Implications of an Enhanced Diphoton Decay Width of the Higgs

Carlos E.M. Wagner

KICP and EFI, Univ. of Chicago

HEP Division
Argonne National Lab

Higgs Workshop, University of Michigan, Ann Arbor, April 16, 2012
Based on the following works:

M. Carena, I. Low and C. E. M. Wagner, to appear

P. Schwaller, A. Joglekar and C. E. M. Wagner, to appear
We are leaving in exciting times:

LHC and Tevatron Experiments are starting to test the SM Higgs above the LEP limit, leading to interesting exclusion bounds on its mass.

Strong limits are being set on a moderately heavy SM-like Higgs.

A light SM-like Higgs, is beginning to be probed by present data.
Allowed region overlaps with the region preferred by SM Precision Electroweak Data

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \alpha_{\text{had}}^{(5)}(m_Z)$</td>
<td>0.02758 ± 0.00035 0.02767</td>
</tr>
<tr>
<td>m_Z [GeV]</td>
<td>91.1875 ± 0.0021 91.1874</td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.4952 ± 0.0023 2.4959</td>
</tr>
<tr>
<td>σ_0^had [nb]</td>
<td>41.540 ± 0.037 41.478</td>
</tr>
<tr>
<td>R_l</td>
<td>20.767 ± 0.025 20.742</td>
</tr>
<tr>
<td>$A_{0,l}^\text{fb}$</td>
<td>0.01714 ± 0.00095 0.01643</td>
</tr>
<tr>
<td>$A_l(P_\tau)$</td>
<td>0.1465 ± 0.0032 0.1480</td>
</tr>
<tr>
<td>R_b</td>
<td>0.21629 ± 0.00066 0.21579</td>
</tr>
<tr>
<td>R_c</td>
<td>0.1721 ± 0.0030 0.1723</td>
</tr>
<tr>
<td>$A_{0,b}^\text{fb}$</td>
<td>0.0992 ± 0.0016 0.1038</td>
</tr>
<tr>
<td>$A_{0,c}^\text{fb}$</td>
<td>0.0707 ± 0.0035 0.0742</td>
</tr>
<tr>
<td>A_b</td>
<td>0.923 ± 0.020 0.935</td>
</tr>
<tr>
<td>A_c</td>
<td>0.670 ± 0.027 0.668</td>
</tr>
<tr>
<td>A_l(SLD)</td>
<td>0.1513 ± 0.0021 0.1480</td>
</tr>
<tr>
<td>$\sin^2\theta_{\text{eff}}(Q_{fb})$</td>
<td>0.2324 ± 0.0012 0.2314</td>
</tr>
<tr>
<td>m_W [GeV]</td>
<td>80.399 ± 0.025 80.378</td>
</tr>
<tr>
<td>Γ_W [GeV]</td>
<td>2.098 ± 0.048 2.092</td>
</tr>
<tr>
<td>m_t [GeV]</td>
<td>173.1 ± 1.3 173.2</td>
</tr>
</tbody>
</table>
Allowed region consistent with extrapolation of the SM description until very high energies

LHC exclusion at >95% CL

- Perturbativity bound
- Stability bound
- Finite-T metastability bound
- Zero-T metastability bound

Shown are 1σ error bands, w/o theoretical errors

J. Elias Miro et al’11
H. Murayama’11
C. Cheung et al’12
Let’s recall how the limits are derived: they are derived from a combination of 8 different channels for CMS and 7 channels for ATLAS.

Higgs Limits at the LHC obtained by combination of multiple channels

ATLAS Preliminary $\int L \, dt \sim 1.0-2.3 \text{ fb}^{-1}$, $\sqrt{s} = 7 \text{ TeV}$ CLs limits

CMS Preliminary, $\sqrt{s} = 7 \text{ TeV}$
If the Higgs is SM-like, mass range between 115 GeV and 130 GeV is preferred both from direct searches as well as from indirect precision tests. Interesting excess in the region of Higgs masses close to 125 GeV.
The photon rate looks somewhat high at this point, but more data are necessary in order to reach a robust conclusion on this relevant issue.
What would be the Implications of an Enhanced Diphoton Production Rate?
Main Higgs Production channels at Hadron Colliders

The event rate depends on three quantities

\[B \sigma (p\bar{p} \rightarrow h \rightarrow X_{SM}) \equiv \sigma (p\bar{p} \rightarrow h) \frac{\Gamma (h \rightarrow X_{SM})}{\Gamma_{\text{total}}} \]

The three of them may be affected by the presence of new physics. If the SM rate is modified, of course, the total width is modified as well. This is particularly true for the WW rate at high Higgs masses and bb at low Higgs masses. In this talk, we shall concentrate on the Branching Ratio of the Higgs decaying to diphotons.
Higgs Diphoton Decay Width in the SM

\[\Gamma(h \to \gamma\gamma) = \frac{G_F\alpha^2m_h^3}{128\sqrt{2}\pi^3} \left| A_1(\tau_w) + N_c Q_t^2 A_{1/2}(\tau_t) \right|^2 \]

\[\tau_i \equiv \frac{4m_i^2}{m_h^2} \]

A. Djouadi’05

For particles much heavier than the Higgs boson

\[A_1 \to -7, \quad N_c Q_t^2 A_{1/2} \to \frac{4}{3} N_c Q_t^2 \]

In the SM, for a Higgs of mass about 125 GeV

\[m_h = 125 \text{ GeV} : \quad A_1 = -8.32, \quad N_c Q_t^2 A_{1/2} = 1.84 \]

Dominant contribution from W loops. Top particles suppress by 40 percent the W loop contribution. One can rewrite the above expression in terms of the couplings of the particles to the Higgs as:

\[\Gamma(h \to \gamma\gamma) = \frac{\alpha^2m_h^3}{1024\pi^3} \left| \frac{g_{WW}}{m_W^2} A_1(\tau_w) + \frac{2g_{tt}}{m_t} N_c Q_t^2 A_{1/2}(\tau_t) + N_c Q_s^2 \frac{g_{SS}}{m_S^2} A_0(\tau_S) \right|^2 \]
Inspection of the above expressions reveals that the contributions of particles heavier than the Higgs boson may be rewritten as

\[\mathcal{L}_{h\gamma\gamma} = -\frac{\alpha}{16\pi} \frac{h}{v} \left[\sum_i b_i \frac{\partial}{\partial \log v} \log m_i(v) \right] F_{\mu\nu}F^{\mu\nu} \]

where in the Standard Model

\[\frac{g_{hWW}}{m_W^2} = \frac{\partial}{\partial v} \log m_W^2(v) , \quad \frac{2g_{hti}}{m_t} = \frac{\partial}{\partial v} \log m_t^2(v) \]

This generalizes for the case of fermions with contributions to their masses independent of the Higgs field. The couplings come from the vertex and the inverse dependence on the masses from the necessary chirality flip (for fermions) and the integral functions.

\[\mathcal{L}_{h\gamma\gamma} = -\frac{\alpha}{16\pi} \frac{h}{v} \left[\sum_i b_i \frac{\partial}{\partial \log v} \log \left(\det \mathcal{M}_i \cdot \mathcal{M}_i \right) \right] F_{\mu\nu}F^{\mu\nu} \]

Ellis, Gaillard, Nanopoulos'76
Falkowski'07

For bosons one simply replaces the square of the mass matrix by the mass matrix of the square masses! Since the Higgs is light and charged particles are constrained by LEP to be of mass of order of or heavier than the Higgs, this expression provides a good visualization of when particles could lead to an enhanced diphoton rate!
A new W' Gauge Boson

The simplest way of enhancing the rate, although strongly constrained phenomenologically, is a new charged gauge boson with mass:

\[m_{W'}(v)^2 = m_W^2 + c_{W'} m_W^2, \quad c_{W'} > 0 \]

A. A new boson \[W' \] with mass \[m_{W'} \] from the production of the Higgs boson. In particular, the one-loop quadratic divergence will both interfere destructively with the SM top quark contribution.

Next we consider specific examples where the model.

This expression allows for the possibility that there could be mass mixing in the top quark contribution, which comes after electroweak symmetry breaking, which occurs in many theories beyond the standard model.

A scalar worsening the quadratic divergence and a fermion canceling the one-loop boson loop interferes constructively with the SM top quark contribution.

\[W' \rightarrow -N \]

Sign of their presence: Only particles that lead to enhanced \(W'\gamma \) rate.

Relatively light gauge bosons with couplings significantly larger than the SM ones are required. Coupling of quarks and leptons would rule out these gauge bosons.

A “parity” could be imposed, disallowing linear couplings of these gauge bosons. Precision measurements would still demand new physics for these bosons to be allowed. Sign of their presence: Only particles that lead to enhanced \(W'\gamma \) rate.

M. Carena, L. Low, C. W. '12
A New Scalar

New charged scalars, with significant couplings to the Higgs may also contribute to the loop (See S. Gori and N. Shah talks)

\[m_S^2 = m_{S0}^2 + \frac{1}{2} c_S v^2 \]

For a single scalar, if one does the ratio of the diphoton width to the SM one, one gets

\[R_{\gamma\gamma} = \left| 1 + \frac{c_S}{2} \frac{v^2}{m_S^2} \frac{A_0(\tau_S)}{A_1(\tau_w) + N c Q_i^2 A_{1/2}(\tau_i)} \right|^2 \]

Negative values of the effective coupling \(c_S \) are necessary

Very large negative couplings may induce vacuum instability

Enhancements of order fifty percent to factor 2 can be obtained for light particles.
Two Scalars with Mixing

Similar to light stau scenario,

\[
\mathcal{M}^2_S = \begin{pmatrix}
\tilde{m}_L(v)^2 & \frac{1}{\sqrt{2}} v X_S \\
\frac{1}{\sqrt{2}} v X_S & \tilde{m}_R(v)^2
\end{pmatrix}
\]

\[
\frac{\partial \log(\text{Det} M^2_S)}{\partial v} \approx -\frac{X_S^2 v}{m^2_{S_1} m^2_{S_2}}
\]

Large mixing and small value of the lightest scalar mass preferred

Lightest scalar, with mass below 200 GeV gives the dominant contribution in this case.
M. Carena, I. Low, C.W. ’12
Light staus, with large mixing, may induce a relevant enhancement of the branching ratio of the decay of a the SM-like Higgs into two photons, without affecting other decays.

Dashed lines represent the contours of equal stau mass.

N. Shah’s talk

Monday, April 16, 2012
Let us parametrize the mass by

\[m_f = m_{f0} + c_f \frac{v^2}{2\Lambda} \]

Negative effective couplings are necessary (as obtained from the integration of heavy fermion)

\[R_{\gamma\gamma} = \left| 1 + c_f \frac{v^2}{\Lambda m_f} \frac{A_{1/2}(\tau_f)}{A_1(\tau_w) + N_c Q_f^2 A_{1/2}(\tau_t)} \right|^2 \]

M. Carena, I. Low, C.W.'12

Again, large effective couplings and light fermions necessary
Vector pair of Doublets and Singlets

One can make the contribution of the extra fermions explicit.

\[m_{\ell_4}(v) = m_{\ell_40} + c_{\ell_4} \frac{v^2}{2\Lambda}, \quad m_{L_4}(v) = m_{L_40} + c_{L_4} \frac{v^2}{2\Lambda} \]

\[
\begin{pmatrix}
\ell_4^c \\
L_4^c
\end{pmatrix}
= \begin{pmatrix}
m_{\ell_4}(v) & Y_f v \\
Y_f v & m_{L_4}(v)
\end{pmatrix}
\begin{pmatrix}
\ell_4 \\
L_4
\end{pmatrix}
\]

Lighter fermion contribution dominant

M. Carena, I. Low, C. W. '12

\[c_{\ell_4}=c_{L_4}=0, \ m_{\ell_4}=m_{L_4}=\Lambda=500 \text{ GeV} \]

\[c_{\ell_4}=c_{L_4}=0, \ m_{\ell_4}=m_{L_4}=\Lambda=500 \text{ GeV} \]
Model with a four generation leptons and their vector pairs.

Model can lead to the presence of Dark Matter and an enhanced diphoton rate

\[Y_C' = Y_C'' = 1 \]

\[Y_C' = Y_C'' = 0.8 \]

\[\mathcal{M} = \begin{pmatrix} Y_C' v & m_L \\ m_E & Y_C'' v \end{pmatrix} \]

\[\frac{\partial \log(\text{Det} M_f)}{\partial v} \approx -2 \frac{Y_C' Y_C'' v}{m_L m_E - Y_C' Y_C'' v^2} \]
Vacuum Stability Constraints

As happens with the top quark, once one adds further fermions with relevant couplings to the Higgs the quartic coupling becomes negative at high scales and new minima develop.

The scales at which the instabilities occur are somewhat small, meaning that an ultraviolet completion (SUSY ?) is necessary at small scales.
The Higgs $Z\gamma$ width

Correlation with Higgs Z photon width

There is an interesting correlation between this width and the diphoton one. However, the coupling of scalars and fermions to the Z gauge boson is proportional to

$$T_3 - Q \sin^2 \theta_W$$

which shows that unless the isospin quantum numbers are non-trivial the contribution is small, and in general due to gauge invariance of masses tends to be smaller than the e.m. contribution.

Here we show both for the models we analyze before.

M. Carena, I. Low, C.W. '12
and the same happens in the case of non-trivial mixing...

\[c_L = c_R = 0 \text{ and } m_L = m_R = 1 \text{ TeV} \]

\[c_L = c_R = 0 \text{ and } m_L = m_R = 500 \text{ GeV} \]

\[c_{l_4} = c_{L_4} = 0, \ m_{l_4} = m_{L_4} = \Lambda = 500 \text{ GeV} \]

\[c_{l_4} = c_{L_4} = 0, \ m_{l_4} = m_{L_4} = \Lambda = 1 \text{ TeV} \]

M. Carena, I. Low, C.W.'12
An exception to the rule would be the case of the W', which could couple relevantly to the Higgs and to the Z (if SU(2)$_w$ proceeds from diagonal group in SU(2)xSU(2)).

So, if one can measure this rate (for a discussion see the article by J. Gainer, W.Y. Keung, I. Low and P. Schwaller, arXiv:1112.1405) and determine an enhanced rate, similar to the diphoton one, a way of achieving this is by the presence of extra gauge bosons.
Conclusions

- Allowed SM-Higgs mass window at the LHC is consistent with precision measurements and with the extrapolation of SM description to very high energies.

- Higgs diphotons rate is somewhat large and it is interesting to study possible ways of enhancing it.

- We have studied the properties that should be fulfilled for this rate to be enhanced in the presence of scalar, vector and fermion particles.

- In general, for couplings of order one, particles of mass of order of a few hundred GeV are necessary.

- Scalars with negative couplings induced, for instance by large mixing effects lead to an enhanced photon rate. A well motivated example is the case of light staus!

- Vector light fermions, with explicit masses and couplings are another simple example. Large Yukawa coupling make the Higgs potential unstable.

- New light gauge bosons, if allowed phenomenologically, are another example, and the only one that can lead to an enhanced Z photon rate, with interesting phenomenological consequences.
Backup Slides
Higgs Mixing Cancellation

For large values of the Higgsino mass and (negative) stop mixing parameters, the off-diagonal element of the CP-even Higgs boson mass matrix is suppressed at low values of mA and tanbeta.

Specifically, this happens when

$$\frac{m_A^2}{M_Z^2} + \mathcal{O}(1) \simeq \tan \beta \frac{h_t^4 v^2}{16 \pi^2 M_Z^2} \frac{\mu}{M_S^2} \left(\frac{X_t^2}{6 M_S^2} - 1 \right)$$

This means that the mass eigenstate couples has reduced couplings to the down sector (taus and bottoms).

We shall take \(\mu = 2.5 M_S \) and \(X_t = -1.5 M_S \)

Carena, Mrenna, C.W. ’98
Carena, Heinemeyer, Weiglein, C.W. ’02
For large values of μ and A_t one can get suppression of the Higgs decay into bottom quarks and therefore enhancement of photon decay branching ratio

Carena, Mrenna, Wagner'99
Carena, Heinemeyer, Wagner, Weiglein'02

Such scenario, however, demands small values of the the CP-odd Higgs mass and large $\tan\beta$ and seems to be in conflict with non-standard Higgs boson searches

Carena, Draper, Liu, Wagner'11
Results did not change significantly with the datea update. Interestingly, the observed limit is somewhat weaker than the expected one.
More on the CP-even Higgs boson Mixing

The neutral CP-even Higgs mass matrix is approximately given by

\[\mathcal{M}_H^2 = \begin{bmatrix} m_A^2 \sin^2 \beta + M_Z^2 \cos^2 \beta & -(m_A^2 + M_Z^2) \sin \beta \cos \beta + \text{Loop}_{12} \\ -(m_A^2 + M_Z^2) \sin \beta \cos \beta + \text{Loop}_{12} & m_A^2 \cos^2 \beta + M_Z^2 \sin^2 \beta + \text{Loop}_{22} \end{bmatrix} \]

Mixing is very sensitive to off diagonal terms. The tree-level effects may be suppressed for moderate CP-odd Higgs masses. The dominant loop effects are given by

\[\text{Loop}_{12} = \frac{m_t^4}{16\pi^2 v^2 \sin^2 \beta} \frac{\mu A_t}{M_{\text{SUSY}}^2} \left[\frac{A_t \bar{A}_t}{M_{\text{SUSY}}^2} - 6 \right] + \frac{h_b^4 v^2}{16\pi^2} \sin^2 \beta \frac{\mu^3 A_b}{M_{\text{SUSY}}^4} + \frac{h_{\tau}^4 v^2}{48\pi^2} \sin^2 \beta \frac{\mu^3 A_\tau}{M_{\tau}^4} \]

From where the mixing angle, controlling the down fermion couplings is obtained

\[\sin(2\alpha) = \frac{2 (\mathcal{M}_H^2)_{12}}{\sqrt{\text{Tr}[\mathcal{M}_H^2]^2 - \det[\mathcal{M}_H^2]}} \]

\[hbb : \quad \frac{-\sin \alpha}{\cos \beta} \left[1 - \frac{\Delta h_b \tan \beta}{1 + \Delta h_b \tan \beta} \left(1 + \frac{1}{\tan \alpha \tan \beta} \right) \right] \]
Light Stau Effects on CP-even Higgs boson Mixing

Light staus not only affect the photon rate, but they can also induce relevant Higgs mixing effects. For instance, for

\[\tan \beta = 60, \ A_\tau \approx 1500 \ \text{GeV}, \ m_A \approx 700 \ \text{GeV}, \]

\[\mu = 1030 \ \text{GeV} \quad m_{e_3} = m_{L_3} = 340 \ \text{GeV} \]

\[m_{\tilde{\tau}_1} \approx 105 \ \text{GeV} \quad \text{and the mixing effects lead to a reduced bottom rate} \]

\[\text{BR}(h \rightarrow b\bar{b}) \approx 0.8 \text{BR}(h \rightarrow b\bar{b})_{\text{SM}} \]

The consequence is a further enhancement of the photon rate, together with an enhancement of all other gauge boson rates!

\[\frac{\sigma(gg \rightarrow h)}{\sigma(gg \rightarrow h)_{\text{SM}}} \frac{\text{BR}(h \rightarrow \gamma\gamma)}{\text{BR}(h \rightarrow \gamma\gamma)_{\text{SM}}} = 1.96 \]

\[\frac{\sigma(gg \rightarrow h)}{\sigma(gg \rightarrow h)_{\text{SM}}} \frac{\text{BR}(h \rightarrow VV^*)}{\text{BR}(h \rightarrow VV^*)_{\text{SM}}} = 1.25 \quad (V = W, Z) \]
Relatively light stops are naturally there, they can raise sufficiently the Higgs mass and are not ruled out by current data!

They should be a priority in LHC searches (in all possible stop decay channels)
Loop induced gluon and gamma widths

\[
\Gamma_{H \to gg} = \frac{G_\mu \alpha_s^2 m_H^3}{36\sqrt{2}\pi^3} \left| \frac{3}{4} \sum_f A_f(\tau_f) \right|^2
\]

\[
\Gamma_{H \to \gamma\gamma} = \frac{G_\mu \alpha^2 m_H^3}{128\sqrt{2}\pi^3} \left| \sum_f N_c Q_f^2 A_f(\tau_f) + A_W(\tau_W) \right|^2
\]

\[
A_f(\tau) = 2 \left[\tau + (\tau - 1)f(\tau) \right] \tau^{-2}
\]

\[
A_W(\tau) = - \left[2\tau^2 + 3\tau + 3(2\tau - 1)f(\tau) \right] \tau^{-2}
\]

\[
f(\tau) = \begin{cases}
\arcsin^2 \sqrt{\tau} & \tau \leq 1 \\
-\frac{1}{4} \left[\ln \frac{1 + \sqrt{1 - \tau^{-1}}}{1 - \sqrt{1 - \tau^{-1}} - i\pi} \right]^2 & \tau > 1
\end{cases}
\]
Suppression of $BR(h \rightarrow \gamma\gamma)$ leads to reduced reach at low values of the CP-odd Higgs mass.

Significance(σ) = 2/R

At sufficiently large luminosity $Vh, h \rightarrow bb$

WBF, $h \rightarrow \tau\tau$ are helpful in partially reducing the reach suppression.
Tevatron Reach

Conservative Estimate of 10 inverse fb combination of the two Experiments data

More than 2 standard deviations in most of the parameter space
The LHC sensitivity is somewhat complementary to that of the Tevatron, which becomes more sensitive for low Higgs masses.

Combination of data from experiments at the end of 2011 may be useful to find evidence for Higgs at an early stage.

Combination of 5 inverse fb LHC with 10 inverse fb Tevatron data:
Evidence of SM-like Higgs presence in almost all parameter space

M. Carena, P. Draper, T. Liu, C.W. ’11
Non-Standard Higgs Production

\[g_{Abb} \approx g_{Hbb} \approx \frac{m_b \tan \beta}{(1 + \Delta_b)v}, \quad g_{A\tau\tau} \approx g_{H\tau\tau} \approx \frac{m_\tau \tan \beta}{v} \]
Radiative Corrections to Flavor Conserving Higgs Couplings

- Couplings of down and up quark fermions to both Higgs fields arise after radiative corrections.

\[\mathcal{L} = \bar{d}_L (h_d H^0_1 + \Delta h_d H^0_2) d_R \]

- The radiatively induced coupling depends on ratios of supersymmetry breaking parameters

\[
\begin{align*}
 m_b &= h_b v_1 \left(1 + \frac{\Delta h_b}{h_b} \tan \beta \right) \\
 \frac{\Delta_b}{\tan \beta} &= \frac{\Delta h_b}{h_b} \approx \frac{2\alpha_s}{3\pi} \frac{\mu M_{\tilde{g}}}{\max(m_{\tilde{b}_i}^2, M_{\tilde{g}}^2)} + \frac{h_t^2}{16\pi^2} \frac{\mu A_t}{\max(m_{\tilde{t}_i}^2, \mu^2)} \\
 X_t &= A_t - \mu / \tan \beta \approx A_t \\
 \Delta_b &= (E_g + E_t h_t^2) \tan \beta
\end{align*}
\]

Resummation : Carena, Garcia, Nierste, C.W.'00
Searches for non-standard Higgs bosons

M. Carena, S. Heinemeyer, G. Weiglein, C. W, EJPC’06

• Searches at the Tevatron and the LHC are induced by production channels associated with the large bottom Yukawa coupling.

\[\sigma(b\bar{b}A) \times BR(A \rightarrow b\bar{b}) \simeq \sigma(b\bar{b}A)_{\text{SM}} \frac{\tan^2 \beta}{(1 + \Delta_b)^2} \times \frac{9}{(1 + \Delta_b)^2 + 9} \]

\[\sigma(b\bar{b}, gg \rightarrow A) \times BR(A \rightarrow \tau\tau) \simeq \sigma(b\bar{b}, gg \rightarrow A)_{\text{SM}} \frac{\tan^2 \beta}{(1 + \Delta_b)^2 + 9} \]

• There may be a strong dependence on the parameters in the bb search channel, which is strongly reduced in the tau tau mode.

Validity of this approximation confirmed by NLO computation by D. Noth and M. Spira, arXiv:0808.0087
Further work by Muhlleitner, Rzehak and Spira, 0812.3815
Complementarity with LHC non-standard Higgs searches

Non-standard Higgs searches allow to probe part of the parameter space for which standard reach is suppressed. An excess at small CP-odd Higgs masses would mean a weaker reach for SM-like Higgs boson.

M. Carena, P. Draper, T. Liu, C.W.’11

Non-standard Higgs searches allow to probe part of the parameter space for which standard reach is suppressed. An excess at small CP-odd Higgs masses would mean a weaker reach for SM-like Higgs boson.
Higgs Couplings to fermions

- At tree level, only one of the Higgs doublets couples to down-quarks and leptons, and the other couples to up quarks

\[\mathcal{L} = \bar{\Psi}_L^i (h_{d,ij} H_1 d_R + h_{u,ij} H_2 u_R) + h.c. \]

- Since the up and down quark sectors are diagonalized independently, the interactions remain flavor diagonal.

\[\bar{d}_L \hat{m}_d \left(\frac{h}{\nu} + \tan \beta \left(H + iA \right) \right) d_R + h.c. \]

- \(h \) is SM-like, while \(H \) and \(A \) have enhanced couplings to down quarks
Sensitivity to SM Higgs

CMS Preliminary: Oct 2010

Projected Significance of Observation

Higgs mass, m_H [GeV/c²]

Significance of Observation (σ)

1 fb⁻¹ @ 7 TeV
2 fb⁻¹ @ 7 TeV
5 fb⁻¹ @ 7 TeV
10 fb⁻¹ @ 7 TeV
1 fb⁻¹ @ 8 TeV
2 fb⁻¹ @ 8 TeV
5 fb⁻¹ @ 8 TeV
10 fb⁻¹ @ 8 TeV