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Introduction

@ Theories of Goldstone bosons are often non-renormalizable;
they have a natural cutoff being the “decay constant.”

@ Yet these theories are useful and highly predictive (because of
the nonlinearly realized symmetry). The reason is that in such
theories we can count operators not according to their naive
dimension, but according to some other “scaling” dimension.

o If operators are arranged in this way, according to their
scaling, there are just finitely many coefficients for any scaling,
and the number of operators with given scaling is often infinite
(or much larger than the number of independent coefficients).

@ This is what makes such theories predictive.
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Let us consider some examples. The most canonical one is
non-Abelian pion physics. For example, the leading Lagrangian for

SU(2) x SU(2) — SU(2) is

(07)?

= 2Tr(g ldgg ldg) ~ ——2
L r(g dgg"dg) ~ 1 YTy

s
We see that infinitely many terms are fixed by just one coefficient,
fr. The appropriate notion of scaling is such that
S[r] =0, S5[0] = 1. If we classify operators by the scaling S there
are finitely many coefficients at every S and infinitely many
operators with this S.
The operators with S = 4 were first classified by Gasser and
Leutwyler. They are nontrivial and the corresponding few “new"”
coefficients in QCD are fairly well known.
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When one classifies terms at higher order, such as terms with

S =4, one needs to count them modulo the equations of motion
of the S = 2 theory. Indeed, terms at S = 4 that are proportional
to the equations of motion of the S = 2 are called “redundant”
because they can be removed by a change of variables. (In other
words, they do not contribute to the S-matrix.)
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One very interesting fact about this theory (well, the case of
SU(3) x SU(3) — SU(3)) is that there is a special operator with
S = 4. It looks like 70*7* with an epsilon tensor. This operator
explains the process KK — mwam that would otherwise be
impossible to account for.

The coefficient of this S = 4 term is fixed by an anomaly argument
(Wess&Zumino, Witten). One symptom of it being special is that
it is impossible to write this term locally in 4d using the matrix of
pions g. However it can be written using an extension of the
matrix g into some auxiliary 5d space, where we write a closed

form of the type
_ 3
/ Tr (g 1dg)
Ms
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It is definitely a legal term, when we expand it in components in 4d
it is perfectly invariant under the non-linearly realized chiral
symmetry. It is just that one cannot write down this term
“covariantly” directly in 4d.
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Another example is the spontaneous breaking of N' =1
supersymmetry. The Goldstone field is the Goldstino G, and the
natural scaling S in this problem is 5[G,] = —1/2 and S[0] = 1.
Because of the Fermi statistics we learn that

@ There are only terms with S > 0

@ For any S there are only finitely many terms one can write.

However the theory is still predictive. For example, at S = 0 we
encounter the familiar Akulov-Volkov action
1

£ Glo'Gt

L=F>+iGoG + %626262 +

One can also classify the subleading terms. There are always
finitely many operators at any given S, but less independent
coefficients. Thus, the theory is predictive.

Zohar Komargodski The Theory of Flux Tubes



Introduction

Introduction

One may ask whether there is something like the Wess-Zumino
term in supersymmetric theories. As far as | know there is none.

The folklore is that superspace has no topology and so no WZ
term.
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Our final example is the spontaneous breaking of conformal
symmetry. We will discuss for concreteness d = 4, other interesting
cases such as d = 6 were discussed in the paper of Elvang,
Freedman, Hung, Kiermaier, Myers, and Theisen. The discussion
below is based on ZK&Schwimmer (see also Schwimmer& Theisen).

@ Some conformal field theories have a moduli space of vacua.

@ We can then travel on this moduli space of vacua. This
breaks the conformal symmetry spontaneously. The NG boson
is the dilaton 7. (Associated to SO(d,2) — SO(d — 1,1).)

@ The appropriate scaling in this case is like in pion physics,
S[r] =0, S[0] = 1.
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One finds a universal two derivative term

/ e 27(97)? .

Next one attempts to classify the terms at S = 4 that can be
written covariantly in d = 4. One remembers to divide by the
equations of motion of the S = 2 theory. The answer is that there
are no such terms.

This is unlike pion physics, where there are plenty of terms at
S = 4. Hence the case of the dilaton seems “more predictive.”
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Amazingly, at S = 4 one finds a term that is perfectly invariant
under the nonlinearly realized conformal symmetry but cannot be
written covariantly, and does not vanish by the equations of
motion. It looks roughly like

/ d*x (07)"

As our experience from pion physics suggests, it may be associated
to an anomaly. Indeed, one can show that its coefficient is
completely fixed by the a-anomaly. This story is very closely
related to the a-theorem.
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The dilaton effective action is associate to the breaking
50(d,2) — SO(d — 1,1). We will now investigate another case
where there is some space-time symmetry broken, of the type

S0(d) — SO(d — 2) x SO(2)

This happens when the d-dimensional theory admits a long stable
string.
@ The simplest example is the Abelian Higgs model. There one
can see the long string at weak coupling.

@ Such long strings can also result from a complicated RG flow,
such as in pure Yang-Mills theory. There the long string is
formed by the confined flux lines.
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This is an example of an RG flow “across dimensions.” (Using
Bobev's terminology.)

The theory in the bulk can be completely massive but there are
some degrees of freedom that live on the defect (vortex).

Surprisingly, in some supersymmetry theories, this RG flow across
dimensions does retain some highly nontrivial information from the
high energy theory, for example, BPS states, structure of vacua
etc. For example, 4D /2D dualities that were discussed by Dorey,
Hollowood, Tong, Shifman, Yung, Hanany, and others.
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Our goal here is to understand the basics of this RG flow from 4d
to 2d (or general D to 2d). Our discussion would apply even in
strong coupled theories such as pure Yang-Mills theory.
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There has been remarkable progress on precision measurements of
their properties on the lattice (for various gauge groups) [Teper et
al.]. The measurements are of the energy levels, E,(L), where L is
the length of the flux tube and n is the excitation level.

In general we have

1, (3)
- an_ 8 9
SRR TERN STE

where T is the tension and the rest are some unknown coefficients.
However, the lattice measurements done to date fit (within the
available precision) extremely well with the formula (sometimes
called the "NG formula” — it was first proposed by [Arwis])

8 D—-2
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We will now explain the reasons for this phenomenon. We will see
that some ingredients are very reminiscent of the dilaton effective
action. The conclusions are

° af,l),agz), ) MUST agree with the square root ansatz in any
field theory. Basically, the current precision allows to go up to
1/L3. Hence we have a prediction about the ground state
energy at 1/L5.

@ There MUST be deviations from the square root formula
already for 3513>)0- These deviations are completely model
independent and calculable.

@ These predictions should hold even in strongly coupled field
theories, and should be verifiable in the future when the
lattice techniques develop further.

(k>3)

o We expect the coefficients aj, to be model dependent.
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Assumptions:
@ The theory admits long stable strings.

@ There is a gap in the bulk and the only massless modes on the
string are the D — 2 NG bosons X' that describe the bending
of the string into the orthogonal directions.

Both assumptions hold true in the Abelian Higgs model and in
Yang-Mills theory. However, the assumptions about the gap can be
violated in very interesting ways in the presence of supersymmetry.
(Hanany&Tong, Shifman&Yung, Konishi et al.) It would be
interesting to extend our analysis to these cases.
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As long as our assumptions hold true, the Renormalization Group
flow would wipe out all the degrees of freedom except for the NG
bosons describing the fluctuations of the flux tube.

A convenient choice is thus to write an action for X*(o1,037), and
we impose Lorentz invariance in space-time and diff-invariance on
the worldhseet of the flux tube.

S = / d’a L(X"(01,02))

After fixing the Lagrangian £ we can fix a gauge where the string
just sits in the 01 plane X% = o1, X! = 0 and perform
computations in this unitary gauge.
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The problem is thus reduced to classifying actions
5= / PoL (XM (01, 2))

which are Lorentz invariant in space-time and diff-invariant on the
world-sheet. This is a well-defined mathematical problem.

A 2d surface embedded in some ambient RY is characterized by
the first fundamental form

hap = 02X"0p X,
and the second fundamental form

QY = V,0pX"
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One can work a little to convince oneself that we don’t need any
other object other than Q and h. The natural scaling here is
S[X] = -1, S[0] =1 and so S[Q?] =1 and S[h] = 0.

So now we can classify Lagrangians. We begin with S = 0. We
cannot use the second fundamental form, and the only option is

thus
T/d20\/ﬁ

In static a gauge this becomes an action for X/, i =2,...,d — 1

T / d2a\/ — det (12 + 02X 19,X)

— T/dza (—1 + %aax"abx" + )
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This is the familiar NG action from string theory. Here it is just
the S = 0 approximation. Let us now comment that there are no
terms with S = 1 unless we are willing to use some epsilon tensors,
which we are not going to do (since they cannot appear in
Yang-Mills theory).

At the order S = 2 we find two terms

a/dzd\/—hhab(ﬂab;A)2 + B/dzo‘\/—hhachbanb;AQCd;A

Using the Gauss-Codazzi equation one can show that these terms
are topological+redundant.
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This phenomenon is very reminiscent of the dilaton effective action.

The next step would be to search for an anomaly term. Maybe
there is some anomaly at S = 2. We have not managed to find
one. Therefore, the claim is

The effective theory on the flux tube thus has no operators at
S = 2. This means that the predictions of the S = 0 theory cannot
be corrected before the order S = 4.
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We learn that the first irrelevant operator correcting

T / 0?0/~ det (125 + D X9 X')
has S = 4 and thus looks roughly like
02 X3 XO_X01 X

and simple dimensional analysis shows that it can affect the series

(1) (2) (3)

an an an
E,=TL =
" + L + TL3 + T2L5
only for ak>3.
We see that a¥=3 are all completely model independent. (Just
depend on the number of dimensions of the original QFT.)
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Paraphrasing Rob, every two graduate students who will attempt
to compute ak<3 starting from the (non-renormalizable) S = 0
theory, must agree. (This is if they both use regulators that
preserve the symmetries, or carefully tune away explicitly broken

symmetries due to the regulators.)

Various regularizations used in this context actually break some of
the symmetries, and there is a very nice recent paper by
Dubovsky,Flauger,Gobrenko. They explain how to do computations
while not breaking the symmetries.
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So indeed, graduate students were assigned this computation. It
was found that

2
oD = an <n _ D—2> R C - (n _ D—2>
24 24

This is compIeter consistent with the square-root formula

E,= TL\/l + 2 (n— D22) lattice people were using, and it
explains why it works to such a high precision.

(3)

The computation of a5, which are model independent and
completely well defined, shows deviations from the square-root
formula for n > 0. (It seems a little accidental that the ground
state energy does not deviate from the square-root formula.)

. 3
For instance, Aag ) = $m3(D — 26)(D — 3) for the scalar at level 1.
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Another Formalism

There is the long string theory of Polchinski&Strominger. This is a
theory with more than D — 2 degrees of freedom, and a set of
constraints that is supposed to eliminate the extra dofs.

If it is true that there is a unique realization of this nonlinear
symmetry, and if it is true that they can impose their constraints
consistently to all orders in 1/L in such a way that there are no
ghosts, then their formulation should give the same answers as
what we find.
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o To verify experimentally these predictions.

@ To extend this study of RG flows D — 2d for more exotic
vortices, like those appearing in RG flows in supersymmetric
theories. Those can have nontrivial theories living on them.

e Long strings can be naturally mapped via AdS/CFT to F
strings or D strings in the bulk. One can try to verify these
claims there. (Some of this was done for F strings but there
are open questions. See Aharony&Karzbrun.)

@ What can we learn from the model-dependent coefficients?
interpolations to small L?

@ Relation to the formulation of Polchinski&Strominger and a
derivation of their formalism / proof of equivalence.
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