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I. Introduction

The a-theorem: In any RG flow from CFTUV −→ CFTIR, the
Euler central charges satisfy aUV > aIR .

1. A universal and fundamental property of interacting QFT2

and QFT4. Interpreted as the decrease of the number of
degrees of freedom of the QFT as more and more are
integrated out in the flow toward IR.

2. An inequality of this type can help determine the strong
coupling IR realization of an asymp. free gauge theory in
d = 4.



Brief history

1. 1986 Zamolodchikov c-theorem for d = 2.

2. 25 year effort to extend to d = 4, from which we learned:
1988 Cardy’s conjecture that the Euler central charge is the

right quantity.
1997 Convincing evidence in SUSY gauge theories.
1999 a-theorem holds for any RG flow with an AdS/CFT

dual.

2011 Komargodski + Schwimmer formulated a concise, insightful
and vigorous proof, but not without subtleties.

Key idea: recast the trace anomaly as a low energy theorem for
scattering amplitude of the dilation field τ(x).



Distinguish two classes of RG flows
i) spontaneously broken conformal symmetry, as on Coulomb
branch of N = 4 SYM.
Dilaton is a physical mode of the theory, the Goldstone boson of
the broken symmetry.
A physical scale f appears due to the breaking.

ii) Explicitly broken conf. sym. Simplest model is free massive
scalar.
Dilaton is added to theory as a fictitious massless compensator
which restores conf. sym.

L = −1

2
[(∂Φ)2 + M2Φ2] →

L′ =
1

2
[f 2e−2τ (∂τ)2 + (∂Φ)2 + M2e−2τΦ2]

The new theory L′ has a traceless stress tensor, so we are
essentially back to spont. broken case. BUT we choose f >> M
to make coupling of dilaton very weak.



II. The 8-minute a-theorem in d = 4
1. A CFT4 is invariant under conf. trfs. of SO(4,2) in flat space:
Tµ
µ = 0.

2. In curved background geometry there is always an anomaly of
the corresp. Weyl trf: gµν(x)→ gµν(x)e−2σ(x).

〈Tµ
µ 〉 = cW 2 − aE4

3. We need an action Sanom[g ] whose variation is

δS =

∫
d4x
√
−g σ(x) (cW 2 − aE4)

4. If we add the dilation τ(x) which trfs as Goldstone boson, i.e.
τ(x)→ τ(x) + σ(x), we can write the local action:

Sanom =

∫
d4x
√
−g
{
c τW 2−

a

[
τ E4 + 4

(
Rµν − 1

2
gµνR

)
∂µτ ∂ντ − 4(∂τ)2�τ + 2(∂τ)4

]}
.



No ”extra terms” for Weyl, but needed for Euler bc.
δE4 ∼ ∂(R∂σ).

5. Full Seff [g , τ ] also contains Weyl invariant terms constructed
from curvature invariants of ĝµν = gµνe

−2τ . Up to order ∂4, these
are:

Sinv [ĝ ] =

∫
d4x

√
−ĝ [− 1

12
f 2R̂ + κR̂2]

R̂ = e−2τ [R + 6�τ − 6(∂τ)2] .

6. In flat spacetime, the entire Sτ = Sinv + Sanom →

Sτ =

∫
d4x

[
− 1

12
f 2e−2τ (∂τ)2 + κ(�τ − (∂τ)2)2

+ 2a[2(∂τ )2�τ − (∂τ)4]

]
i) Weyl and diffeo. inv. lead to highly constrained form of dilaton

action, even in flat spacetime.
ii) κ-term vanishes by dilation EOM: �τ − (∂τ)2 = 0



7. Calculate scattering amplitude using ”physical dilaton” with
std. kinetic term e−τ = 1− φ/f . On shell, �φ = 0.

Sτ → Sϕ =

∫
d4x

[
−1

2
(∂ϕ)2 + 2a

(
1

4f 4
ϕ2�2ϕ2 +O(�2, ϕk )

)]
,

k ≥ 5 .

The anomaly determines ∂4 terms in the low energy expansion of
n-point amplitudes for all n ≥ 4.

8. K+S use anomaly matching to show that on-shell dilaton
4-point amplitude obeys low energy theorem: as s → 0,

A(s, t) → 1

2f 4
∆a〈−p3,−p4|ϕ2�2ϕ2|p1, p2〉

=
4

f 4
∆a(s2 + t2 + u2),

where ∆a = aUV − aIR.



9. Analyticity: (Cauchy Thm) =⇒

s

s 0

C 

C          '
s 

'

1

2πi

∮
C∪C ′

ds A(s, t)

s3
= 0 .

Crossing: ImA(s, 0) = ImA(−s, 0)

Unitarity: Rearrange the furniture to get:

aUV − aIR =
f 4

4π

∫ ∞
0

ds
ImA(s, 0)

s3

=
f 4

4π

∫ ∞
0

ds
σTot(s)

s2
> 0 !

This is the 8-minute a-theorem, a universal truth for any RG flow
in d = 4.



Some subtleties:
1) anomaly matching

2) convergence of sum rule in UV and IR, discussed in
ZK 1112.4538, Luty, Polchinski, Rattazzi 1204.5221

Comment: in models of flows in which aUV and aIR are known,
one can check the K+S low energy thm, independent of the sum
rule. These models include:
1. free massive scalar K+S
2. free massive spinor, DZF, private communication.
3. spont. broken N = 4 SYM checked at large N by dual D3-brane
calc. in our d = 6 paper.



III. Overview of a-theorem in d = 6
Motivation for our d = 6 work:
Initially posed as a learning problem to understand new ideas of
K+S, and we expected a straightforward extension of their result.
Instead, we found important differences.

Summary:
1. We construct Sτ = Sinv + Sanom

2. New order ∂4 term does not vanish on-shell

Sinv ∼ b

∫
d6x

√
ĝ(R̂µν)2 → b

∫
d6xe−τ�2e−τ

3. This affects matrix elements of Sτ to order p4 and p6, e.g.

A4(s, t) =
b

2f 8
(s2 + t2 + u2) +

3

f 8
[
3

2
∆a− b2

f 4
]stu

Anom. contrib. in order p6 is ”polluted” by b2 term for spont.
breaking in which b2 ∼ f 4 cannot be suppressed, but not for
explicit breaking in which b2 ∼ m4 and term is suppressed for
f >> m.



4. This low energy structure for A4,A5,A6 is confirmed in full
detail in two models:
i) explicit breaking— free massive scalar
ii) spont. breaking– Coulomb branch of (2,0) CFT6

computed from M5-brane probe action in AdS7× S4

Confirms general ideas of K+S that
a) low energy couplings of dilation are determined by diffeo and
(broken) Weyl symmetry.
b) anomaly matching.

5. Can we apply analyticity + crossing + unitarity to derive
positivity? Anomaly term in 4-point matrix el. ∆a stu vanishes in
forward direction, t = 0. A red flag against simple applic. of
unitarity by optical thm.



Results for free massive scalar

1. from low energy thm ∆a = aUV = 1/((4π2)24347), in
agreement with heat kernel results in literature.

2. Same fwd disp. relation used for d = 4 now gives

1

2
A”(s, 0) =

8

f 8
b =

2

π

∫ ∞
4m2

ds
ImA(s, 0)

s3
> 0

Positivity of b correct but uninteresting, b/c b is not an anomaly,
but rather a dimensionful parameter b = cm2.

3. Isolate ∆a by writing a disp. del. for
(∂/∂t)A”(s, t = 0), which gives sum rule:



Sum rule for ∆a.

In general model with explicit breaking

∆a =
2f 8

9π

∫ ∞
0

[
3

s4
ImA(s, 0)− 2

s3
∂

∂t
ImA(s, 0)

]
Integrand is difference of two +ve terms, so sign is unclear. In free

boson model, we compute these terms from unitarity of box graph.
Numerical integration agrees with previous value of a, BUT
integrand is not +ve definite.

Thus, even the simplest model which obeys the a-theorem does
not have the manifest positivity.
Positivity from forward A6(p1, p2, p3,−p1,−p2,−p3) is an open
question, but analyticity, crossing, unitarity for 6-point function are
very complicated!



IV. Some details for d = 6

A. Construction of Sτ = Sanom + Sinv

B. probe M5-brane as an RG flow of the (2,0) CFT6

1. Construction of Aanom in d = 6

〈Tµ
µ 〉 =

∑
i=1−3

ci Ii + aE6

3 indep Weyl tensor invariants Ii vanish in flat space; drop them.
Euler density E6 in cubic in Rab

µν .
We seek Sanom[g , τ ] such that

δSanom =

∫
d6xσ(x)E6

We constructed Sanom by two methods i) std. Wess-Zumino
method – arguably shorter
ii) supergravity-inspired method– arguably sweeter



20% Discount available at
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Brief discussion of SG-inspired method

a. Start with S0 =
∫
d6x
√
−gτ(x)E6. Its infinitesimal Weyl

variation is

δS0 =

∫ √
−g [σ(x)E6 + τ(x)δE6]

”direct” δτ = σ variation is good; but ”indirect” δE6 ∼ ∂(R2∂σ)
is bad.
b. Cancel it by inventing S1 = 1

2

∫
∂τ∂τRR whose direct δτ

variation cancels bad term from δS0, but whose indirect δR
variation requires still another term.
c. Continue the process until it closes



Result for Sanom
After one week of work, one finds structure containing 7 terms

Sanom =
∑

i=1,...,7

Si

=

∫
d6x
√
−g
[
τE6

+ 5 lines of terms involving R2 and R

+ terms surviving in flat space

]
.

In flat limit:

Sanom → ∆a

∫
d6x

[
24(∂τ)2(∂µ∂ντ)2 − 24(∂τ)2(�τ)2

+ 36�τ(∂τ)2 − 24(∂τ)6
]



Sinv
We need to find all curvature invariants of order ∂2, ∂4, ∂6 from

R̂iem = Riem(ĝ) = Riem(gµνe
−2τ )

Summary of results:
i) unique term of order ∂2∫

d6x
√

ĝ R̂ →
∫

d6x10e−4τ (�τ − 2(∂τ)2)

= 20

∫
d6xe−4τ (∂τ)2 .

This is the dilation kinetic term in d = 6. Again R̂ = 0 by EOM
�τ − 2(∂τ)2 = 0. The physical dilation is e−2τ = 1− φ/f 2.

ii) At order (∂)4, the only term which is non-vanishing on shell and
in flat limit is (as already discussed)

Sinv ∼ b

∫
d6x

√
ĝ(R̂µν)2 → b

∫
d6xe−τ�2e−τ



iii) order (∂)6, among 11 terms in a basis of (R̂iem)3 invariants,
none survive on shell and in flat space.
SUMMARY:
In flat spacetime, the on-shell dilaton action becomes (after
non-trivial algebra)

Sτ =

∫
d6x

[
4be−τ�2e−τ + ∆a τ�3τ

]
From this one computes matrix els. of physical dilation:

e−2τ = 1− φ/f 2 e−τ =
√

1− φ/f 2 τ = −1

2
ln(1− φ/f 2) .



SUBTLETY in matrix els. of ∂4 term:

S(∂)4 = b

∫
d6x

[ ∑
m+n≥4

φm�2φn +
1

2f 6
φ2�2φ

]
It may seem that one can ignore �φ b/c dilaton is on-shell.
FALSE because ∃ tree diagrams,

A4,tree ∼
b2

b12
s2(1/s)s2 =

b2

b12
s3 .

∃ similar induced order p6 terns in all An,tree , n ≥ 4.

This is the reason why complete order p6 term is:

A4(s, t) = [
3

2
∆a− b2

f 4
]

3

f 8
stu .

i. This effect is essential for spont. broken conf sum, since f is a
fixed physical scale, and b ∼ f 2

ii. It is suppressed for explicit breaking if we take f >> M, where
M is largest scale of flowing QFT6,
iii. From p4 and p6 matrix els, one can determine both b and ∆a.
iv. Full detailed structure for A4, A5, A6 is confirmed in our work
on probe M5-brane.



B. probe M5-brane as an RG flow of the (2,0) CFT6

i. The AdS7× S4 soln of D=11 SG describes stack of N coincident
M5-branes.

ds2 =
L2

z2
[ηµνdx

µdxν + dz2] L = (πN)1/3`p

Its Euler central charge is a = (1/576π3)N3.

ii. holog. dual of a Coulomb branch flow describes N branes in the
UV and N − 1 branes in the IR. This RG flow has

∆a = (1/576π3)[N3 − (N − 1)3] = (1/192π3)N2. N >> 1

iii. This flow breaks conf. sym. spontaneously. Its dynamics is
described by DBI action of 1 probe brane in AdS7 in static gauge:

SDBI = −TM5L
6

∫
d6x

1

z6

[√
1 + (∂z)2 − 1

]
TM5 =

1

(2π)5`6p



iv. Its derivative expansion is

SDBI = −TM5L
6

∫
d6x

1

z6

[
1

2
(∂z)2 − 1

8
(∂z)4 +

1

16
(∂z)6 + . . .

]
vi. Radial evolution in AdS corresponds to RG flow in dual CFT.

We expect a relation between radial mode z(x) and dilation τ(x).
Establish this connection in 2 ways:
1. Calculate low energy S-matrix for SDBI which is insensitive to
exact relation of the fields and compare with physical dilaton
matrix elements.
2. Find more exact relation z → τ which transforms SDBI → Sτ .

1. Postulate ‘reasonable’ relation z = Leτ which kills 1/z6 sing.

SDBI → −TM5

∫
d6x

[
L2

2
e−4τ (∂τ)2−L4

8
e−2τ (∂τ)4+

L6

16
(∂τ)6+. . .

]



Dilaton S-matrix from SDBI

We calculate order p4, p6 contribs to A4, A5, A6 and match
physical dilation matrix elements exactly, with parameters:

f 4 =
1

4
TM5L

2 b =
1

25
TM5L

4 ∆a = (1/192π3)N2

Correct anomaly flow!



2. SDBI → Sτ
Not obvious how to achieve z → τ , such that

SDBI = −TM5L
6

∫
d6x

1

z6

[√
1 + (∂z)2 − 1

]
→ Sτ =

∫
d6x

[
− 2f 4e−4τ (∂τ)2 + 4be−τ�2e−τ + 3∆aτ�3τ

]
Key: understand the symmetries of SDBI .

i. The PBHFG diffeo of AdS, with parameter σ(x) leaves the bulk
invariant, but generates Weyl trf with same parameter on the
brane:

δσx
µ = −1

2
z2gµν∂νσ δσz = σz

ii. This becomes a symmetry of SDBI if we modify δσz to restore
static gauge:

δσz = σz +
1

2
z2gµν∂µz∂νσ

Strategy is now clear: find relation between z and τ such that
z → z + δσz above produces the Weyl trf τ → τ +σ of the dilaton.



Postulate ansatz as a derivative expansion:

z = Leτ + L3e3τ
[
α1�τ + α2(∂τ)2

]
+

[
analogous general expression for ∂4 terms

]
Matching of the Weyl trfs gives 5 relations among 9 parameters.

Substitute results in SDBI , the unfixed parameters drop out, and
we find SDBI → Sτ with the same values of f , b, ∆a found in the
calc.of on-shell amplitudes!



SUMMARY: status of a-thm in d = 6

There is evidence in two examples, one with explicit and one with
spontaneous breaking of conformal symmetry, that the K+S low
energy theorem produces correct +ve value of aUV − aIR .

Attempt to prove positivity for a general d = 6 theory using
analyticity, crossing, and unitarity fails for the 4-point amplitude.

One needs a new idea or perhaps a counter-example to prove or
disprove the theorem.


