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Motivation

Is there a relation between RG flows in field theory and geometric flows? Ricci flow
arose from the RG flow equations of the 2D nonlinear sigma model [Friedan], [Tseytlin].
Later it was a recognized as a useful tool in Mathematics [Hamilton], [Perelman], . . . .

A simple idea - study RG flows “across dimensions”. Put a D-dimensional field
theory on R1,d−1 ×MD−d . What is the effect of the RG flow on the geometry of
MD−d?

Hard to address in general via field theory methods. Study theories with maximal
supersymmetry, known holographic duals and with a topological twist on MD−d for
better calculational control.
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Introduction

A large class of interacting N = 2 SCFTs in four dimensions from the (2, 0) theory
on a Riemann surface Σg [Gaiotto-Moore-Neitzke], [Gaiotto].

The UV theory is well defined for any metric on Σg . The IR CFT has information
only about the complex structure deformations of Σg [Gaiotto].

What happens to the rest of the metric degrees of freedom of Σg? Gaiotto: “They
are washed out by the RG flow”. There are other possibilities - the flow exists only
for a specific choice of metric, other CFTs, massive theory, free theory... More
generally, what happens with the metric degrees of freedom of topologically
twisted supersymmetric field theories on curved manifolds?

The same picture emerges also for a large class of N = 1 SCFTs in four
dimensions [Benini-Tachikawa-Wecht], [Bah-Beem-NB-Wecht] as well as for the two-dimensional
SCFTs obtained from N = 4 SYM compactified on a Riemann surface
[Bershadsky-Johansen-Sadov-Vafa].

Direct RG analysis in the field theory is hard. For many twisted field theories there
is a useful holographic description [Maldacena-Núñez], [Gauntlett-Kim-Waldram], . . .
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Twists and branes
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Topological twists - I

A supersymmetric field theory on a generic curved manifold is no longer supersymmetric

∇µε = (∂µ + ωµ) ε 6= 0 .

To preserve supersymmetry perform a “topological twist”, i.e. use the R-symmetry to
cancel the space-time curvature [Witten]

A(R)
µ = −ωµ , → ∇̃µε =

(
∂µ + ωµ + A(R)

µ

)
ε = ∂µε = 0 .

Branes in string/M theory wrapping curved cycles preserve supersymmetry in this way
[Bershadsky-Sadov-Vafa] .

Here - topological twists of the (2, 0) theory in 6D and N = 4 SYM in 4D on a closed
Riemann surface of genus g Σg . Focus on g > 1 but this is not essential.
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Topological twists - II

Put the AN−1 (2, 0) theory on a Riemann surface Σg . Decompose the supercharges
under SO(1, 3)× SO(2)Σg × U(1)1 × U(1)2 ⊂ SO(1, 5)× SO(5)R

4⊗ 4→
[
(2, 1) 1

2

⊕ (1, 2)
− 1

2

]
⊗

[
( 1

2
, 1

2
)⊕ (− 1

2
, 1

2
)⊕ ( 1

2
,− 1

2
)⊕ (− 1

2
,− 1

2
)
]

and define
SO(2)′ = SO(2)Σg + aU(1)1 + bU(1)2 .

For a± b = ±1 there are 4 invariant supercharges (1/4 BPS). For b = 0 (or a = 0)
enhancement to 1/2 BPS, i.e. N = 2 in 4D.

These twists are realized in M-theory by N M5 branes wrapping a calibrated 2-cycle in a
Calabi-Yau manifold - CY2 for 1/2 BPS and CY3 for 1/4 BPS. [Maldacena-Núñez]
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Topological twists - III

One can also study N = 4 SYM on a Riemann surface in a similar fashion
[Bershadsky-Johansen-Sadov-Vafa], [Maldacena-Núñez] .

The supercharges decompose under
SO(1, 1)× SO(2)Σg × U(1)1 × U(1)2 × U(1)3 ⊂ SO(1, 3)× SO(6)R and the twist is
implemented by the choice

SO(2)′ = SO(2)Σg + a1U(1)1 + a2U(1)2 + a3U(1)3

For a1 ± a2 ± a3 = ±1 there are 2 invariant supercharges (1/8 BPS or (0, 2) susy in 2D).
For a3 = 0 enhancement to 1/4 BPS, i.e. (2, 2) in 2D. For a1 = a2 = 0 enhancement to
1/2 BPS, i.e. (4, 4) in 2D.

These twists are realized in IIB string theory by N D3 branes wrapping a calibrated
2-cycle in a Calabi-Yau manifold - CY2 for 1/2 BPS, CY3 for 1/4 BPS and CY4 for 1/8
BPS.
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M5 branes on Σg

The focus here will be on the 1/2 BPS twist of the 6D (2, 0) theory. The IR theory
should be conformal and preserve N = 2 supersymmetry [Klemm-Lerche-Mayr-Vafa-Warner], [Witten],

[Gaiotto].

The geometric realization of the twist is by wrapping N M5 branes on a holomorphic
2-cycle in a Calai-Yau two-fold. In the field theory limit the Calabi-Yau geometry is
non-compact

T ∗(Σg )

In other words two of the five transverse directions to the M5 branes are the normal
bundle to Σg and the other three are flat, realizing the SU(2) R-symmetry of the IR
theory.

Holography is one of the few available tools to study this theory. The brane realization
provides the necessary input information to construct the supergravity dual [Madacena-Núñez].
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Supergravity
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Setup - I

In the large N limit the AN−1 (2, 0) theory is dual to 11D supergravity on AdS7 × S4. To
study the twist we need only modes that lie within the maximal seven-dimensional
gauged supergravity [Maldacena-Núñez].

We need only the metric, two Abelian gauge fields, A
(i)
µ , and two neutral real scalars λi .

This is a consistent truncation of the maximal 7D theory [Liu-Minasian], [Cvetič, et al.].

The Ansatz for the supergravity fields is specified by the twist of the field theory and its
realization in terms of M5 branes

ds2 = e2f (−dt2 + dz2
1 + dz2

2 + dz2
3 ) + e2hdr 2 + e2g dx

2 + dy 2

y 2
,

A(i) = A(i)
x dx + A(i)

y dy + A(i)
r dr ,

λi = λi (x , y , r) , i = 1, 2 .
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Setup - II

In the UV the solutions have the following asymptotics

f → − log(r) , h→ − log(r) , g → − log(r) + g0(x , y) ,

λi → 0 , A(1)
µ + A(2)

µ = −ωµ .

The UV boundary is R1,3 × Σg with g0(x , y) the metric of the Riemann surface.

The Riemann surface is a quotient of H2 by Γ ∈ PSL(2,R). One can treat also S2 and
T 2 with the same approach.

In previous work there was no dependence on the coordinates of the Riemann surface
[Maldacena-Núñez]

For the 1/2 BPS twist set A(2) = 0 and 3λ1 + 2λ2 = 0 and define A ≡ A(1) and λ ≡ λ2.
One then derives the conditions for existence of supersymmetry.
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BPS equations

The set of BPS equations looks unwieldy

∂rλ+ 2m
5
eh−3λ − 2m

5
eh+2λ + 2

5
eh−2g+3λFxy = 0 ,

(∂x + i∂y )λ+ 2
5
e−h+3λ(Fyr − iFxr ) = 0 ,

∂r
(
f − 1

2
λ
)

+ m
2
eh+2λ = 0 ,

(∂x + i∂y )
(
f − 1

2
λ
)

= 0 ,

∂r (g + 2λ) + meh−3λ − m
2
eh+2λ = 0 ,

∂r∂y (g + 2λ) + 2mFrx = 0 ,

∂r∂x(g + 2λ)− 2mFry = 0 ,

(∂2
x + ∂2

y )(g + 2λ) + 1
y2 − 2mFxy = 0 .

The parameter m is the coupling of the gauged supergravity with RAdS ∼ m−1.
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BPS equations redux

However there is a drastic simplification!

Define

F (r) ≡ f (r , x , y)− 1
2
λ(r , x , y) , H(r) ≡ h(r , x , y) + 2λ(r , x , y) , ρ ≡ 2

m
F (r) ,

and

ϕ(ρ, x , y) ≡ 2g(ρ, x , y) + 4λ(ρ, x , y) , Φ(ρ, x , y) ≡ ϕ(ρ, x , y)− 2 log y .

Remarkably the BPS equations reduce to a single second order nonlinear elliptic PDE

(∂2
x + ∂2

y )Φ + ∂2
ρe

Φ = m2eΦ

All background fields are determined by Φ(ρ, x , y).

For m = 0 this is the SU(∞) Toda equation. It is well-known and integrable [Saveliev]. It
arises in various places in Physics - continuum limit of the Toda lattice, self-dual
gravitational solutions in 4D. It is crucial also in the analysis of 1/2 BPS solutions of
11D supergravity [Lin-Lunin-Maldacena]. The connection with our setup is unclear.
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Covariant flow equation

The flow equation can be rewritten covariantly as

∂2
ρgij − 2Rij −m2gij = 0

with gij the metric on an auxiliary Riemann surface ds2
Σ′ = eΦ(dx2 + dy 2). This is the

“right” metric for which the geometric flow happens.

Clearly this is very different from Ricci flow

∂τgij = −2Rij

However, it seems to have similar effects on the metric of the Riemann surface.
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IR analysis

Even when one allows for an arbitrary metric on the Riemann surface there is a unique
AdS5 IR solution. The Riemann surface has constant curvature

eg =
21/10

m
, eλ = 21/5 , e f = eh =

23/5

m

1

r
→ eϕIR =

2

m2

The constant curvature IR solution exhibits a local attractor behavior in the space of
metrics on Σg . Note that in the IR ρ→ −∞

ϕ = ϕIR + ε

∞∑
n=0

ϕ̃n(ρ)Y (n)(x , y) , ε� 1

Since the Riemann surface is compact and hyperbolic, we have

y 2(∂2
x + ∂2

y )Y (n)(x , y) = −µnY
(n)(x , y) , µ0 = 0 , µn > 0 , n > 1 .

ϕ̃n(ρ) = ane
α

(+)
n mρ + bne

α
(−)
n mρ ,

where

α(±)
n = ±

√
1 + 1

2
µn ,

We need to set bn = 0 for regularity.
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UV analysis

The UV expansion is (ζ ≡ e−
m
2
ρ and ζ → 0)

g(ζ, x , y) = − log(ζ) + g0(x , y) + g2(x , y)ζ2 + g4`(x , y)ζ4 log ζ + g4(x , y)ζ4 +O(ζ5)

λ(ζ, x , y) = λ2(x , y)ζ2 + λ4`(x , y)ζ4 log ζ + λ4(x , y)ζ4 +O(ζ5)

The scalar λ is dual to a dimension 4 operator in the (2, 0) CFT, λ2 is related to the
source and λ4 controls the vev. All other functions are fixed in terms of g0 and λ4.
Note that λ2 is controlled only by g0. The logarithmic terms vanish for g0 = const.

The metric on the Riemann surface is arbitrary in the UV!

Holographic RG flows are somewhat different from Wilsonian RG flows. We need to
choose the “correct” λ4 and λ2 to flow to the IR fixed point. Generic choices will lead to
a singular solution. This is a well-known feature of holographic RG flows
[Gubser-Freedman-Pilch-Warner], [Gubser] . . .
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Exact solution and linearized analysis - I

The exact solution of Maldacena-Núñez is for a constant negative curvature metric on
Σg

eϕMN =
e2mρ + 2emρ + C

m2emρ

Only for C = 0 the solution flows to the fixed point in the IR. For other values of C the
RG flow is to the Coulomb/Higgs branch, i.e. C is proportional to the vev of the
dimension 4 operator.

One can expand around the MN solution, linearize and solve for the small perturbations
(ε� 1)

λ = λMN(ρ) + ε
∑
n

`n(ρ)Y (n)(x , y) ,

g = gMN(ρ) + ε
∑
n

γn(ρ)Y (n)(x , y)

An analytic solution for `n(ρ) and γn(ρ) in terms of hypergeometric functions.
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Exact solution and linearized analysis - II

It is convenient to work with η = emρ. The UV is at η →∞ and the IR is at η → 0.

10 20 30 40 50
Η

1

2

3

4

-ΓnHΗL

20 40 60 80 100
Η

0.05

0.10

0.15

0.20

0.25

0.30

lnHΗL

This is the expected uniformizing behavior! Any (small) local perturbation of the metric
on Σg is damped and the constant curvature metric is an IR attractor.
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The proof

There is a rigorous proof that the uniformizing flows exist globally, i.e. for any metric on
the Riemann surface in the UV. The proof uses some technology from nonlinear
functional analysis and has the following structure:

Show that the space of solutions is a smooth (Banach) manifold.

Show that the boundary map (from the space of solutions to the space of boundary
conditions) is smooth and proper. This implies that it has a well defined degree.

Show that the degree is not zero.

Smooth maps with non-zero degree are surjective. Therefore for any initial
condition in the UV there is a flow to the prescribed IR solution with constant
curvature on Σg .
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Monotonicity of the area

The area of the auxiliary Riemann surface ds2
Σ′ = eΦ(dx2 + dy 2) decreases monotonically

along the flow.

This can be proven for all cases we studied. For the 1/2 BPS flow for M5 branes one
finds

A(ρ) =

∫
Σ′

eΦ = c1e
ρ + c2e

−ρ + 4πχ(Σ′)

For the solution which flows to the IR AdS5 vacuum c2 = 0 and A is clearly monotonic.

Maybe this is a general feature of all holographic RG flows “across dimension”?
Generalized holographic c-theorem?

Nikolay Bobev (SCGP) Holographic Uniformization 21 / 28



Other twists - I

A similar analysis can be performed for a 1/4 BPS twist of the (2, 0) theory as well
as twists of N = 4 SYM.

In all cases the gravitational description is given by a metric, an Abelian gauge
field and a single neutral scalar. The BPS equations always imply the equations of
motion and reduce to a single, second order, nonlinear elliptic PDE.

When there is an AdS IR vacuum it is unique, behaves as a local attractor in the
IR and the holographic RG flow uniformizes the metric on the Riemann surface.

For all cases we studied there is a rigorous proof for the existence of the
uniformizing solutions and the area of the auxiliary Riemann surfaces decreases
along the flow.
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Other twists - II

For the other flows we studied the nonlinear flow equations look less familiar.

1/4-BPS twist of the (2, 0) theory

∂2
ρe
ϕ + y 2(∂2

x + ∂2
y )ϕ+ 2− 3m2

2
eϕ − eϕ

(
1
2
(∂ρϕ)2 −m∂ρϕ

)
= 0

1/2-BPS twist of N = 4 SYM

∂2
ρe
ϕ + 9y 2(∂2

x + ∂2
y )ϕ+ 18− 6∂ρe

ϕ = 0

1/4-BPS twist of N = 4 SYM

∂2
ρe
ϕ + 9y 2(∂2

x + ∂2
y )ϕ+ 18− 18eϕ − 1

2
eϕ(∂ρϕ)2 = 0

Nikolay Bobev (SCGP) Holographic Uniformization 23 / 28



Outlook
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In progress

Study M5-branes on four-manifolds [Benini-NB]. The story is very rich and one can find
large classes of 2D SCFTs with (2, 2), (1, 2) and (0, 2) supersymmetry. One can use
anomalies to compute the exact central charges. Most progress can be made for the
case M4 = Σg1 × Σg2 . The geometry is a CY4 given by two complex line bundles over
M4. One finds a two-parameter family of (0, 2) SCFTs. This analysis led to a proof of
the 2D analog of a-maximization, i.e. c-extremization.

Look for a family of 3D SCFTs by studying M5-branes wrapped on three-manifolds
[Beem-NB]. There are two twists with N = 2 and N = 1 for which there is an IR SCFT
[Gauntlett-Kim-Waldram]. Recent work on the field theory [Dimofte-Gaiotto-Gukov], [Cecotti-Cordova-Vafa].

Is there “holographic geometrization” for 3-manifolds [Anderson-Beem-NB-Rastelli]?
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Future work

Study Riemann surfaces with punctures along the lines of Gaiotto-Maldacena.
There should be uniformizing holographic RG flows. This should be
straightforward but technically involved.

A similar picture should emerge for M2 branes wrapped on a Riemann surface.

Can these holographic flows teach us anything new about geometry/topology?
Can physics help with the familiar singularities of Ricci flow [Perelman], ...? String
theory is very good at teaching us how to understand/resolve some singularities -
geometric transition, enhançon,...
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Questions

This is a workshop...

Can one derive the NSVZ β-function from supersymmetric holographic RG flows?
Is there some analog for supersymmetric RG flows across dimension?

Is there some monotonic quantity for RG flows across dimension?

Formulate the holographic RG flow as an initial value problem? Holographic
analogue of Wilsonian RG flow? Recent attempts to address/revisit these
questions [Heemskerk-Polchinski], [Faulkner-Liu-Rangamani].

Any good criterion for distinguishing between physical and unphysical singularities
for general holographic RG flows? This should be some generalization of the ideas
of Gubser and Maldacena-Núñez.

Any useful notion of entanglement entropy for a field theory that flows between
two fixed points in different dimension?
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THANK YOU!
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