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1 Properties of entropy

One system:

S(A) ≥ 0 , S(A) = 0 iff ρA is pure

Hence S(A) is a measure of mixedness

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Two systems:

(1) Araki-Lieb:

|S(A)− S(B)| ≤ S(AB) ≤ S(A) + S(B)

in particular if AB is pure then S(A) = S(B)

(2) Subadditivity:

S(AB) ≤ S(A) + S(B) , S(AB) = S(A) + S(B) iff ρAB = ρA ⊗ ρB

Hence mutual information

I(A : B) = S(A) + S(B)− S(AB)

is a measure of correlation (classical + quantum) between A,B. Key quantity in (classical +

quantum) information theory. Motivations/applications:

• In terms of conditional entropy

S(A|B) = S(AB)− S(B) = expected entropy of A conditioned on B,

I(A : B) = S(A)− S(A|B)

= how much your ignorance about A decreases if you know state of B

• I(A : B) gives the rate at which information can reliably be sent over a noisy channel

(Shannon)

• Bound on correlators between normalized operators: (Wolf, Verstraete, Hastings, Cirac

’07):

(〈OAOB〉 − 〈OA〉〈OB〉)2 ≤ 2I(A : B)

Examples:

• Classical correlation:

ρAB =
1

2
(|00〉〈00|+ |11〉〈11|)

ρA = ρB =
1

2
(|0〉〈0|+ |1〉〈1|)

S(A) = S(B) = S(AB) = ln 2 , I(A : B) = ln 2

• Entanglement:

ρAB =
1

2
(|00〉+ |11〉) (〈00|+ 〈11|)

ρA = ρB =
1

2
(|0〉〈0|+ |1〉〈1|)

S(A) = S(B) = ln 2 , S(AB) = 0 , I(A : B) = 2 ln 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Three systems:

Strong subadditivity:

S(ABC) + S(B) ≤ S(AB) + S(BC)

S(A) + S(C) ≤ S(AB) + S(BC)

SSA implies monotonicity of mutual information:

I(A : BC) ≥ I(A : B)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Four systems:

Constrained inequality (Linden, Winter ’04): If

I(A : BC) = I(A : B) = I(A : C) , I(B : CD) = I(B : D)

then

I(C : D) ≥ I(C : AB)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Five or more systems:

Infinite hierarchy of constrained inequalities (Cadney, Linden, Winter ’11)

2 EE in QFT

In a QFT, we can take subsystems A,B, ... to be spatial regions.

A
B

The EE is UV-divergent along boundary of A,

S(A) = ε2−Darea(∂A) + · · ·

or, in two dimensions,

S(A) = −cUV

6
ln ε #(∂A) + · · ·

Mutual information is divergent along common boundary,

I(A : B) = 2ε2−D area(∂A ∩ ∂B) + · · · ,

finite if separated

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Area-law divergence manifestly obeys SSA, since

area (∂A ∩ ∂(BC)) = area(∂A ∩ ∂B) + area(∂A ∩ ∂C) ≥ area(∂A ∩ ∂B)

A

B

C

Also obeys Linden-Winter constrained inequality, since if

I(A : BC) = I(A : C) , I(B : CD) = I(B : D)

then C is separated from A,B, hence I(C : AB) = 0, hence

I(C : D) ≥ I(C : AB)

3 RT formula

Ryu-Takayanagi formula for EE

• of a spatial region

• in a holographic theory

• dual to classical Einstein gravity (“large N , strong coupling”)

• in a state described in the bulk by a static, classical field configuration (⇒ distinguished

constant-time surfaces):

S(A) =
1

4GN
min
m∼A

(
area(m)

)
where

• area(m) is computed w.r.t. spatial, Einstein-frame metric

• m ∼ A means ∃ bulk region r s.t. ∂r = m ∪A

• call minimizer m(A), r(A)

A

bulk

A

m(A)r(A)

A = 
entire boundary

m(A) = horizon

black
hole

Notes:

• Is r(A) the holographic dual (in some sense) of ρA? (See also Czech, Karczmarek,

Nogueira, Van Raamsdonk ’12)

• Corrections believed to take general form (α′ = classical higher-derivative; GN = quantum

= 1/N2):

S(A) =
1

4GN
min
m∼A

(
area(m) +O(α′)

)
+O(G0

N )

See Hung, Myers, Smolkin ’10, de Boer, Kulaxizi, Parnachev ’10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ryu-Takayanagi formula obeys strong subadditivity (MH, Takayanagi ’07):

m(ABC)

m(B)
≥ = S(ABC) + S(B)

=

m(AB)

S(AB) + S(BC) =

B CA

m(BC)

Formal proof: Take r̃(B) = r(AB) ∩ r(BC), r̃(ABC) = r(AB) ∪ r(BC)

Notes:

• Easily generalizes to prove other form of SSA, S(AB) + S(BC) ≥ S(A) + S(C), as well

as subadditivity and Araki-Lieb

• Proof is far simpler than proof of SSA in quantum mechanics. General relativity knows

some sophisticated quantum information theory!

• This proof (along with other tests of RT formula) automatically still holds in presence of

higher-derivative (α′) corrections, but not quantum (1/N) corrections

4 Monogamy

We saw that mutual information is monotonic:

I(A : BC) ≥ I(A : B)

(adjoining a system cannot decrease correlations).

But what do we expect for

I(A : BC) vs. I(A : B) + I(A : C) ?

How are correlations correlated with each other? In principle three possibilities:

1. correlations are uncorrelated: I(A : BC) = I(A : B) + I(A : C)

2. correlations are shared: I(A : BC) < I(A : B) + I(A : C)

3. correlations are distributed: I(A : BC) > I(A : B) + I(A : C)

All three behaviors are possible in general. Example of shared correlations:

ρ(ABC) =
1

2
(|000〉〈000|+ |111〉〈111|)

I(A : BC) = I(A : B) = I(A : C) = ln 2

Example of distributed correlations:

ρ(ABC) =
1

4
(|000〉〈000|+ |110〉〈110|+ |101〉〈101|+ |011〉〈011|)

I(A : BC) = ln 2 , I(A : B) = I(A : C) = 0 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Define “tripartite information”:

I3(A : B : C) = I(A : B) + I(A : C)− I(A : BC)

= S(A) + S(B) + S(C)− S(AB)− S(BC)− S(AC) + S(ABC)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What happens in QFTs?

Area-law divergence in QFT has I3 = 0; reflects purely pairwise correlations across entangling

surfaces

A

B

C

In gapped 2 + 1 theories (for A connected region),

S(A) = ε−1 area(∂A)− γ

In states with topological order, γ > 0, “topological entanglement entropy” (Kitaev & Preskill,

Levin & Wen ’05). Hence I3(A : B : C) = −γ < 0: correlations are distributed non-locally

Free 1 + 1 examples (Casini, Huerta ’08):

• Massive fermion or boson: I3 can be positive or negative depending on A,B,C

• Fermion in massless limit: I3 → 0 for all A,B,C

• Boson in massless limit: I3 → +∞ for all A,B,C; after tracing over complement of

ABC, long-wavelength modes lead to shared correlations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In holographic theories, RT formula implies I3(A : B : C) ≤ 0 for any A,B,C (Hayden, MH,

Maloney ’11). Proof is more complicated version of holographic SSA proof

Holds in presence of higher-curvature corrections, not quantum corrections

Implies Linden-Winter and Cadney-Linden-Winter inequalities. RT formula obeys every known

applicable property of entropy

Interpretation is not clear, but it suggests that correlations are distribute non-locally, as in

topological order

5 SSA of covariant holographic EE

RT formula applies only to static bulk spacetimes, and region A lying in constant-time slice

Conjecture for covariant generalization by Hubeny, Rangamani, Takayanagi ’07: replace minimal

surface with minimal extremal surface. Has been applied to various systems, but subjected to

fewer tests than static RT formula

Two key changes compared to static case:

• Surface m(A) is co-dimension two in bulk spacetime; region r(A) is co-dimension one

• m(A) is not minimum but only extremum of area

For both reasons, holographic proof of SSA does not go through anymore:

m(ABC)

m(B)
≥ = S(ABC) + S(B)

=

m(AB)

S(AB) + S(BC) =

B CA

m(BC)

Question: does covariant HEE formula obey SSA? A proof would

• Provide a crucial check on HRT formula

• Be an important new theorem in GR, at the level of the area theorem for black holes, and

deepen our still-sketchy understanding of the entropy-area connection in GR

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tests (Callan, He, MH ’12; see also Allais, Tonni, ’11)

We consider planar AdS3, BTZ, AdS3-Vaidya (preserve spatial translation symmetry)

Regions A,B,C are adjacent single intervals (so AB, BC, ABC are also single intervals). Two

possibilities:

• constant-time:

B CA

• non-constant-time:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Constant-time intervals:

Translation invariance: S(A) = s(lA), S(AB) = s(lA + lB), etc

S(AB) + S(BC) ≥ S(A) + S(C) ⇔ s′(l) ≥ 0

S(AB) + S(BC) ≥ S(ABC) + S(B) ⇔ s′′(l) ≤ 0

AdS3:

s(l) =
c

3
ln

(
l

ε

)
BTZ:

s(l) =
c

3
ln

(
1

πTε
sinh(πTL)

)

1 2 3 4 5
l

-4

-2

2

4

sHlL

Vaidya (intervals at different times after the injection of energy):

ho
riz
on

shell

AdS

BTZ

2 4 6 8 10
lx

-1

1

2

3

4

5
L

UV thermalizes first, so short intervals show BTZ behavior while long intervals show AdS be-

havior

Negative-energy Vaidya:

4 6 8 10 12
lx

2

4

6

8

10

L

Transition from BTZ to AdS behavior leads to loss of concavity. Violation of SSA is correlated

with violations of null energy condition and second law (area theorem)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Non-constant-time intervals:

AdS, BTZ:

S(A) =
1

2
(s(∆x+ ∆t) + s(∆x−∆t))

Since s(l) obeys SSA, S obeys SSA

Vaidya: SSA was tested for many configurations. Trapezoid with A,C null provides most

stringent test, since SSA saturated in AdS, BTZ

SSA violated precisely when NEC violated

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof?

A local proof for 2-dimensional theories can be obtained using geodesic deviation equation. Two

assumptions required:

• Null energy condition

• Absence of conjugate points along geodesic

Still need global proof:

• Can absence of conjugate points be proven (N.B.: in positive signature, minimal geodesic

never has conjugate points)?

• What about phase transitions?

• Higher dimensions?
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