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In the previous talk...

and even...



In this talk...

or even...

FP



That is, we study flows between cycles 

or from fixed points (FP) to cycles

or from cycles to fixed points

For this talk “cycles” mean “recursive flows”

that is, either limit cycles or ergodic flows



Two approaches:

1.Perturbative
i. Valid when both ends and the complete flow between them lie in the perturbative regeme
ii. Stronger: can study whole flow, not just compare end points
iii.Well established

2.Non-perturbative
i. More generally valid
ii. Weaker: compare quantities, like a, at ends
iii.Relies on (few and reasonable) unproven assumptions



Outline
• Intro
• Non-perturbative: 
• KS and LPR setup for cycles
• Need of function S for extension to cycles
• Perturbative: 
• review of JO’s perturbative proof of a c theorem
• the virial current and definition of S
• computation of S
• establish properties of S: S = 0 at FP, S = Q on cycles
• Non-perturbative:
• Complete the KS proof for generic ends

Here and below:
JO: Jack and Osborn, Analogs for the c theorem for four-dimensional renormalizable field theories. 
Nucl.Phys. B343 (1990) 647-688
KS: Komargodski and  Schwimmer,  On renormalization group flows in four dimensions,
JHEP 1112 (2011) 099
LPR: Luty, Polchinski and Rattazzi, The a-theorem and the asymptotics of 4D quantum field theory. 
e-Print: arXiv:1204.5221 [hep-th] 

Talk based on our paper, A generalized c-theorem and the consistency of scale without conformal 
invariance. e-Print: arXiv:1208.3674 [hep-th]



The KS proof of the a theorem
The presentation follows more closely LPR, with modifications.
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integral over the semicircle I1 cannot be easily computed, but in the limit that the radius of the

semicircle vanishes it is reasonable that one can use the limiting value,
�

I1

ds

s3
Afwd(s) ≈

�

I1

ds

s
2(βb)IR = 2πi(βb)IR, (5.3)

where the last step corresponds to taking the vanishing limit of the radius of the semicircle I1.

Similarly, the large circle I3 gives
�

I3

ds

s3
Afwd(s) ≈

�

I3

ds

s
2(βb)UV = −2πi(βb)UV. (5.4)

It follows from Cauchy’s theorem that

(βb)UV − (βb)IR =
1

2πi

�

I2

ds

s3
Afwd(s)

=
1

π

� ∞

0

ds

s3
Im(Afwd(s+ i0)),

where in the last line LPR assume crossing symmetry to write Afwd(−s + i0) = A∗
fwd(s + i0).

Finally, the KS argument invokes the optical theorem that relates the imaginary part of the

forward scattering amplitude to a positive-definite cross section to conclude that

(βb)UV − (βb)IR > 0.

We note in passing that the optical theorem is known to apply for forward scattering amplitudes

of (on-shell) physical particles. It is not clear a priori that it applies to Green functions of

composite operators at p2i = 0, even if it corresponds to the scattering amplitude of would-be

dilaton scattering. We think the assumption of positivity is reasonable, so we press on.

What steps in the argument above require special attention when the theory admits dimension-

three currents? As we have pointed out, the dilatation current now has an additional Jµ term,
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The amplitude has a cut along the whole
real s-axis, but is analytic in the upper half-plane:

�

C
ds
Afwd(s)

s3
= 0

1
2πi

�

I1

ds
Afwd(s)

s3
+

1
2πi

�

I3

ds
Afwd(s)

s3
= − 1

2πi

�

I2

ds
Afwd(s)

s3
= − 1

π

�

I2,s≥0
ds

ImAfwd(s)
s3

≤ 0

IR-limit UV-limit
crossing optical 

theorem

Consider next IR and UV limit of 4-pt function



explicit nonlinear realization of scale invariance, at the price of introducing spacetime-dependent

coupling constants. To reiterate, in either case it is important to realize that new counterterms

are required to render the model finite, much like counterterms involving derivatives of the metric

need to be introduced to render finite the model in a curved background. These new counterterms

must involve derivatives of the coupling constants and lead to new Weyl anomalies. At the end

of this section we study how these new anomalies contribute to the Wess–Zumino action for the

conformal compensator τ(x) even after the couplings and the metric are taken to be spacetime-

independent. For the remainder of this section we take a closer look at these counterterms, the

anomalies they produce and the relations between them, that is, the JO consistency conditions,

that follow from (2.2).

Consider the theory in the background of an arbitrary metric γµν(x) and arbitrary spacetime-

dependent coupling constants g
i(x) corresponding to interaction terms g

i(x)Oi(x) in the La-

grangian. The arbitrary spacetime dependence of the couplings allows one to use them as sources

for operators in the interaction part of the Lagrangian, by taking functional derivatives of the

generating functional with respect to g
i(x). Let �W stand for the renormalized generating func-

tional. It is convenient to separate the counterterms that are independent of quantum fields from

the rest of the action. They can be taken out of the functional integral and contribute directly

to �W :
�W = W +Wc.t..

The generating functional W results from performing the functional integral over quantum fields

in the absence of the quantum-field-independent counterterms. The counterterms required to

render the theory finite were first classified in JO. They consist of all possible diff-invariant

dimension-four operators constructed out of the metric and couplings and their derivatives:

Wc.t. = −
� √

−γ µ−�λ · R,

where dimensional regularization is used with d = 4− � and

λ · R = λaF + λbG+ λcH
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j
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+ 1
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g
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g
j + 1

2Bijk∂µg
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g
j∇2

g
k + 1

4Cijkl∂µg
i∂µ

g
j∂νg

k∂ν
g
l
.

(2.3)

Here F is the Weyl tensor squared, G is the Euler density, H is proportional to the Ricci scalar,

and Gµν is the Einstein tensor:

F = R
µνρσ

Rµνρσ − 4

d− 2
R

µν
Rµν +

2

(d− 2)(d− 1)
R

2
,

G =
2

(d− 3)(d− 2)
(Rµνρσ

Rµνρσ − 4Rµν
Rµν +R

2),

H =
1

d− 1
R, Gµν =

2

d− 2
(Rµν − 1

2γµνR).
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Trace anomaly in curved background:

where

(square Weyl)

(Euler density)

Since 

we can compute the 4-pt function by thrice differentiating this and setting gµν = ηµν

Alternatively, set 

Tµ
µ = 2gµν δW

δgµν

gµν = e2τ(x)ηµν and thrice differentiate w.r.t τ(x)

straightforwardly, one can work with a conformally flat metric and having the only spacetime

dependence in couplings and Aµ arise through the dependence on the conformal factor τ(x), so

that one merely needs to take τ(x) = 0 after four times differentiating �W . Now the first derivative

simply gives the dilatation anomaly equation

∇µD
µ = �BIOI + [βQ] + (Dµφ)TDµS φ− µ

−�βλ̃ · R +∇µ(J
µ
Θ − J

µ
∞ + �Z µ)− ((1 + γ̂ + S)φ) ·

δ

δφ
S̃0,

where J
µ
∞ is the infinite part of J

µ. One need only thrice differentiate this equation to obtain

the four-point amplitude of ∇µD
µ. Note that on fixed points and cycles, where we will need this,

the first term vanishes since �BI = 0, and also J
µ
∞ = 0 as required by scale invariance.7 Also, the

last term, which vanishes by the equations of motion, can be ignored for the computation of the

amplitude. Most of the remaining terms vanish once the couplings are taken to be spacetime-

independent (and the metric flat and Aµ = 0). The remaining terms arise from the G and H
2

terms in βλ · R. For a conformally flat metric, γµν = exp(−2τ(x))ηµν , one has (in d spacetime

dimensions)

e
−4τ

G = 8(∂2τ)2 − 8τ,µντ
,µν − 16τ,µτ,ντ

,µν − 8(d− 3)τ,µτ
,µ∂2τ + 2(d− 1)(d− 4)(τ,µτ

,µ)2

e
−4τ

H
2 = 4(∂2τ)2 − 4(d− 2)τ,µτ

,µ∂2τ + (d− 2)2(τ,µτ
,µ)2.

The cubic term in H
2 vanishes for an “on-shell” conformal factor ∂2τ = 0 and so the only

contribution to the “on-shell” forward scattering amplitude is from G:

Afwd(s)|FP or cycle = −βb(s
2 + t

2 + u
2)|t=0 = −2βbs

2
. (5.2)

We assume there exists an RG trajectory from a UV fixed point or cycle to an IR fixed point

or cycle. On this trajectory this equation no longer holds. However, we can inspect limiting

behavior. Since Afwd/s
2 depends on s only through the dimensionless ratio µ

2
/s, its behavior is

dictated by the renormalization group. Hence,

lim
s→∞

Afwd(s)

s2
= lim

s→∞

Afwd(s)|FP or cycle

s2
= −2(βb)UV

and

lim
s→0

Afwd(s)

s2
= lim

s→0

Afwd(s)|FP or cycle

s2
= −2(βb)IR,

where (βb)UV and (βb)IR are the limiting UV and IR values of βb along the trajectory and

correspond to those on the fixed point or cycle. LPR do a careful analysis to validate the

approach to these limiting values using conformal perturbation theory.

Following LPR we next consider the integral of Afwd(s)/s3 over the contour in Fig. 1. The

7For a proof that Jµ is finite and not renormalized on a cycle see Appendix B.
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Using this in 
1

2πi

�

I1

ds
Afwd(s)

s3
+

1
2πi

�

I3

ds
Afwd(s)

s3
≤ 0 KS (and LPR) obtain

aUV ≥ aIR

Comments:

• Not quite at FPs on semicircles I1 and I3: need to establish corrections vanish in the limit.
To this end, LPR use conformal perturbation theory. Marginal deformations are most 
dangerous. 

• No use made of Wess-Zumino action: instead of integrating anomaly and differentiating 
four times, we differentiate three times. This will be useful below.

• Global result (or “weak” version of a theorem): no local monotonicity along the Rg flow 
information. 

Towards generalization to cycles:

I2 I2

I1

I3I3

s

Fig. 1: The contour of integration for

�
ds

s3
Afwd(s).

integral over the semicircle I1 cannot be easily computed, but in the limit that the radius of the

semicircle vanishes it is reasonable that one can use the limiting value,
�

I1

ds

s3
Afwd(s) ≈

�
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ds

s
2(βb)IR = 2πi(βb)IR, (5.3)

where the last step corresponds to taking the vanishing limit of the radius of the semicircle I1.

Similarly, the large circle I3 gives
�
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ds
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2(βb)UV = −2πi(βb)UV. (5.4)

It follows from Cauchy’s theorem that

(βb)UV − (βb)IR =
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�
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ds
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Afwd(s)

=
1

π

� ∞

0

ds

s3
Im(Afwd(s+ i0)),

where in the last line LPR assume crossing symmetry to write Afwd(−s + i0) = A∗
fwd(s + i0).

Finally, the KS argument invokes the optical theorem that relates the imaginary part of the

forward scattering amplitude to a positive-definite cross section to conclude that

(βb)UV − (βb)IR > 0.

We note in passing that the optical theorem is known to apply for forward scattering amplitudes

of (on-shell) physical particles. It is not clear a priori that it applies to Green functions of

composite operators at p2i = 0, even if it corresponds to the scattering amplitude of would-be

dilaton scattering. We think the assumption of positivity is reasonable, so we press on.

What steps in the argument above require special attention when the theory admits dimension-

three currents? As we have pointed out, the dilatation current now has an additional Jµ term,
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• Rather than the FP relation

use the cycle relation

• Need interpolating function to compute amplitude (of what?) on I2

∂µDµ = Tµ
µ − ∂µV µ = − a

16π2
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c

16π2
F − b

16π2
R2
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More on interpolation: FP

The virial current is defined only on cycle: Vµ = DµφT Qφ β(g)|on cycle = (Qg)|on cycle

We want a 4-pt function of X, where X = Tµ
µ at FPs, and X = Tµ

µ − ∂µV µ on cycles

We take 

Jµ = DµφT Sφ

X = Tµ
µ − ∂µJµ

where the new current 

is given in terms of a function S(g) that has the properties

FP

S(g)→ 0
S(g)→ Q

Fortunately, JOs quantity S has these properties!



Perturbative approach

JO consider trace anomaly in curved background with spacetime dependent coupling ‘constants’

Why is this necessary?

KS/LPR use

In JO the same consistency conditions are obtained by requiring finiteness of the trace of the

stress-energy tensor in curved background and with spacetime-dependent couplings. One can also

obtain the Weyl consistency conditions based on the arguments of LPR.

LPR start from a quantum action S0 which is a function of a conformally flat metric, γµν =

e−2τ(x)ηµν and coupling constants gi(µ) (in d = 4−� regularization, with, say, minimal subtraction

(MS)). By rescaling the fields, which are dummy variables of integration anyway, by φ → (eτ )δφ,

where δ is the canonical dimension of the field (as in δ = (d − 2)/2 for scalars), and using the

µ-independence of the bare couplings, one sees that the τ -dependence in S0 arises only due to

the scale dependence of renormalized coupling constants, gi(eτµ). Effectively, the regularized

generating functional W satisfies

W [e−2τ(x)ηµν , g
i
(µ)] = W [ηµν , g

i
(eτ(x)µ)]. (2.1)

Alternatively, Komargodski [11] argues that the functional is made invariant under Weyl trans-

formations by adding a conformal compensator τ(x). One can write

W [e−2τ(x)ηµν , g
i
(e−τ(x)µ)] = W [ηµν , g

i
(µ)],

or, equivalently, that the left-hand side is invariant under τ → τ + σ. Note that invariance is

guaranteed by adding the conformal compensator and including in W all possible counterterms

that are functions of spacetime-dependent background and coupling constants, γµν(x) and gi(x).

It is from counterterms that do not vanish for spacetime-independent coupling constants that the

βa,b,c-anomalies arise. It is convenient, in order to keep track of curvature-dependent terms, to

do this in a more general background metric,

W [e−2τ(x)γµν(x), g
i
(µ)] = W [γµν(x), g

i
(eτ(x)µ)], (2.2a)

W [e−2τ(x)γµν(x), g
i
(e−τ(x)µ)] = W [γµν(x), g

i
(µ)]. (2.2b)

At the risk of restating the trivial, let us emphasize that it is not consistent to neglect the

spacetime dependence of couplings when studying Weyl anomalies, since the Weyl transformation

involves spacetime-dependent couplings. The counterterms associated with spacetime derivatives

of these couplings will lead to additional anomalies. Some of these may—and as we will see,

do—contribute to the dilaton/compensator scattering amplitude even after one takes the limit of

flat background and spacetime-independent coupling constants.

The approach of LPR allows one to compute quantities associated with a model in a curved

background with spacetime-independent coupling constants in terms of corresponding quantities

for the same model but in a flat background with, however, spacetime-dependent coupling con-

stants. This observation is not new. For example, in JO the same observation is used precisely

for the same purpose, namely, to compute the anomalies associated with scale transformations

using only computations in flat space. Similarly, the approach of Komargodski allows for an

5

(W = generating function)

(or even the same with general metric),
obtained by making a τ-dependent field redefinition in the quantum action.

The anomaly has now all terms of dimension 4 constructed out of the mertic and the couplings.
So in addition to 

one has terms like 

The quantities above are defined as in JO, with inessential d-dependent factors for later conve-

nience. Each of the counterterms in λ · R is an expansion in 1/� chosen to render �W finite—for

this one must in addition introduce wave-function and coupling constant counterterms, as usual.

The coefficients λ are in general functions of the couplings g
i(x).

The anomalous variation of the generating functional is dictated by these counterterms. While

W satisfies (2.1) and (2.2), this is not true of Wc.t., as can be seen by explicit computation. The

anomaly is precisely the statement that the infinitesimal transformation τ → τ + σ in (2.2b),

∆σWc.t. = Wc.t.[(1− 2σ)γµν , g
i − σµ(dgi/dµ)]−Wc.t.[γµν , g

i
],

fails to vanish. The anomalous variation can be split into a term that would occur even if σ were

spacetime-independent plus a term proportional to the derivative of σ:

∆Wanomaly = ∆σWc.t. = −
� √

−γ (σβλ · R + ∂µσZ µ
). (2.4)

These terms again can be expanded using dimensional analysis and diff-invariance:
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(2.5)
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1
3RYi∂µg
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g
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+
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(2.6)

up to terms with vanishing divergence. Since the anomaly gives a correction to a relation between

finite Green functions (see 2.15), the anomalous terms (2.5) and (2.6) must themselves be finite.

Calculations of the coefficients in βλ · R and Zµ can be done using standard techniques of

dimensional regularization with a mass-independent renormalization scheme, say MS. For now, let

us concentrate on the relatively straightforward computation of βλ · R. Since for constant σ the

transformation δγµν = −2σγµν just counts dimensions, and the dimension of the volume element

is d while that of the operators in Wc.t. is four, we obtain

(�− β̂i∂̂i)λ · R = βλ · R, (2.7)

where the beta function is

µ
dg

i

dµ
= β̂i

= −�kigi + βi
(g) (no sum over i).

4
The second term involves the function of coupling constants d, which is not to be confused with d = 4 − �. We

follow Osborn in this unfortunate choice of notation, hoping that with this warning no confusion will arise in what

follows.
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finite Green functions (see 2.15), the anomalous terms (2.5) and (2.6) must themselves be finite.

Calculations of the coefficients in βλ · R and Zµ can be done using standard techniques of

dimensional regularization with a mass-independent renormalization scheme, say MS. For now, let

us concentrate on the relatively straightforward computation of βλ · R. Since for constant σ the
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and

See JO for the complete (intimidating) expression!

βiOi −
a

16π2
G +

c

16π2
F − b

16π2
R2

(Note: most of the results below are valid more generally, not just in perturbation theory.
It is only some positivity properties of “metrics” that require perturbation theory). 



Bonus: taking where is the renormalized quantum action 

gives finite (renormalized) operators:

δS̃0

δgi(x) S̃0

[Oi(x)] ≡ δS̃0

δgi(x)

Similarly, 

defines a finite stress-energy tensor. 

Tµν =
2
√

g

δS̃0

δgµν(x)

Note: This does not mean that all finite operators must be of this form!



In JO the same consistency conditions are obtained by requiring finiteness of the trace of the

stress-energy tensor in curved background and with spacetime-dependent couplings. One can also

obtain the Weyl consistency conditions based on the arguments of LPR.

LPR start from a quantum action S0 which is a function of a conformally flat metric, γµν =

e−2τ(x)ηµν and coupling constants gi(µ) (in d = 4−� regularization, with, say, minimal subtraction

(MS)). By rescaling the fields, which are dummy variables of integration anyway, by φ → (eτ )δφ,

where δ is the canonical dimension of the field (as in δ = (d − 2)/2 for scalars), and using the

µ-independence of the bare couplings, one sees that the τ -dependence in S0 arises only due to

the scale dependence of renormalized coupling constants, gi(eτµ). Effectively, the regularized

generating functional W satisfies

W [e−2τ(x)ηµν , g
i
(µ)] = W [ηµν , g

i
(eτ(x)µ)]. (2.1)

Alternatively, Komargodski [11] argues that the functional is made invariant under Weyl trans-

formations by adding a conformal compensator τ(x). One can write

W [e−2τ(x)ηµν , g
i
(e−τ(x)µ)] = W [ηµν , g

i
(µ)],

or, equivalently, that the left-hand side is invariant under τ → τ + σ. Note that invariance is

guaranteed by adding the conformal compensator and including in W all possible counterterms

that are functions of spacetime-dependent background and coupling constants, γµν(x) and gi(x).

It is from counterterms that do not vanish for spacetime-independent coupling constants that the

βa,b,c-anomalies arise. It is convenient, in order to keep track of curvature-dependent terms, to

do this in a more general background metric,

W [e−2τ(x)γµν(x), g
i
(µ)] = W [γµν(x), g

i
(eτ(x)µ)], (2.2a)

W [e−2τ(x)γµν(x), g
i
(e−τ(x)µ)] = W [γµν(x), g

i
(µ)]. (2.2b)

At the risk of restating the trivial, let us emphasize that it is not consistent to neglect the

spacetime dependence of couplings when studying Weyl anomalies, since the Weyl transformation

involves spacetime-dependent couplings. The counterterms associated with spacetime derivatives

of these couplings will lead to additional anomalies. Some of these may—and as we will see,

do—contribute to the dilaton/compensator scattering amplitude even after one takes the limit of

flat background and spacetime-independent coupling constants.

The approach of LPR allows one to compute quantities associated with a model in a curved

background with spacetime-independent coupling constants in terms of corresponding quantities

for the same model but in a flat background with, however, spacetime-dependent coupling con-

stants. This observation is not new. For example, in JO the same observation is used precisely

for the same purpose, namely, to compute the anomalies associated with scale transformations

using only computations in flat space. Similarly, the approach of Komargodski allows for an
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Consistency conditions

Now, since 

terms in the anomaly satisfy relations. Among them, of particular interest

8∂ia = χg
ijβ

j − βj∂jwi − ∂iβ
jwj

(Notes: 1. I have rescaled JO quantities by 16π2; 2. Not a gradient flow) 
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∂
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dgi
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,

⇒ 8µ
da
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= χg

ijβ
iβj − ∂jwiβ

iβj − ∂iβ
jwjβ

i
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guaranteed by adding the conformal compensator and including in W all possible counterterms
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βa,b,c-anomalies arise. It is convenient, in order to keep track of curvature-dependent terms, to

do this in a more general background metric,

W [e−2τ(x)γµν(x), g
i
(µ)] = W [γµν(x), g

i
(eτ(x)µ)], (2.2a)

W [e−2τ(x)γµν(x), g
i
(e−τ(x)µ)] = W [γµν(x), g

i
(µ)]. (2.2b)

At the risk of restating the trivial, let us emphasize that it is not consistent to neglect the

spacetime dependence of couplings when studying Weyl anomalies, since the Weyl transformation

involves spacetime-dependent couplings. The counterterms associated with spacetime derivatives
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obtain the Weyl consistency conditions based on the arguments of LPR.
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of these couplings will lead to additional anomalies. Some of these may—and as we will see,
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of these couplings will lead to additional anomalies. Some of these may—and as we will see,
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The approach of LPR allows one to compute quantities associated with a model in a curved

background with spacetime-independent coupling constants in terms of corresponding quantities
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In fact, can make a increase then decrease
as it moves away from UV-FP !
No “local” or “strong” a-theorem



Nota bene: In Yang mills (with matter) with

1. Overview in lieu of Introduction

Two recent, reported results can potentially greatly enrich our understanding of quantum field

theory (QFT). On the one hand, Komargodski and Schwimmer (KS) [1], following earlier work

by Cappelli, D’Appollonio, Guida and Magnoli (CDGM) [2], have delineated a proof, without

resource to perturbation theory, of an inequality satisfied when a four-dimensional QFT flows be-

tween two fixed points of the renormalization group (RG). On the other hand, we have discovered

closed renormalization group trajectories in four-dimensional theories, in a regime where pertur-

bation theory is applicable [3–6]. While the former result can impose restrictions on the possible

realizations of long distance (IR) phases of QFTs, the latter gives explicitly new unexplored phases

of QFTs. A question naturally arises as to whether these results are compatible.

In this work we extend the work of CDGM and KS to include cycles.1 More concretely, KS

assume the existence of a flow from a short distance (UV) fixed point to an IR fixed point, and

argue that the coefficient of the Euler density in the trace anomaly, denoted by a, is larger at

the UV than the IR fixed points: aUV > aIR. This, then, is a proof of the “weak version of the

c-theorem.” We will show that we can extend the argument to include putative flows from a fixed

point or cycle to another fixed point or cycle. Along their argument KS make several explicit and

implicit assumptions. We make the same assumptions, and we try to be as explicit as possible

about them. We make no additional assumptions.

Recently, Luty, Polchinski and Rattazzi (LPR) have extended the KS argument to argue, to

lowest order in perturbation theory, that a decreases monotonically along the RG-flow towards the

IR [7]. This would then be a proof of the “strong version of the c-theorem.” Additionally, LPR

compute the rate of change of a as it flows along a cycle and show that a decreases monotonically

in that case as well. Were their results correct they would render our results invalid: LPR argue

that the monotonic decrease of a along flows on cycles rules out their existence in four-dimensional

relativistic field theories.

However, the computations presented by LPR are interpreted by them incorrectly. This is easy

to see by the known fact that a increases away from trivial UV fixed points: for pure Yang–Mills

theory (YM) with beta function βg = −β0g3/16π2 − β1g5/(16π2)2 − · · · one has [8]

a = a0 +
nV β1

8(16π2)3
g4 +O(g6). (1.1)

Here a0 is the free field theory (one-loop) value of a and nV = dim(Adj) is the number of vector

fields. The result of LPR, that

da

dt
≡ −µ

da

dµ
LPR
= −cg(β

g)2, cg =
nV

32π2g2
, (1.2)

1More precisely “limit recursive flows.” In what follows we refer to both limit cycles and limiting ergodic behavior

simply as “cycles.”

1

may increase away from the trivial UV-FP.

But

8∂ia = χg
ijβ

j − βj∂jwi − ∂iβ
jwjHowever, JO note that 

ã ≡ a + 1
8wjβ

j

⇒ 8∂i(a + 1
8wjβ

j) = χg
ijβ

j − βj∂[jwi]

So there is a perturbative c-theorem for 

⇒ 8µ
dã

dµ
= χg

ijβ
iβj ≥ 0

ã = a0 −
nV β0

4(16π2)
g2 +O(g4)

always decreases away form the trivial UV-FP.

a = a0 +
nV β1

8(16π2)2
g4 +O(g6)



Dimension 3 operators

The new dimension-4 terms in the anomaly arise from the need to add local counterterms
to the quantum action

S̃0 → S̃0 + S̃c.t.

Then, for example, anomaly terms like 

The quantities above are defined as in JO, with inessential d-dependent factors for later conve-

nience. Each of the counterterms in λ · R is an expansion in 1/� chosen to render �W finite—for

this one must in addition introduce wave-function and coupling constant counterterms, as usual.

The coefficients λ are in general functions of the couplings g
i(x).

The anomalous variation of the generating functional is dictated by these counterterms. While

W satisfies (2.1) and (2.2), this is not true of Wc.t., as can be seen by explicit computation. The

anomaly is precisely the statement that the infinitesimal transformation τ → τ + σ in (2.2b),

∆σWc.t. = Wc.t.[(1− 2σ)γµν , g
i − σµ(dgi/dµ)]−Wc.t.[γµν , g

i
],

fails to vanish. The anomalous variation can be split into a term that would occur even if σ were

spacetime-independent plus a term proportional to the derivative of σ:

∆Wanomaly = ∆σWc.t. = −
� √

−γ (σβλ · R + ∂µσZ µ
). (2.4)

These terms again can be expanded using dimensional analysis and diff-invariance:

βλ · R = βaF + βbG+ βcH
2
+ χe

i∂µg
i∂µ

H +
1
2χ
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ij∂µg

i∂µ
g
j
H +

1
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ij∂µg

i∂νg
j
G

µν

+
1
2χ
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ij∇2

g
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j
+

1
2χ

b
ijk∂µg

i∂µ
g
j∇2

g
k
+

1
4χ

c
ijkl∂µg

i∂µ
g
j∂νg

k∂ν
g
l
,

(2.5)

and4

Zµ = Gµνwi∂
ν
g
i
+

1
3∂µ(dR) +

1
3RYi∂µg

i

+ ∂µ(Ui∇2
g
i
+

1
2Vij∂νg

i∂ν
g
j
) + Sij∂µg

i∇2
g
j
+

1
2Tijk∂νg

i∂ν
g
j∂µg

k
,

(2.6)

up to terms with vanishing divergence. Since the anomaly gives a correction to a relation between

finite Green functions (see 2.15), the anomalous terms (2.5) and (2.6) must themselves be finite.

Calculations of the coefficients in βλ · R and Zµ can be done using standard techniques of

dimensional regularization with a mass-independent renormalization scheme, say MS. For now, let

us concentrate on the relatively straightforward computation of βλ · R. Since for constant σ the

transformation δγµν = −2σγµν just counts dimensions, and the dimension of the volume element

is d while that of the operators in Wc.t. is four, we obtain

(�− β̂i∂̂i)λ · R = βλ · R, (2.7)

where the beta function is

µ
dg

i

dµ
= β̂i

= −�kigi + βi
(g) (no sum over i).

4
The second term involves the function of coupling constants d, which is not to be confused with d = 4 − �. We

follow Osborn in this unfortunate choice of notation, hoping that with this warning no confusion will arise in what

follows.
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and

arise as beta-functions of the counterterms

explicit nonlinear realization of scale invariance, at the price of introducing spacetime-dependent

coupling constants. To reiterate, in either case it is important to realize that new counterterms

are required to render the model finite, much like counterterms involving derivatives of the metric

need to be introduced to render finite the model in a curved background. These new counterterms

must involve derivatives of the coupling constants and lead to new Weyl anomalies. At the end

of this section we study how these new anomalies contribute to the Wess–Zumino action for the

conformal compensator τ(x) even after the couplings and the metric are taken to be spacetime-

independent. For the remainder of this section we take a closer look at these counterterms, the

anomalies they produce and the relations between them, that is, the JO consistency conditions,

that follow from (2.2).

Consider the theory in the background of an arbitrary metric γµν(x) and arbitrary spacetime-

dependent coupling constants g
i(x) corresponding to interaction terms g

i(x)Oi(x) in the La-

grangian. The arbitrary spacetime dependence of the couplings allows one to use them as sources

for operators in the interaction part of the Lagrangian, by taking functional derivatives of the

generating functional with respect to g
i(x). Let �W stand for the renormalized generating func-

tional. It is convenient to separate the counterterms that are independent of quantum fields from

the rest of the action. They can be taken out of the functional integral and contribute directly

to �W :
�W = W +Wc.t..

The generating functional W results from performing the functional integral over quantum fields

in the absence of the quantum-field-independent counterterms. The counterterms required to

render the theory finite were first classified in JO. They consist of all possible diff-invariant

dimension-four operators constructed out of the metric and couplings and their derivatives:

Wc.t. = −
� √

−γ µ−�λ · R,

where dimensional regularization is used with d = 4− � and

λ · R = λaF + λbG+ λcH
2 + Ei∂µg

i∂µ
H + 1

2Fij∂µg
i∂µ

g
j
H + 1

2Gij∂µg
i∂νg

j
G

µν

+ 1
2Aij∇2

g
i∇2

g
j + 1

2Bijk∂µg
i∂µ

g
j∇2

g
k + 1

4Cijkl∂µg
i∂µ

g
j∂νg

k∂ν
g
l
.

(2.3)

Here F is the Weyl tensor squared, G is the Euler density, H is proportional to the Ricci scalar,

and Gµν is the Einstein tensor:

F = R
µνρσ

Rµνρσ − 4

d− 2
R

µν
Rµν +

2

(d− 2)(d− 1)
R

2
,

G =
2

(d− 3)(d− 2)
(Rµνρσ

Rµνρσ − 4Rµν
Rµν +R

2),

H =
1

d− 1
R, Gµν =

2

d− 2
(Rµν − 1

2γµνR).
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But in theories with scalars or spinors we need additional counterterms 
for finiteness of the quantum action. 

The need arises because there are dimension-3 operators (currents) and
one can form dimension-1 “currents” from derivatives on coupling “constants.”



Consider a theory with nS real scalar fields. The kinetic part of the Lagrangian

LK = 1
2∂

µφa∂µφa

exhibits a continuous symmetry under transformations of the fields δφa = ωabφb, where ω is in

the algebra of the flavor group GF = SO(nS). In order to renormalize this theory in the presence

of spacetime-dependent coupling constants one must introduce a new counterterm of the form

Lc.t. = (∂µgi)(Ni)abφb∂µφa, (3.1)

with (Ni)ab = −(Ni)ba, that is, in the algebra of GF . Note that this new counterterm is not

accounted for in Wc.t. which by construction is independent of quantum fields. Note also that

additional counterterms, symmetric under a ↔ b, must also be introduced. One may integrate by

parts to write these as terms with no derivatives acting on the quantum fields. While necessary,

they do not play a central role in what follows.

To be more explicit, we consider a theory of real scalars and write for the bare Lagrangian

L0 =
1
2γ

µνDµφ0aDνφ0a +
1
8(d− 2)φ0aφ0aH − 1

4!g
0
abcdφ0aφ0bφ0cφ0d. (3.2)

This is written in term of bare fields φ0. The second term is introduced to ensure conformal

invariance of the classical action. In the potential term, the bare couplings g0abcd are completely

symmetric under exchange of the indices a, b, c and d. The covariant derivative,

Dµφ = (∂µ +A0µ)φ,

is introduced with an eye towards including the counterterm (3.1),

A0µ = Aµ +NI(Dµg)I . (3.3)

Here, following JO, we use the compact notation I = (abcd) and we have left implicit the Lie-

algebra indices (so that NT
I = −NI and AT

µ = −Aµ). Note that NI is a function of the renormal-

ized couplings that has an �-expansion starting at order 1/�. If the theory contains gauge fields

and some of the scalars are charged under the gauge group Gg ⊆ GF , it is straightforward to

include an additional quantum gauge field in addition to the background field Aµ.

The Lagrangian (3.2) is explicitly locally GF -symmetric if we agree to transform the couplings

and the gauge fields:

δgabcd = ωaegebcd + permutations (δgI = (ωg)I for short),

δAµ = Dµω.

The first of these is already used in defining the covariant derivative (Dµg)I in (3.3). It is very

important to note at this point that if this explicit local invariance is non-anomalous it can (and

will) be used to constrain the counterterms and the generating functional �W ,

�W [γµν(x), (Ωg)I(x),ΩDµΩ
−1] = �W [γµν(x), gI(x), Aµ], (3.4)
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Very relevant example:

a = 1, . . . , ns

Then we must add for finiteness a counterterm

with

and the index I runs over all the (dimensionless) coupling constants, eg, I = abcd in

V =
1
4!

gabcdφaφbφcφd = gIOI

Lc.t. = (∂µgI)(NI)abφb∂µφa

(NI)ab = −(NI)ba



Example: ns real scalars, nf Weyl spinors with 

1. S is Q on cycles,

2. S vanishes at fixed points.

In light of these results the computation of Q can be tremendously simplified given an explicit

expression for S. The procedure to determine Q involves determining first the beta functions for

the coupling constants to second order in the loop expansion for scalar self-couplings, to third

order in the loop expansion for Yukawa couplings and to fourth order in the loop expansion for

Yang–Mills couplings, and then solving the system of nonlinear coupled equations βg
= 0 and

βI = (Qg)I (we implicitly use here that gI can also stand for Yukawa couplings). Since S must

have a perturbative expansion that starts at third order in the loop expansion, to determine Q

from S it suffices to evaluate it with coupling constants on the cycle computed to lowest order

in the loop expansion. So Q is obtained from S by determining the zeroes of the one-loop beta

functions (two-loop for gauge couplings): if S = 0 on the zero of the beta functions, the zero is a

fixed point of the RGE, but if S �= 0 on the zero, then the zero is a point on a cycle and Q = S

there.

To this end an explicit, three-loop expression for S is required. But as pointed out above,

there has been no computation of S to the order where one would expect it to be non-vanishing

if S were to equal Q on cycles. We have endeavored to compute S to third order in the loop

expansion for a general theory containing nS real scalars and nf Weyl spinors, possibly charged

under a gauge group. The potential in the Lagrangian is

V =
1
4!λabcdφaφbφcφd + (

1
2ya|ijφaψiψj + h.c.).

The details of the computation are spelled out in Appendix C. The surprisingly simple result is

(16π2
)
3Sab =

5
8 tr(yay

∗
cydy

∗
e)λbcde +

3
8 tr(yay

∗
cydy

∗
dyby

∗
c )− {a ↔ b}+ h.c..

We have evaluated this expression on the fixed points and cycles of the theories we explored

in [3, 5, 6] and found that in each case S vanishes at all fixed points and equals our previous

determination of Q on all cycles. It should be mentioned that the models in [3,5] are in d = 4− �

dimensions, with � small but positive. In these cases the consistency equations still apply provided

one carefully tracks the presence of � in the beta functions, particularly in β̂i
= −�kigi + βi

and

correspondingly in �Bi
.

Now for the proof of the propositions above. First we show that S = Q on cycles. Consider

the η flow with fI = BI , with boundary condition that at η = 0 the point ḡI(0) is on the cycle.

Then BI(0) = ([Q−S]g(0))I is in the Lie algebra of GF and the left-hand side of (3.20) vanishes.

Since χg
IJ = −2χa

IJ to second order in the loop expansion, and −2χa
IJ is positive-definite, (3.20)

gives BI(0) = 0. This implies S = Q + ∆Q on cycles, where (∆Qg)I = 0. But if ∆Q �= 0 this

corresponds to a conserved current, and we are free to redefine the scale current by a conserved

current, Q → Q+∆Q. Hence, S = Q on cycles.
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It is perhaps helpful to remind the reader here that in a theory with scalars and fermions the

I index can be either (abcd) or (a|ij). Let us also remark that S appears first at three loops in a

theory with scalars and spinors. The reason is easily seen from (3.8): a diagram that contributes

to N will only contribute to S if it is not symmetric under a ↔ b. As it turns out there are no

such diagrams in scalar self-energies at one and two loops, but there are two such diagrams at

three loops. Consequently, even if the theory contains gauge fields, diagrams with gauge fields

will not contribute to S at three loops, but certainly will do so at higher order. Therefore, even

in a gauge theory we don’t need to include gauge fields in our leading-order calculation of S.

C.1. One loop

At one loop the calculation proceeds with no subtleties since renormalization is straightforward.

The two diagrams that contribute to NI and their corresponding counterterms are shown in Fig. 2.

p p pp

p p pp

Fig. 2: Diagrams that contribute to Na|ij at one loop and their corresponding counterterms.

A straightforward calculation gives

(Nc|ij)ab = − 1

16π2�

1

2
(y∗a|ijδbc − y∗b|ijδac) + finite,

and there is of course a complex conjugate (N∗
c|ij)ab.

In order to simplify the notation we write the result for the residue of the simple �-pole in NI

in the form

16π2(N1
I )ab∂

µgI = −1
2 [tr(ya∂

µy∗b ) + h.c.− {a ↔ b}],

where gI on the left-hand side stands here for yc|ij or y∗c|ij . Selecting the appropriate derivatives

one easily reads off the corresponding N1
I . Our result reproduces JO’s equation (7.16) for ρI when

we use Dirac spinors.

C.2. Two loops

At two loops there are three Feynman diagrams that contribute to NI , listed in Fig. 3. The

calculation of the residues of the simple �-poles of NI requires now a subtraction of subdivergences,

something that proceeds, for the most part, in the usual way. However, there is a small subtlety,

28
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A simple 1-loop computation gives:



So this is real stuff, can’t be ignored. 

Does it go away in the x-independent-coupling limit?

Look both at trace anomaly and consistency conditions. 

Preliminary: finite operators

where the new counterterm is in Dµφa = (∂µδab + (∂µgI)(NI)ab) φb

[OI ] =
δ

δgI

�
L = OI − ∂µJµ

I

Then 

Jµ
I = ∂µφT NIφwhere 

L = 1
2DµφaDµφa +

1
4!

gabcdφaφbφcφd = 1
2DµφT Dµφ + gIOI



Trace anomaly (take limit of flat space, x-independent couplings):

Tµ
µ = βIOI

= βI(OI − ∂µJµ
I ) + βI∂µJµ

I

= βI [OI ] + ∂µJµ

Jµ = βIJ
µ
I = ∂µφT βINIφHence is finite

NI =
N1

I

�
+

N2
I

�2
+ · · ·Now βI = −�gI + · · ·

So there is a finite current given in terms of 

S = −gIN
1
I

As we shall see, on cycles S = Q 



May also re-write:

Tµ
µ − ∂µJµ = βI [OI ]

= βI(OI − ∂µJµ
I )

= BIOI

(Sg)abcd = Saegebcd + permsBI = βI − (Sg)I

where

Condition for cycles or FPs: BI = 0



Consistency Conditions

Preliminary: symmetry considerations

L = 1
2DµφaDµφa +

1
4!

gabcdφaφbφcφd = 1
2DµφT Dµφ + gIOI

Introduce background gauge field 

δφa = −ωabφb

SO(ns) local invariance:

δgI = −(ωg)I δAµ = Dµω

W [gµν , gI − (ωg)I , Aµ + Dµω] = W [gµν , gI , Aµ]

The generating functional is a locally SO(ns) invariant functional

(for this one needs to extend the set of counterterms and replace                                         as needed) 

Automatically finite currents are obtained from 

Dµφa = (∂µδab + (∂µgI)(NI)ab) φb → Dµφa = (∂µδab + (Aµ)ab + (DµgI)(NI)ab) φb

Dµ = ∂µ + Aµ for ∇µ

−[φa
←→
D µφb] =

δ

δ(Aµ)ba

�
L

[DµφT wφ] = DµφT (w + NI(wg)I) φ with wT = −wor



Among JO consistency conditions:

Focusing on, e.g., (3.11b), we have indicated that all of the renormalization-point dependence

on the left-hand side, which enters also through the counterterm in Aµ, carries the conformal

compensator factor. Concentrating on the new contribution, the variation under τ → τ + σ gives

∆σ[
1
2(Dµφ)

TDµφ] = −(Dµφ)
T (NI β̂I∂

µσ)φ+ · · ·

= −∂µσ Jµ + · · · ,

where the ellipses stand for the variations with σ that are accounted for elsewhere, and we have

used in the last step the second equation (3.8). As we see, the natural outcome from a scaling

transformation is not the canonical dilatation current xνTµν but the current (3.10).

It is now obvious, as will be explicitly shown in the next section, that Jµ corresponds to the

virial current V µ on cycles. More precisely, Jµ is the appropriate virial current everywhere in

parameter space. The natural dilatation current is thus defined by (3.10) and differs from the

canonical one as soon as Jµ is non-trivial.

The divergence of the current Jµ in (3.9) precisely cancels the corresponding terms on the

right-hand side, so that one has,

Tµ
µ = β̂IOI − ((1 + γ̂)φ) ·

δ

δφ
S0, (3.12)

which is nothing but the well-known expression for the trace anomaly in flat space. This is

as expected because (2.2) are of course correct. However, in order to derive the consistency

conditions in the most general case, one must use (3.11) instead of (2.2) to account for all possible

counterterms. It is therefore not surprising that the work of KS led LPR to the conclusion that

non-conformal scale-invariant theories are impossible: by neglecting these important counterterms

both of them effectively assume that scale implies conformal invariance as a starting point. Let

us turn anew to the JO consistency conditions.

In the general case considered here the JO consistency conditions are modified relative to

what has been presented in Section 2. On the one hand the conditions have to be covariant

under transformations by the symmetry group GF . On the other, there are additional terms that

arise from the additional counterterms required to render the theory finite. Osborn gives the form

of these most general consistency conditions [9]. Two conditions play a role in our discussion:

8∂Iβb = χg
IJBJ −BJ∂JwI − (∂IBJ)wJ − (PIg)JwJ

= χg
IJBJ − βJ∂JwI − (∂IβJ)wJ − (ρIg)JwJ ,

(3.13)

and

BIPI = 0. (3.14)

In addition, covariance under GF gives, e.g.,

(ωg)I∂Iβb = 0 and (ωg)I∂IS = [ω, S]. (3.15)
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8∂ia = χg
ijβ

j − βj∂jwi − ∂iβ
jwjCompare with previous:

obtained in absence of dim-3 operators (and hence of NI counterterms)

8µ
dã

dµ
= βi∂iã = χg

ijβ
iβjRecall,      for get c-theorem: 

Now additional term spoils positivity in general

with ⇒

with 

ã ≡ a + 1
8wIβI

⇒ −8
dÃ

dη
= BI∂IÃ = χg

IJBIBJ ≥ 0Ã ≡ a + 1
8wIBI

−8
dã

dt
= 8µ

dã

dµ
= βI∂I ã = χg

IJβIBJ − βI(ρIg)JwJ

Ã decreases (is non-increasing) along    -flows, and equals a on FPs and cycles (where BI = 0) η

ã ≡ a + 1
8wjβ

j



RG-flow with endpoints at fixed points or limit cycles,

−dgI
dt

= βI(g(t)),

with gI(−∞) = (gI)UV and gI(∞) = (gI)IR. In the case of limit cycles the end points refer rather

to limit trajectories. Now, consider the solution to the η-flow,

−dḡI
dη

= BI(ḡ(η)).

It is given by

ḡ(η) = F (η)g(η),

where

F (η) = T

�
exp

�
−
� η

−∞
dη�S(η�)

��

is an element of GF and T is the η-ordered product. As such, βI(ḡ) = βI(Fg) = (Fβ)I(g) so that

the fixed points or cycles (gI)UV and (gI)IR are mapped to physically equivalent “fixed points”

(ḡI)UV and (ḡI)IR. Since �Bb is GF -invariant and BI = 0 at fixed points and cycles, it follows from

the monotonic η-flow of �Bb that (βb)UV > (βb)IR. (Of course the GF -invariance of �Bb implies its

monotonic decrease along an actual RG-flow.) We emphasize that this proof relies on perturbation

theory to establish the positivity of the metric χg
IJ . For a non-perturbative proof we turn to the

method of KS.

Let us review the argument of KS. Our presentation is closer in spirit to that of LPR. We

will try to note explicitly when implicit assumptions in that argument are made. While plausible,

these assumptions should be justified for the theorem to be established. We deviate from both

presentations in that we do not derive nor use a Wess–Zumino dilaton action for, as we will see,

this is not necessary for the computation.

Consider the four point function of the operator
1
2∂µD

µ =
1
2∂µ(xνT

µν+Jµ) in an arbitrary four-

dimensional theory which is classically scale-invariant. In the absence of dimension-three currents

this is just the four point function of
1
2T

µ
µ, but we can more generally consider in one swoop

the case where dimension-three currents are present. Furthermore, we will consider kinematics

such that p2i = 0, i = 1, . . . , 4, for the momenta pi of the four insertions. This is equivalent to

computing the τ(x) scattering amplitude A(s, t) with the on-shell condition ∇2τ = 0, so that the

Mandelstam variables satisfy s+ t+ u = 0.

Now, we will assume that the forward scattering amplitude Afwd(s) = (s, 0) exists, that is that

the limit t → 0 of (s, t) exists. This could fail if A(s, t) had terms of the form, e.g., ∼ s2 ln(t).

As we have explained, the response of the theory to Weyl rescaling is measured in the general

case by ∂µDµ, so Afwd(s) can be computed by taking four τ(x)-derivatives of the generating

functional and then taking the metric as flat, the coupling constants to be spacetime-independent

and the background field Aµ and the conformal compensator to vanish. Alternatively, and more
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ḡ(η) = F (η)g(η),

where

F (η) = T

�
exp

�
−
� η

−∞
dη�S(η�)

��

is an element of GF and T is the η-ordered product. As such, βI(ḡ) = βI(Fg) = (Fβ)I(g) so that
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Relation between flows:

RG-flow: η-flow:

∈ SO(ns)

SO(ns) invariance: Ã(ḡ(η)) = Ã(g(η)) ⇒ − dÃ

dt
≥ 0

that is      is non-increasing along RG flows, a perturbative c-functionÃ

SO(ns) invariance gives           constant on cycles: Ã =

Alternatively: Covariance under SO(ns) gives constraints, 

a(g + δg)− a(g) = (ωg)I∂Ia = 0

and similarly for any SO(ns) invariant, like ã, Ã,χg
IJβI BJ , . . .

On cycle, βI = (Qg)I

da

dt
= −βI∂Ia = −(Qg)I∂Ia = 0

g(t) = F−1(t) ḡ∗ ⇒ Ã(g(t)) = Ã(ḡ∗)



Compute S
Recall S = −gIN

1
I

For theory of  ns real scalars, nf Weyl spinors (symmetry group GF = SO(ns) × SU(nf)) with 

1. S is Q on cycles,

2. S vanishes at fixed points.

In light of these results the computation of Q can be tremendously simplified given an explicit

expression for S. The procedure to determine Q involves determining first the beta functions for

the coupling constants to second order in the loop expansion for scalar self-couplings, to third

order in the loop expansion for Yukawa couplings and to fourth order in the loop expansion for

Yang–Mills couplings, and then solving the system of nonlinear coupled equations βg
= 0 and

βI = (Qg)I (we implicitly use here that gI can also stand for Yukawa couplings). Since S must

have a perturbative expansion that starts at third order in the loop expansion, to determine Q

from S it suffices to evaluate it with coupling constants on the cycle computed to lowest order

in the loop expansion. So Q is obtained from S by determining the zeroes of the one-loop beta

functions (two-loop for gauge couplings): if S = 0 on the zero of the beta functions, the zero is a

fixed point of the RGE, but if S �= 0 on the zero, then the zero is a point on a cycle and Q = S

there.

To this end an explicit, three-loop expression for S is required. But as pointed out above,

there has been no computation of S to the order where one would expect it to be non-vanishing

if S were to equal Q on cycles. We have endeavored to compute S to third order in the loop

expansion for a general theory containing nS real scalars and nf Weyl spinors, possibly charged

under a gauge group. The potential in the Lagrangian is

V =
1
4!λabcdφaφbφcφd + (

1
2ya|ijφaψiψj + h.c.).

The details of the computation are spelled out in Appendix C. The surprisingly simple result is

(16π2
)
3Sab =

5
8 tr(yay

∗
cydy

∗
e)λbcde +

3
8 tr(yay

∗
cydy

∗
dyby

∗
c )− {a ↔ b}+ h.c..

We have evaluated this expression on the fixed points and cycles of the theories we explored

in [3, 5, 6] and found that in each case S vanishes at all fixed points and equals our previous

determination of Q on all cycles. It should be mentioned that the models in [3,5] are in d = 4− �

dimensions, with � small but positive. In these cases the consistency equations still apply provided

one carefully tracks the presence of � in the beta functions, particularly in β̂i
= −�kigi + βi

and

correspondingly in �Bi
.

Now for the proof of the propositions above. First we show that S = Q on cycles. Consider

the η flow with fI = BI , with boundary condition that at η = 0 the point ḡI(0) is on the cycle.

Then BI(0) = ([Q−S]g(0))I is in the Lie algebra of GF and the left-hand side of (3.20) vanishes.

Since χg
IJ = −2χa

IJ to second order in the loop expansion, and −2χa
IJ is positive-definite, (3.20)

gives BI(0) = 0. This implies S = Q + ∆Q on cycles, where (∆Qg)I = 0. But if ∆Q �= 0 this

corresponds to a conserved current, and we are free to redefine the scale current by a conserved

current, Q → Q+∆Q. Hence, S = Q on cycles.
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found, at 1-loop: 

It is perhaps helpful to remind the reader here that in a theory with scalars and fermions the

I index can be either (abcd) or (a|ij). Let us also remark that S appears first at three loops in a

theory with scalars and spinors. The reason is easily seen from (3.8): a diagram that contributes

to N will only contribute to S if it is not symmetric under a ↔ b. As it turns out there are no

such diagrams in scalar self-energies at one and two loops, but there are two such diagrams at

three loops. Consequently, even if the theory contains gauge fields, diagrams with gauge fields

will not contribute to S at three loops, but certainly will do so at higher order. Therefore, even

in a gauge theory we don’t need to include gauge fields in our leading-order calculation of S.

C.1. One loop

At one loop the calculation proceeds with no subtleties since renormalization is straightforward.

The two diagrams that contribute to NI and their corresponding counterterms are shown in Fig. 2.

p p pp

p p pp

Fig. 2: Diagrams that contribute to Na|ij at one loop and their corresponding counterterms.

A straightforward calculation gives

(Nc|ij)ab = − 1

16π2�

1

2
(y∗a|ijδbc − y∗b|ijδac) + finite,

and there is of course a complex conjugate (N∗
c|ij)ab.

In order to simplify the notation we write the result for the residue of the simple �-pole in NI

in the form

16π2(N1
I )ab∂

µgI = −1
2 [tr(ya∂

µy∗b ) + h.c.− {a ↔ b}],

where gI on the left-hand side stands here for yc|ij or y∗c|ij . Selecting the appropriate derivatives

one easily reads off the corresponding N1
I . Our result reproduces JO’s equation (7.16) for ρI when

we use Dirac spinors.

C.2. Two loops

At two loops there are three Feynman diagrams that contribute to NI , listed in Fig. 3. The

calculation of the residues of the simple �-poles of NI requires now a subtraction of subdivergences,

something that proceeds, for the most part, in the usual way. However, there is a small subtlety,
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Why? Individual topology symmetric under a↔ b



Fig. 3: Feynman diagrams that contribute to NI at two loops.

not seen in the usual treatments of renormalization, that we would like to point out. Clearly, the

two right-most diagrams of Fig. 3 have subdivergences so we have to add to them the diagrams

with the insertions of the corresponding counterterms. For the right-most diagram the graph with

the insertion of the counterterm is

Now, when the momentum that comes in from, say the left external leg, flows out through the

counterterm, then there are two diagrams that contribute, namely

p

p

and
p

p

where the momentum exits to the north-east or to the north-west depending on which vertex it

flows out of in the original diagram in Fig. 3. In both cases the counterterm is the same, but

the diagram with the insertion of the counterterm is different as a result of the difference in the

momentum of the internal leg that the counterterm picks up. That is, had we retained different

momenta for the various vertices, there would be two momenta associated with the counterterm.

The two loop result for N1
I , previously unpublished, is

(16π2)2(N1
I )ab∂

µgI =− 1
24λacde ∂
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∗
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It follows that S vanishes at this order. This can be seen, term by term (when anti-symmetrized

in a and b) by replacing gI for ∂µgI .
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Contributions to NI still symmetric at 2-loops

JO: S = 0 to 2-loops in fermion-scalar model, and to 3-loops in pure scalar model 
C.3. Three loops

At three loops there are many diagrams that contribute to NI , but only four are not symmetric

under a ↔ b and thus end up contributing to S. These diagrams are shown in Fig. 4, and we

here only compute their contributions to N1
I .

Fig. 4: Three-loop diagrams that contribute to NI not symmetric under a ↔ b, and thus leading

to contributions to S at three loops.

From these diagrams (and the corresponding counterterms), using the methods for the calculation
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and since

S ≡ −kIN
1
I gI = −N1
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1
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we finally obtain
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As already remarked in the main body, evaluating this on points in coupling space where we have

found fixed points and cycles in Refs. [3, 5, 6], we find that S vanishes at all fixed points and

equals Q on all cycles.
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Contributions to NI not symmetric at 3-loops; 



Be mesmerized: 
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here only compute their contributions to N1
I .
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First ever computation of non-vanishing S :

Checked that:
• S = 0 at non-trivial FPs of models discussed in Stergiou’s talk
• S = Q at all cycles in those models



S = Q at cycles

−8
dÃ

dη
= BI∂IÃ = χg

IJBIBJ ≥ 0

GF symmetry: dÃ

dη
= 0 at cycle

Positivity (perturbatively) of χg
IJ ⇒ BI = 0 at cycle

BI = βI − (Sg)I ⇒ BI = (Qg)I − (Sg)I at cycle

⇒ ((Q− S)g)I = 0 ⇒ S = Q + ∆Q where (∆Qg)I = 0 simply defines new 
conserved current, 
ambiguity in Q

So, redefining Q� = Q + ∆Q

we have shown that on cycles S = Q



S = 0 at Fixed Points 

−8
dÃ

dη
= BI∂IÃ = χg

IJBIBJ ≥ 0

Use again

but now with BI = −(Sg)I at Fixed PointsdÃ

dη
= 0and

⇒ (Sg)I = 0 at Fixed Points

Either S = 0 or there is an emergent symmetry at the FP and       is the associated conserved current  Jµ



Back to 
Non-perturbative Approach

Start by showing again last slide of that section



More on interpolation: FP

The virial current is defined only on cycle: Vµ = DµφT Qφ β(g)|on cycle = (Qg)|on cycle

We want a 4-pt function of X, where X = Tµ
µ at FPs, and X = Tµ

µ − ∂µV µ on cycles

We take 

Jµ = DµφT Sφ

X = Tµ
µ − ∂µJµ

where the new current 

is given in terms of a function S(g) that has the properties

FP

S(g)→ 0
S(g)→ Q

Fortunately, JOs quantity S has these properties!



Interpretation: in X = Tµ
µ − ∂µJµ,  X is just X = ∂µDµ which vanishes at scale invariant cycles

and on a curved background (but with x-independent couplings and vanishing Aµ)

∂µD
µ = BIOI −

a

16π2
G +

c

16π2
F − b

16π2
R2

BI = βI − (Sg)Iwith defined everywhere in theory space, and vanishing on FPs and cycles

Why ignore terms involving 
The x-dependence comes in through 
However, for fixed points 

DµgI?
gI(µeτ(x))

gI(µeτ(x)) = gI∗ is τ(x)-independent

At cycles couplings are covariantly constant. Hence additional terms are also absent. 
That is, dependence comes as rotation in GF and anomaly terms are GF invariant.

Only left to do: tie loose ends....



Last, recall: Not quite on semicircles I1 and I3.  LPR use conformal perturbation theory to 
establish corrections vanish in the limit. 

But they only use scaling properties, which are also valid in scale but not conformal theory. 
Their proof goes through.

I2 I2

I1

I3I3

s

Fig. 1: The contour of integration for

�
ds

s3
Afwd(s).

integral over the semicircle I1 cannot be easily computed, but in the limit that the radius of the

semicircle vanishes it is reasonable that one can use the limiting value,
�

I1

ds

s3
Afwd(s) ≈

�

I1

ds

s
2(βb)IR = 2πi(βb)IR, (5.3)

where the last step corresponds to taking the vanishing limit of the radius of the semicircle I1.

Similarly, the large circle I3 gives
�

I3

ds

s3
Afwd(s) ≈

�

I3

ds

s
2(βb)UV = −2πi(βb)UV. (5.4)

It follows from Cauchy’s theorem that

(βb)UV − (βb)IR =
1

2πi

�

I2

ds

s3
Afwd(s)

=
1

π

� ∞

0

ds

s3
Im(Afwd(s+ i0)),

where in the last line LPR assume crossing symmetry to write Afwd(−s + i0) = A∗
fwd(s + i0).

Finally, the KS argument invokes the optical theorem that relates the imaginary part of the

forward scattering amplitude to a positive-definite cross section to conclude that

(βb)UV − (βb)IR > 0.

We note in passing that the optical theorem is known to apply for forward scattering amplitudes

of (on-shell) physical particles. It is not clear a priori that it applies to Green functions of

composite operators at p2i = 0, even if it corresponds to the scattering amplitude of would-be

dilaton scattering. We think the assumption of positivity is reasonable, so we press on.

What steps in the argument above require special attention when the theory admits dimension-

three currents? As we have pointed out, the dilatation current now has an additional Jµ term,
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1.Simplification in search for models:

Afterthoughts

Previously: solve βI(g)− (Qg)I = 0

both for g and Q using 3-loop beta-function

Now: solve βI(g) = 0

for g only, using 1-loop beta-function;
plug into S;  if S = 0 then FP, else cycle with Q = S 

2. Are there flows or ?

Numerical study in progress.



3.Wess-Zumino Action with x-dependent couplings?

Quick review:
W [e−2τ(x)gµν(x), gi(e−τ(x)µ)]τ → τ + σ inConsider infinitesimal variations

The a-term in the anomalous variation is 

16π2∆W = −
�
√

gσaG + · · ·

and KS show this is produced by the variation of the Wess-Zumino action

16π2∆WWZ = −
�
√

g
�
τaG− 4a

�
Gµντ,µτ,ν + τ,µτ ,µ∇2τ + 1

2 (τ,µτ ,µ)2
��

We can extend this result to include a particular JO term

16π2∆W = −
�
√

g
�
σaG + ∂µσwi∂νgiGµν

�
+ · · ·

Now the WZ action is 

16π2∆WWZ = −
�
√

g
�
τaG− 4ã

�
Gµντ,µτ,ν + τ,µτ ,µ∇2τ + 1

2 (τ,µτ ,µ)2
��

where ã ≡ a + 1
8wjβ

j is our old friend for which there is a perturbative c-theorem 
(in the absence of dimension 3-operators) 

Note the first terms is still plain a: cannot simply redefine a everywhere. 



However

we are unable to construct a complete WZ action (that is, one that accounts
for the complete set of operators in the anomaly as listed in JO)

However

as we have seen, there is no need to have a WZ action to complete the KS argument



Thanks for your attention

The End


