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That 1s, we study flows between cycles
or from fixed points (FP) to cycles

or from cycles to fixed points

For this talk “cycles” mean “recursive flows”

that is, either limit cycles or ergodic flows



Two approaches:

1.Perturbative
1. Valid when both ends and the complete flow between them lie in the perturbative regeme

i1. Stronger: can study whole flow, not just compare end points
111.Well established

2.Non-perturbative
1. More generally valid
11. Weaker: compare quantities, like a, at ends
i11.Relies on (few and reasonable) unproven assumptions



Outline

® Intro
® Non-perturbative:
e KS and LPR setup for cycles
® Need of function S for extension to cycles
® Perturbative:
® review of JO’s perturbative proof of a ¢ theorem
® the virial current and definition of S
® computation of S
® cstablish properties of S: §=0 at FP, §= Q on cycles
® Non-perturbative:
® Complete the KS proof for generic ends
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Talk based on our paper, A generalized c-theorem and the consistency of scale without conformal
invariance. e-Print: arXiv:1208.3674 [hep-th]



The KS proof of the a theorem

The presentation follows more closely LPR, with modifications.
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along the RG flow, with p% == p% = (0 as if on mass-shell massless particles, and
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The amplitude has a cut along the whole
real s-axis, but is analytic in the upper half-plane:
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crossing optical
IR-limit UV-limit theorem

Consider next IR and UV limit of 4-pt function



Trace anomaly in curved background:

a C b

TH = 3;0; — G F — R?
p =0 1672 + 1672 1672
where
F=RMPR, oo — iR“”R o+ 2 R? (square Weyl)
HPTd — 2 Pl d=2)(d—-1)""
2
= P Rywpe — 4R Ry, + R?), i
G d—3d-2) (RMYPP Ry w + R7) (Euler density)

Since  TH =2¢M" and (3; =0 at fixed points

we can compute the 4-pt function by thrice differentiating this and setting 9. = Nuv

Alternatively, set ~ gup = 62T($)77MV and thrice differentiate w.r.t 7(z)

e G = 8(327)2 — 87 M — 167, 7, 7" — 8(d — 3)7‘,“7"“827‘ +2(d—1)(d — 4)(7‘,M7-’“)2
e TR = 4(0°7)? — 4(d — 2)77#7’“827' + (d — 2)2(7#7’“)2.
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Trace anomaly in curved background:

a C b

TH = 3;0; — G F — R?
p =0 1672 + 1672 1672
where
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e VG = 8(9%7) — 87T — 167, 7,7 — 8(d — 3)T,THO*T + 2(d — 1)(d — 4) (7, TH)?

e TR = 4(0°7)? — 4(d — 2)77#7’“827' + (d — 2)2(7#7’“)2.

Hence A 29 a
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. . . 1 AW S 1 AW s
Using thisin ~ -— [ ds™ g( ) + = | gt a(s)

<0 KS (and LPR) obtain

ayv = QIR

I3

Comments: % \% %

I3

e Not quite at FPs on semicircles /1 and /3: need to establish corrections vanish in the limit.
To this end, LPR use conformal perturbation theory. Marginal deformations are most
dangerous.

e No use made of Wess-Zumino action: instead of integrating anomaly and differentiating
four times, we differentiate three times. This will be useful below.

e Global result (or “weak” version of a theorem): no local monotonicity along the Rg flow
information.

Towards generalization to cycles:

e Rather than the FP relation Th = — 1 6a ;G + 1 6c 5P — 16b 5 R?
T T T
a C b

use the cycle relation 9,D"* =T! —9,V! = ———G + R?

F_
1672 1672 1672

e Need interpolating function to compute amplitude (of what?) on I»

Y



More on interpolation: FP

e;

The virial current is defined only on cycle: V), = DuqﬁTng B(9)on cycle = (Q9)]|on cycle

We want a 4-pt function of X, where X =T/ atFPs,and X =T/ —J,V" oncycles

We take X =T —0,J"
where the new current J, = D, ¢ S¢

is given in terms of a function S(g) that has the properties
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S(g) — 0 \

Fortunately, JOs quantity S has these properties!



Perturbative approach

(Note: most of the results below are valid more generally, not just in perturbation theory.
It is only some positivity properties of “metrics” that require perturbation theory).

JO consider trace anomaly in curved background with spacetime dependent coupling ‘constants’

Why is this necessary?

KS/LPR use W[e_%(m)mw, g ()] = Wnuw, g (e™® ). (W = generating function)

(or even the same with general metric),
obtained by making a 7-dependent field redefinition in the quantum action.

The anomaly has now all terms of dimension 4 constructed out of the mertic and the couplings.
So in addition to

a C b
O, — G F — R?
o 1672 + 1672 1672
one has terms like
%X?jaugi L9’ GH and %X%Vzgivzg‘j

See JO for the complete (intimidating) expression!



~

55,
6g(x)

gives finite (renormalized) operators:

Bonus: taking where S, is the renormalized quantum action

55,

Similarly,

2 465,
T, = ’
V9 ogh” (z)

defines a finite stress-energy tensor.

Note: This does not mean that all finite operators must be of this form!



Consistency conditions
Now, since
Wle™™ D, ' (1)) = W n, g' (€7@ ).
terms in the anomaly satisfy relations. Among them, of particular interest
89ia = x4, — B Ojw; — i w; Bl = po s 0; =

(Notes: 1. I have rescaled JO quantities by 1672; 2. Not a gradient flow)

da o o . .
= 8#@ = x3;0'F — 0jw;B' B — 0;F w; '




Consistency conditions

Now, since

W[e_%(x)nw/a gi (N)] = W[mw; gi<€7—(x):u)]°
terms in the anomaly satisfy relations. Among them, of particular interest
80;a = ngjﬁj — B 0jw; — ;7w B = p s 0; =

(Notes: 1. I have rescaled JO quantities by 1672; 2. Not a gradient flow)

d N o . .
= SM_CL — Xgﬁzﬁj — aj’wzﬁzﬁ] — &ﬁjwjﬁz
dpu *J
perturbatively

positive definite




Consistency conditions

Now, since

W[G_QT(x)anagi(N)] = W[mw»gi(eT(m)M)]'
terms in the anomaly satisfy relations. Among them, of particular interest
80;a = x3; 7 — B 9jw; — 0iF w; 8" = P 0i =

(Notes: 1. I have rescaled JO quantities by 1672%; 2. Not a gradient flow)

= SM@ = ngjﬁiﬁj ‘@j’wzﬂiﬁj — 0 w; ]

dp
perturbatively indefinite sign

positive definite and
lower order in loop expansion




Consistency conditions

Now, since

W[G_QT(x)anagi(/l)] = W[mw»gi(eT(m)M)]'
terms in the anomaly satisfy relations. Among them, of particular interest
80;a = x3; 7 — B 9jw; — 0iF w; 8" = P 0i =

(Notes: 1. I have rescaled JO quantities by 1672%; 2. Not a gradient flow)

= SM@ = ngjﬁiﬁj ‘@j’wzﬂiﬁj — 0 w; ]

dp
perturbatively indefinite sign

positive definite and
lower order in loop expansion

In fact, can make a increase then decrease
as it moves away from UV-FP !
No “local” or “strong” a-theorem




However, JO note that  80;a = ij Bl — B Ojw; — . 37 (ny
= 80i(a+ gw;B) = x50 — F 0wy

So there 1s a perturbative c-theorem for a = a + %wj 3

da
8 -
L

L

— X?jﬁiﬁj >0

Nota bene: In Yang mills (with matter) with 89 = —Byg3 /1672 — B1g°/(1672)?

nVﬁl 4 6
—ag+ —XPL g0

may increase away from the trivial UV-FP.,

But

~ _ nvBo 4
4= a0~ 116527 +O(g”)

always decreases away form the trivial UV-FP,



Dimension 3 operators

The new dimension-4 terms in the anomaly arise from the need to add local counterterms
to the quantum action

go — go + gc.t.

Then, for example, anomaly terms like

%ngauglayng/u/ and %X%V%QZVQQJ

arise as beta-functions of the counterterms

14,:0,9' 0,9’ GM and 5; VgV g

But in theories with scalars or spinors we need additional counterterms
for finiteness of the quantum action.

The need arises because there are dimension-3 operators (currents) and
one can form dimension-1 “currents” from derivatives on coupling “constants.”



Very relevant example:
LK = %auﬁbaamba a=1,...,n4
Then we must add for finiteness a counterterm
Let. = (0"91)(N1)ap 60,00
with  (N7)ap = —(N71)ba

and the index / runs over all the (dimensionless) coupling constants, eg, / = abcd in

1
V= Igabcdgbaqbbqbcgbd - gIOI



Example: n, real scalars, nr Weyl spinors with

V = JAabedPaPodedd + (5YajijPatith; + huc.).

A simple 1-loop computation gives:

I 1

(Nefis)ab = = 1672€ 2

(y2|z‘j(sbc

- ?/Z|z‘j5ac)



So this is real stuff, can’t be ignored.
Does it go away in the x-independent-coupling limit?

Look both at trace anomaly and consistency conditions.

Preliminary: finite operators

1
L= %DM¢CLDM¢CL + Egabcd¢a¢b¢c¢d - %DM¢TD,M¢ + gIOI

where the new counterterm is in -~ D ¢, = (9,045 + (9,.91) (N1)ab) ®b

Then

_ 0 _ 7!
01 = 5~ [£ = Or=0,]]

where Ji =0t N1g



Trace anomaly (take limit of flat space, x-independent couplings):

T = B10;
= B1(Or = 0,J7) + B10,J}
= ﬁ[[@[] + GMJ“

Hence JH = B;JF = 8“¢Tﬁ1N1q§ is finite
NI  N?
Now NI: EI—|—62I—I—--- ﬁI:—EgI+...

So there is a finite current given in terms of

S =—grN;

As we shall see, on cycles S=Q



May also re-write:

TV — 8,J" = 3;[0/]

— 51(01 - 8/VLJ;L)
= B;O;

where

Br =06r—(S9)1 (S9)abed = SaeYebed + PErms

Condition for cycles or FPs: By =0



Consistency Conditions

Preliminary: symmetry considerations

1
L= %DM¢aDu¢a + Igabcd¢a¢b¢c¢d — %DMCbTDMQb + 9107

Introduce background gauge field
D,Lb¢a — (a,uéab + (augI)(NI)ab) ¢b — Du¢a — (a,u(sab + (A,u)ab + (DugI)(NI)ab) ¢b
SO(n;) local invariance:

0pa = —Wab P dgr = —(wg) 0A, = D,w

The generating functional is a locally SO(#s) invariant functional
W[gMV7 gr — (wg)fa Apb + D,uw] — W[glJJV, qr, A,LL]

(for this one needs to extend the set of counterterms and replace D,, = 9,, + A, for V,, as needed)

Automatically finite currents are obtained from

~[6a D¥ou] = £
/ or [DFolwe] = Do (w+ Nr(wg)r) ¢ with w! = —w



Among JO consistency conditions:

80ra = x7,;By — Bjoywr — (0rBy)wy — (Prg)jwy

= X7;B5 — Bs05wr — (O185)wy — (p19)sw,,
and BrPr =0
Compare with previous: 89;ia = X738 — 3 9;w; — 0;3 w,
obtained in absence of dim-3 operators (and hence of N; counterterms)

Recall, for

- : da
a=a-+ %wj 67 get c-theorem:

8#@ = ('0;a = ngjﬁzﬁ]

Now additional term spoils positivity in general

: ~ 1 da da N

with a=a+ gwrfi = —8— = 8,u@ = Brora = x1,68:Bs — Br(prg) jw;
dA

with A=a+ gwrB; = —8——

dn == BIaIA == X?JBIBJ Z 0

A decreases (is non-increasing) along n-flows, and equals a on FPs and cycles (where B; = 0)



Relation between flows:

RG-flow:

SO(ns) invariance:  A(gG(n)) = A(g(n)) =

that 1s

dgr dg[
T = Br (g(t)>7 n-flow: dn

>
dt =

A is non-increasing along RG flows, a perturbative c-function

~

SO(ns) invariance gives A = constant on cycles: g(t) = F~'(t) gs

Alternatively: Covariance under SO(#ny) gives constraints,

a(g +d0g) — alg) = (wg)10ra =0

and similarly for any SO(#ny) invariant, like a, A, x1;8:B;, ..

Oncycle, 8; = (Qg)r

da

gl —B10ra = —(Qg)10ra =0



Compute S

Recall S = —gINI1

For theory of n, real scalars, nr Weyl spinors (symmetry group Gr= SO(ns) x SU(ny)) with

V = 5ihabedPa®bPcdd + (5Yalijdatbityj + hoc.).
1 1 §
found’ at l-lOOpZ (Nc|ij)ab - = 167'(' §(ya‘23550 yb|ij5ac)

More conveniently, rewrite
167%(N7)ap0" g1 = —5[tr(y,0"y;) + hec. — {a < b},

Hence S =0 (1-loop)

Why? Individual topology symmetric under a < b



Contributions to NV still symmetric at 2-loops

JO: §=0 to 2-loops in fermion-scalar model, and to 3-loops in pure scalar model

Contributions to N; not symmetric at 3-loops;




Be mesmerized:

(167> (N])ab0" g1 D — 5 tr(y, 0" ysyaye) Mocde — 3 tr(Yais 0" yays) Mocde — 5 T (Yali YaO"yis) Nvcde
— (Yl ays) 0" Nocde — 57 02 (U O" Y3 Yays ) Aacde — 35 0T (Up Ui 0" Ya¥h) Nacde
31 (W Ve Ya0"ye) Aacde — 24 tr(0" Yy Y vaye ) Nacde — 35 0 (YO Yiyayayy i)
— o5 T (WaYe 0" yayiyp ve) — 32 (Y, Ysvad vavs ve) — o5 tr(YaVeyayi® upys)
— 5 T (Ya Ve vaviays 0" vE) + 15 v (W 0" vy iy i) — a5 tr(Ya e 0 v vy vi)
15 T (Wa Vi v 0" yaun Vi) — 56 r(Waibeyad" vy yi) + 16 tr(Yabey. vy 0v;)

+ h.c. — {a < b},

First ever computation of non-vanishing S :
(167%)°Sap = 3 tr(Ya¥eyaye) Moede + § T (YaYoYa¥itpye) + hoc. — {a < b}

Checked that:

e § =0 at non-trivial FPs of models discussed in Stergiou’s talk
e §=(Q at all cycles in those models



=

S = Q at cycles

dA .
_Sd_n = B[@[A = X?JB[BJ Z 0

Gr symmetry: =0 atcycle

A
dn
Positivity (perturbatively) of X7, = Br=0 atcycle
Br=p8r—(Sg9)r = Br=(Qg)r —(S9)1 at cycle

(Q@—9)9)r=0 =S5=0Q+ AQ where (AQg); =0 simply defines new
conserved current,
ambiguity in Q
So, redefining Q' = Q + AQ

we have shown that on cycles S = Q)



S = 0 at Fixed Points

Use again

dA .
_8d_77 = B[@[A = X?JB[BJ Z 0

dA

but now with B; = —(Sg); and el 0  at Fixed Points
Ui

= (Sg)r =0 at Fixed Points

Either S = 0 or there is an emergent symmetry at the FP and J* is the associated conserved current



Back to
Non-perturbative Approach

Start by showing again last slide of that section



More on interpolation: FP

e;

The virial current is defined only on cycle: V), = DuqﬁTng B(9)on cycle = (Q9)]|on cycle

We want a 4-pt function of X, where X =T/ atFPs,and X =T/ —J,V" oncycles

We take X =T —0,J"
where the new current J, = D, ¢ S¢

is given in terms of a function S(g) that has the properties

° o
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FP
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S(g) — 0 \

Fortunately, JOs quantity S has these properties!



Only left to do: tie loose ends....

Interpretation: in X =T/ — 9, J} Xisjust X = 0, D" which vanishes at scale invariant cycles

and on a curved background (but with x-independent couplings and vanishing 4,,)

aG—i—CF—b

R2
1672 1672 1672

9,D" = B;O; —

with Br = 87 — (Sg)r  defined everywhere in theory space, and vanishing on FPs and cycles

Why ignore terms involving D, gr”
The x-dependence comes in through g I(MGT(x))
However, for fixed points gr(pe™™) = gr. s 7(x)-independent

At cycles couplings are covariantly constant. Hence additional terms are also absent.
That is, dependence comes as rotation in Gr and anomaly terms are Gr invariant.



Last, recall: Not quite on semicircles /1 and /3. LPR use conformal perturbation theory to
establish corrections vanish in the limit.

I3

I3

But they only use scaling properties, which are also valid in scale but not conformal theory.
Their proof goes through.

Y



Afterthoughts

1.Simplification in search for models:

Previously: solve  8r(g9) — (Qg)r =0

both for g and Q using 3-loop beta-function

Now: solve f(r(g) =0

for g only, using 1-loop beta-function;
plug into S; 1f S =0 then FP, else cycle with 0 =S

o o0 o
°° .
o ®

2. Are there flows .- or

Numerical study in progress.



3.Wess-Zumino Action with x-dependent couplings?

Quick review:
Consider infinitesimal variations 7 — 7+ ¢ in W[e > ®g,, (x), g'(e™™® )]

The a-term in the anomalous variation 1s

16m2 AW = —/\/§aaG + -
and KS show this is produced by the variation of the Wess-Zumino action

162 AWwy = — / NG, {TCLG — 4a [G‘“’T,,ﬂjy + T,MT’MV2T + %(T,MT"M)Z}}

oooooooooooooooooooooooooooooooooooooooooooooooooooo

We can extend this result to include a particular JO term
162 AW = — / V9 [aaG + 8Mawi8,,giG“”} + ..
Now the WZ action is

167° AWy = — / V9 {TaG —4a [G”LVT7MT,V + T,MT’MV2T -+ %(T,,ﬂ’“)ﬂ}

where a =a + %wj 3’ is our old friend for which there is a perturbative c-theorem
(in the absence of dimension 3-operators)

Note the first terms is still plain a: cannot simply redefine a everywhere.



However

we are unable to construct a complete WZ action (that is, one that accounts
for the complete set of operators in the anomaly as listed in JO)

However

as we have seen, there is no need to have a WZ action to complete the KS argument



Thanks for your attention

The End



