.5</td>
</tr>
<tr>
<td>(M_{tt} < 450) GeV/c^2</td>
<td>0.7</td>
<td>3.7 ± 3.1</td>
</tr>
<tr>
<td>(M_{tt} \geq 450) GeV/c^2</td>
<td>3.2</td>
<td>11.6 ± 4.2</td>
</tr>
</tbody>
</table>
CORRECTING TO THE PARTON LEVEL

- Background-subtracted results use pure top sample
- Data cannot be directly compared to theoretical predictions
 - Limited acceptance
 - Finite detector resolution
 - Need full detector simulation to compare theory to background-subtracted data
- Correct to parton level in two steps:
 1. Unsmearing Correction (bin migration)
 - Regularized singular value decomposition unfolding algorithm
 - ROOUNFOLD software package
 2. Acceptance Correction
 - Multiplicative correction to each bin based on POWHEG
- Test by correcting distributions created from SM and various BSM Monte Carlo samples
- Final results: differential cross-section and parton-level A_{FB} measurement
Parton-level Δy distribution normalized to $\sigma_{\text{tot}} = 7.4$ pb

- Result is $d\sigma/d(\Delta y)$

- Measured inclusive asymmetry is $(16.2 \pm 4.7)\%$
 - 3.4σ from null asymmetry
 - NLO prediction: 6.6%
Linear ansatz applies also to parton level A_{FB} as a function of $|\Delta y|$.

- $\chi^2/\text{d.o.f.} = 0.3$

After correction, bins are correlated – use full covariance matrix in performing the χ^2 fit.
Mass-Dependent Differential \(A_{FB} \)

- Parton level \(A_{FB} \) vs. \(M_{tt} \) well-described by a line with slope larger than NLO prediction
 - \(\chi^2 \)/d.o.f = 0.1
CONCLUSIONS

- CDF has updated the top pair A_{FB} measurement using the full dataset
- Inclusive A_{FB} remains significant
 - Parton level $A_{FB} = (16.2 \pm 4.7)\%$
 - 3.4σ from no asymmetry, 2σ from NLO POWHEG prediction
- Mass and rapidity dependence from 5.3 fb$^{-1}$ confirmed in full dataset at background-subtracted and parton levels
 - Behavior is well-described by a linear ansatz
 - Slopes are non-zero at $>3 \sigma$ level
 - p-values (after background subtraction) relative to POWHEG of 6.46×10^{-3} for A_{FB} vs. M_{tt} and 8.92×10^{-3} for A_{FB} vs. $|\Delta y|$
- CDF has several additional A_{FB} analyses coming soon
 - Exploring new kinematic variables in the lepton+jets analysis
 - Analyzing the full CDF dataset in the dilepton channel
 - Measuring A_{FB} in bottom-antibottom pairs
Backup Slides
SAMPLE COMPOSITION

- Top signal modeled with NLO POWHEG
- Electroweak backgrounds from Monte Carlo
- W+jets shape from Monte Carlo
- QCD shape from data
- W+jets and QCD normalizations determined from fit to the missing E_T spectrum
- 505 predicted background events
 - S:B ratio ~4:1

<table>
<thead>
<tr>
<th>Source</th>
<th>Predicted Event Count, 8.7 fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>W + Heavy Flavor</td>
<td>241 ± 78</td>
</tr>
<tr>
<td>Non-W (QCD)</td>
<td>98 ± 51</td>
</tr>
<tr>
<td>W + Light Flavor</td>
<td>96 ± 29</td>
</tr>
<tr>
<td>Single Top</td>
<td>33 ± 2</td>
</tr>
<tr>
<td>Diboson</td>
<td>19 ± 3</td>
</tr>
<tr>
<td>Z + Jets</td>
<td>18 ± 2</td>
</tr>
<tr>
<td>Total Background</td>
<td>505 ± 123</td>
</tr>
<tr>
<td>Top Pairs (7.4 pb)</td>
<td>2037 ± 277</td>
</tr>
<tr>
<td>Total Prediction</td>
<td>2542 ± 303</td>
</tr>
<tr>
<td>Data</td>
<td>2498</td>
</tr>
</tbody>
</table>
RECONSTRUCTING TOP PAIR EVENTS

- Match observed jets to top decay products: χ^2-based kinematic fit to top-antitop hypothesis
 - $M_t = 172.5$ GeV/c^2
 - $M_W = 80.4$ GeV/c^2

$$\chi^2 = \sum_{i=l,\text{jets}} \frac{(p_{T,i,\text{fit}} - p_{T,i,\text{meas}})^2}{\sigma_i} + \sum_{j=x,y} \frac{(p_{j,\text{Unc.Energy,fit}} - p_{j,\text{Unc.Energy,meas}})^2}{\sigma_j}$$

$$+ \frac{(M_{jj} - M_W)^2}{\Gamma_W^2} + \frac{(M_{lv} - M_W)^2}{\Gamma_W^2} + \frac{(M_{bjj} - M_t)^2}{\Gamma_t^2} + \frac{(M_{blv} - M_t)^2}{\Gamma_t^2}$$

- Four leading jets enter the fit
- Measured energies float within uncertainties
- Choose solution with the smallest χ^2
- Determine top and antitop four-vectors from decay product momenta
- Lepton charge used to assign the charge of all final state objects
The \(\chi^2 \) and \(M_{tt} \) Distributions

- \(M_{tt} \) and \(\chi^2 \) of the kinematic reconstruction
 - Sensitive checks of reconstruction method
- Well-modeled by signal + background prediction
 - Even for events with large \(\chi^2 \)

Graphs: CDF Run II Preliminary \(L = 8.7 \text{ fb}^{-1} \)

- **Blue**: background prediction
- **Green**: NLO POWHEG signal
 - Stacked with backgrounds
- **Black**: observed data
The Top Pair P_T

- Transverse momentum of top pair is a good check of background model, event reconstruction
 - Sensitive to soft jets
 - Correlated with A_{FB}
 - ISR/FSR give negative contribution to asymmetry

- Good agreement between data and NLO MC + background prediction
THE TOP PAIR P_T

- D0 5.4 fb^{-1} analysis observed mis-modeling at low P_T (top)
- CDF finds agreement with NLO predictions of POWHEG and MC@NLO (bottom)
Check background prediction in background-dominated region

Events pass all selection requirements except they do not have any b-tagged jets

Good agreement between data and expectation
Reconstruction Level Δy at High and Low Mass

- Δy distribution for M_{tt} above and below 450 GeV/c2
 - Cut-off defined in 5.3 fb$^{-1}$ analysis
- Low mass consistent with expectation
- Large asymmetry at high mass: $(15.5 \pm 3.4\%)$
 - 4.5σ from no asymmetry, 3.3σ from prediction
 - Consistent in events with positive $(15.5 \pm 4.8\%)$ and negative $(15.6 \pm 4.8\%)$ leptons
Linear ansatz holds even at reconstruction level before any background subtraction

- χ^2/d.o.f. = 1.1
Reconstruction Level Mass Dependence

CDF Run II Preliminary $L = 8.7 \text{ fb}^{-1}$

- A_{FB} as a function of M_{tt} at reconstruction level also well-described by linear ansatz
 - χ^2/d.o.f. = 0.2

\[\alpha_{M_{tt}} = (8.9 \pm 2.3) \times 10^{-4} \]

\[\alpha_{M_{tt}} = 2.2 \times 10^{-4} \]
Could the asymmetry result from a temporary detector effect, mis-calibration, etc.?

- Measure A_{FB} as a function of the total number of observed events in the data sample
- A_{FB} constant within uncertainties through the entire course of Run II data taking
Background-Subtracted Δy at High and Low Mass

- Δy distribution for M_{tt} above and below 450 GeV/c2
 - Cut-off defined in 5.3 fb$^{-1}$ analysis
- Low mass distribution consistent with NLO prediction
- The large asymmetry predominantly arises at high mass – (19.8 ± 4.3)%
 - 4.6 σ from no asymmetry
 - NLO POWHEG predicts 6.2% at high mass
COMPARISON TO PREVIOUS BACKGROUND-SUBTRACTED MASS-DEPENDENT RESULTS

<table>
<thead>
<tr>
<th>Background-Subtracted A_{FB} (%)</th>
<th>D0 Lep+Jet, 5.4 fb$^{-1}$</th>
<th>CDF Lep+Jet, 5.3 fb$^{-1}$</th>
<th>Informal 5 fb$^{-1}$ Combination*</th>
<th>CDF Lep+Jet, 8.7 fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{tt} < 450$ GeV/c2</td>
<td>7.6 ± 4.8</td>
<td>−2.2 ± 4.3</td>
<td>2.1 ± 3.2*</td>
<td>2.5 ± 3.1</td>
</tr>
<tr>
<td>$M_{tt} \geq 450$ GeV/c2</td>
<td>11.5 ± 6.0</td>
<td>26.6 ± 6.2</td>
<td>18.6 ± 4.3*</td>
<td>19.8 ± 4.3</td>
</tr>
</tbody>
</table>

- Two-bin mass dependence statistically consistent among the D0 measurement and both CDF results
 - Very good agreement of new CDF data with simple weighted average of previous CDF and D0 results

*NOT an official result – just a simple weighted average of the D0 and CDF lepton+jets results
THE INVARIANT MASS DISTRIBUTION FOR FORWARD AND BACKWARD EVENTS

- Compare the M_{tt} distributions for events with positive and negative Δy
 - Approximately equal at lowest masses, but excess of forward events at higher mass
P-VALUE DETERMINATION

- Plots show slopes for A_{FB} vs. M_{tt} (top) and A_{FB} vs. Δy (bottom) measured from fluctuations on NLO prediction at the background-subtracted level.

- p-value: fraction of experiments in which $\alpha_{NLO} \geq \alpha_{Data}$
SYSTEMATIC UNCERTAINTIES

- Correction procedure introduces systematic uncertainties related to the signal model, in addition to the background uncertainties discussed previously.
 - Total is small compared to the statistical uncertainty

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background Shape</td>
<td>1.4</td>
</tr>
<tr>
<td>Background Normalization</td>
<td>1.1</td>
</tr>
<tr>
<td>Parton Showering</td>
<td>1.0</td>
</tr>
<tr>
<td>Jet Energy Scale</td>
<td>0.5</td>
</tr>
<tr>
<td>Initial/Final State Radiation</td>
<td>0.5</td>
</tr>
<tr>
<td>Color Reconnection</td>
<td>0.1</td>
</tr>
<tr>
<td>Parton Distribution Functions</td>
<td>0.1</td>
</tr>
<tr>
<td>Correction Procedure</td>
<td>0.3</td>
</tr>
<tr>
<td>Total Systematic Uncertainty</td>
<td>2.2</td>
</tr>
<tr>
<td>Statistical Uncertainty</td>
<td>4.1</td>
</tr>
<tr>
<td>Total Uncertainty</td>
<td>4.7</td>
</tr>
</tbody>
</table>
Mass Distributions for Forward and Backward Events

- Parton-level M_{tt} distributions for events with positive and negative Δy
- These distributions are then combined to find the differential asymmetry
Comparison to the 5 fb\(^{-1}\) Results

<table>
<thead>
<tr>
<th>Selection</th>
<th>Prediction</th>
<th>CDF, 5.3 fb(^{-1})</th>
<th>D0, 5.4 fb(^{-1})</th>
<th>CDF, 8.7 fb(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive</td>
<td>6.6</td>
<td>15.8 ± 7.4</td>
<td>19.6 ± 6.5</td>
<td>16.2 ± 4.7</td>
</tr>
<tr>
<td>(M_{tt} < 450) GeV/c(^2)</td>
<td>4.7</td>
<td>−11.6 ± 15.3</td>
<td>7.8 ± 4.8 (Bkg. Subtracted)</td>
<td>7.8 ± 5.4</td>
</tr>
<tr>
<td>(M_{tt} \geq 450) GeV/c(^2)</td>
<td>10.0</td>
<td>47.5 ± 11.2</td>
<td>11.5 ± 6.0 (Bkg. Subtracted)</td>
<td>29.6 ± 6.7</td>
</tr>
<tr>
<td>(</td>
<td>\Delta y</td>
<td>< 1.0)</td>
<td>4.3</td>
<td>2.6 ± 11.8</td>
</tr>
<tr>
<td>(</td>
<td>\Delta y</td>
<td>\geq 1.0)</td>
<td>13.9</td>
<td>61.1 ± 25.6</td>
</tr>
</tbody>
</table>

- Parton level asymmetries in two bins of \(M_{tt}\) and \(|\Delta y|\) for direct comparison to previous results
The Detector Response Matrix

- Plot shows detector response matrix used for regularized unfold of Δy
 - Box sizes proportional to bin contents
 - Does not include acceptances (acceptance matrix is diagonal, simply a multiplicative correction to each bin)
- Predominantly diagonal (good resolution) and symmetric (no bias for forward or backward events)
Bias Tests

- Check the correction procedure in simulated experiments based on Monte Carlo samples
- Plots show average corrected results compared to true MC distributions in POWHEG (left) and an example new physics (axigluon) sample (right)
The Leptonic Asymmetry

- Could A_{FB} be an artifact of the reconstruction?
- Lepton allows independent measurement of the asymmetry
 - Direction of motion correlated with parent top quark
 - Measurement of lepton direction does not require event reconstruction
- Find asymmetry in $q \times \eta_{lep}$
- A_{FB} exceeds signal + background prediction
 - Significance similar to that of $\Delta y A_{FB}$

Sample	Predicted A_{FB} (%)	Observed A_{FB} (%)
Inclusive | 2.5 | 6.5 ± 2.0
$M_{tt} < 450$ GeV/c2 | 2.3 | 4.7 ± 2.5
$M_{tt} \geq 450$ GeV/c2 | 3.3 | 10.1 ± 3.4