Causal Holographic Information

Mukund Rangamani

Durham University

RG Flows, Entanglement & Holography Workshop @MCTP September 21, 2012

Algorithmic holography: reconstructing spacetime

Mukund Rangamani

Durham University

RG Flows, Entanglement & Holography Workshop @MCTP September 21, 2021

Bulk surfaces & reduced density matrices

Mukund Rangamani

Durham University

RG Flows, Entanglement & Holography Workshop @MCTP September 21, 2012

Holographic Surfaces

- ★ Motivation
- * Entanglement viewed geometrically
- ★ Causal constructions
- * Entanglement vs causal constructions
- ***** Properties of χ
- * Discussion

Motivation

- * Consider a QFT in a pure state or more generally in a density matrix, living on a background \mathcal{M}_d which is globally hyperbolic with a nice time foliation (Cauchy slices Σ_t).
- * \mathcal{A}_t is a subregion of the Cauchy slice, with an "entangling surface" $\partial \mathcal{A}_t$.

Motivation I: Regional observables

- What are the observables that one can associate with this region?
 - e.g., spectral information of the reduced density matrix (Entanglement).
- Are there other observables that could be regarded as `natural'?
- Class of potential observables:
- sensitivity to distribution of matter or charges.
- ability to characterize distinctions in phase structure.
- sensitivity to underlying causal structure.
- cognizance of holography/entropy bounds.

Motivation II: Locality of the holographic map

- The holographic map between strongly coupled planar QFTs and classical gravity is remarkable & mysterious.
- Various questions: emergence of spacetime locality, bulk causality, etc..
- Is there a quantitative characterization of the degree of non-locality in the holographic map?
- Given access to part of the field theory how much of the bulk can we reconstruct?
- * To be precise, assume we know the reduced density matrix ρ_A associated with a spatial region on the boundary: what part of the bulk can be reconstructed from it?
- * Aim: to quantify the amount of information in the holographic map contained in the data $(\mathcal{A}, \rho_{\mathcal{A}})$.

Motivation II: Locality of the holographic map

* Finer distinctions of holographic map given $(\mathcal{A}, \rho_{\mathcal{A}})$

- in what region of the bulk spacetime does the geometry get determined from this data?
- in what region of the bulk spacetime are we sensitive to the bulk geometry?
- Note that these are a-priori distinct questions and the resulting regions whilst overlapping might end-up being distinct.
- Also, we are going to focus attention to the semi-classical limit, assuming that notions of geometry, causal structure etc., are well defined.
- * <u>Criterion</u>: Naturalness. Minimal assumptions about the holographic map

A geometric view on entanglement

- * Ryu-Takayanagi (RT) have provided us with a natural geometric construction to the data $(\mathcal{A}, \rho_{\mathcal{A}})$: minimal surfaces ending on the entangling surface on the boundary.
- * More generally, in generic non-static situations, we are required to find an extremal surface $\mathfrak{E}_{\mathcal{A}}$ which is anchored at the boundary on the entangling surface $\partial \mathcal{A}_t$. Hubeny, MR, Takayanagi (2007)

$$S_{\mathcal{A}} = \frac{\operatorname{Area}(\mathfrak{E}_{\mathcal{A}})}{4 \, G_N}$$

- The extremal surface is such that the light-sheets emanating from it towards the boundary of the spacetime have zero expansion
 - natural candidate from viewpoint of covariant entropy bounds.

Naturalness & pre-geometric construct

- * Are the extremal surfaces $\mathfrak{E}_{\mathcal{A}}$ the most natural construct given $(\mathcal{A}, \rho_{\mathcal{A}})$?
- Naturalness criterion: the minimal requirement for the holographic map is consistency of bulk & boundary causality.
- * Minimalism: use the bulk causal structure, eschewing use of geometry apriori, to associate a bulk spacetime region to $(\mathcal{A}, \rho_{\mathcal{A}})$.
- * <u>Claim</u>: The unique minimal construction gives the bulk causal wedge $\blacklozenge_{\mathcal{A}}$ associated with the boundary region \mathcal{A}_t .
- * Further use of geometry (metric data) allows us to associate a number, χ_A to (\mathcal{A}, ρ_A) . We'll call this causal holographic information.

$$\chi_{\mathcal{A}} = \frac{\operatorname{Area}(\Xi_{\mathcal{A}})}{4 \, G_N}$$

Hubeny, MR (2012)

• Domain of *dependence*: the region of the boundary spacetime that **must** influence or be influenced by events in \mathcal{A}_t .

• Domain of *influence*: the region of the boundary spacetime that **can** influence or be influenced by events in \mathcal{A}_t .

* Causality implies that $(\mathcal{A}, \rho_{\mathcal{A}})$ determines all observables in $\Diamond_{\mathcal{A}}$.

Causal construction II: into the bulk

- * Bulk causal wedge $\blacklozenge_{\mathcal{A}}$
 - $\blacklozenge_{\mathcal{A}} \equiv J^{-}[\diamondsuit_{\mathcal{A}}] \cap J^{+}[\diamondsuit_{\mathcal{A}}]$
 - = { bulk causal curves which
 begin and end on ◊_A }
- Causal information surface

 $\Xi_{\mathcal{A}} \equiv \partial_+(\blacklozenge_{\mathcal{A}}) \cap \partial_-(\diamondsuit_{\mathcal{A}})$

Causal holographic information χ_A

$$\chi_{\mathcal{A}} \equiv \frac{\operatorname{Area}(\Xi_{\mathcal{A}})}{4 \, G_N}$$

Open question

- * CFT interpretation of Ξ_A and χ_A ?
- * Do they satisfy our requirements of naturalness in the field theory?

 Correlation functions of local observables can be computed within the causal wedge as a natural consequence of causality. Marolf (2005)

 Explore features of the construction to gather data....

Basic features of the causal surface

- ★ Causal information surface Ξ_A is a d-1 dimensional spacelike bulk surface which:
 - * is anchored on $\partial \mathcal{A}$
 - * lies within (on boundary of) $\blacklozenge_{\mathcal{A}}$
 - ★ reaches deepest into the bulk from among surfaces in
 - ★ is a minimal-area surface among surfaces on ∂(♦_A) anchored on the entangling surface
 - → However, Ξ_A is in general not an extremal surface \mathfrak{E}_A in the bulk.

General properties of $\Xi_{\mathcal{A}}$

- * In general $\Xi_{\mathcal{A}}$ does not penetrate as far into the bulk as the bulk extremal surface $\mathfrak{E}_{\mathcal{A}}$ associated with $(\mathcal{A}, \rho_{\mathcal{A}})$
 - *Justification 1: explicit construction in a specific example. The the region to be an infinite strip in d > 2 dimensions.

General properties of $\Xi_{\mathcal{A}}$

- * In general $\Xi_{\mathcal{A}}$ does not penetrate as far into the bulk as the bulk extremal surface $\mathfrak{E}_{\mathcal{A}}$ associated with $(\mathcal{A}, \rho_{\mathcal{A}})$
 - * Justification 2: general argument based on the features of the causal wedge for a region and its complement with a pure state $(\mathcal{A}, |\Psi\rangle \rightarrow \rho_{\mathcal{A}})$

Require that $S_{\mathcal{A}} = S_{\mathcal{A}^c}$

* however, causal wedge differs for \mathcal{A} and \mathcal{A}^c . The surface Ξ reach furthest in pure AdS (vacuum),but in general recedes closer to the boundary.

Gao, Wald (2000)

General properties of $\Xi_{\mathcal{A}}$

- In general $\Xi_{\mathcal{A}}$ does not penetrate as far into the bulk as the bulk extremal surface $\mathfrak{E}_{\mathcal{A}}$ associated with $(\mathcal{A}, \rho_{\mathcal{A}})$
 - Justification 3: general argument based on expansion of null generators: By construction, $\Theta_{\Xi} \ge 0$ while $\Theta_{\mathfrak{E}} = 0$
 - Proof by contradiction: suppose $\mathfrak{E}_{\mathcal{A}}$ lay closer to bdy than $\Xi_{\mathcal{A}}$. Then tangent to $\mathfrak{E}_{\mathcal{A}}$, there is a surface $\Xi_{\tilde{\mathcal{A}}}$ for some smaller region $\tilde{\mathcal{A}}$. But for such configuration, $\Theta_{\Xi_{\tilde{\mathcal{A}}}} < 0$, which is a contradiction.

Concordances: when $\Xi_{\mathcal{A}} \& \mathfrak{E}_{\mathcal{A}}$ coincide

(a).
$$S_{\mathcal{A}} = \chi_{\mathcal{A}} = \frac{c_{\text{eff}}}{3} \log\left(\frac{2\varphi_0}{\varepsilon}\right)$$

(b). $S_{\mathcal{A}} = \chi_{\mathcal{A}} = \frac{c_{\text{eff}}}{3} \log\left[\frac{\beta}{\pi \varepsilon} \sinh\left(\frac{2\pi \varphi_0}{\beta}\right)\right]$
(c). $S_{\mathcal{A}} = \chi_{\mathcal{A}} = \frac{c_{\text{eff}}}{6} \log\left[\frac{\beta_+ \beta_-}{\pi^2 \varepsilon^2} \sinh\left(\frac{2\pi \varphi_0}{\beta_+}\right) \sinh\left(\frac{2\pi \varphi_0}{\beta_-}\right)\right]$

Concordances: when $\Xi_{\mathcal{A}} \& \mathfrak{E}_{\mathcal{A}}$ coincide

What is special about these examples?

- Situations where we have been able to understand & derive the RT formula directly from field theory + holographic map.
 Casini, Heurta, Myers (2011)
- Logic: apply a unitary transformation to convert the reduced density matrix to a thermal density matrix. Converts computation of EE to a partition function computation.
- * Lesson: The agreement between χ_A and S_A occurs whenever the degrees of freedom in A are "maximally entangled" with those in A^c .
- * Conjecture: The quantity χ_A provides a lower bound on the *holographic information* contained in the boundary region A.

Detour: Bulk reconstruction

- * What is the gravity dual of the density matrix? Given the data $(\mathcal{A}, \rho_{\mathcal{A}})$ what portion of the bulk spacetime should we be able to reconstruct?
- Answer 1: The bulk causal wedge and nothing more.
- Justification: argue that the boundary of the bulk causal wedge \blacklozenge_A is the surface obtained by taking the union of ingoing light-sheets from

Bousso, Leichenauer, Rosenhaus (2012)

- * Answer 2: The bulk domain of dependence associated with the extremal surface $\mathfrak{E}_{\mathcal{A}}$.
- Justification: Entanglement computations imply that we can probe at least as deep as the extremal surface $\Diamond_{\mathcal{A}}(+ \text{other justifications based on reasonable assumptions}).$

Czech, Karczmareck, Nogueira, Van Raamsdonk (2012)

Back to χ_A : summary of explorations

- * The Causal Holographic Information $\chi_{\mathcal{A}}$
 - in special (maximally entangled) cases, coincides with $\mathcal{S}_{\mathcal{A}}$

$$\chi_{\mathcal{A}} \equiv \frac{\operatorname{Area}(\Xi_{\mathcal{A}})}{4 G_{N}} \equiv \mathcal{S}_{\mathcal{A}} \equiv -\operatorname{Tr}\left(\rho_{\mathcal{A}} \log \rho_{\mathcal{A}}\right) = \frac{\operatorname{Area}(\mathfrak{E}_{\mathcal{A}})}{4 G_{N}}$$

• but in general diverges more strongly than entanglement entropy e.g. for d=4, ${\cal A}=$ strip of width w, w/ IR regulator L & UV regulator ε ,

$$S_{\mathcal{A}} = c_{\text{eff}} L^2 \left(\frac{1}{\varepsilon^2} - \frac{0.32}{w^2} \right) , \qquad \chi_{\mathcal{A}} = c_{\text{eff}} L^2 \left(\frac{1}{\varepsilon^2} - \frac{2}{w^2} + \frac{4}{w^2} \log\left(\frac{w}{\varepsilon}\right) \right)$$

- hence provides a bound on entanglement entropy
- unlike entanglement entropy, always varies continuously with size of the region A under consideration.

General properties of $\chi_{\mathcal{A}}$

The Causal Holographic Information unlike entanglement entropy, does NOT satisfy strong subadditivity

$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$$
$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \setminus \mathcal{A}_2} + S_{\mathcal{A}_2 \setminus \mathcal{A}_1}$$

We know that the RT formula crucially satisfies strong subadditivity, and there is now evidence that perhaps the covariant proposal also does.

Headrick, Takayanagi (2007); Callan, He, Headrick (2012)

* There are easy counter-examples for $\chi_{\mathcal{A}}$: strip-regions $\mathcal{A}_1 \qquad \mathcal{A}_2$ $\overleftarrow{ a_1 \rightarrow \leftarrow} a_2 \rightarrow \overleftarrow{} a_2 \rightarrow \overleftarrow{} a_2$

SS requires $F(a_1 + x_0) + F(a_2 + x_0) - F(a_1 + a_2 + x_0) - F(x_0) > 0, \qquad F(x) = \frac{1}{x^2} \log\left(\frac{x}{\tilde{\varepsilon}}\right)$ but this can be violated - e.g. by $x_0 = a_1 = a_2$

Dynamical situations: toy model

Vaidya-AdS spacetime, describing a null shell in AdS:

$$ds^{2} = -f(r, v) dv^{2} + 2 dv dr + r^{2} d\Omega^{2}$$

$$\begin{split} f(r,v) &= r^2 + 1 - \vartheta(v) \, m(r) \\ \text{with} \quad m(r) &= \begin{cases} r_+^2 + 1 & , & \text{in AdS}_3 \\ \frac{r_+^2}{r^2} \left(r_+^2 + 1\right) & , & \text{in AdS}_5 \end{cases} \\ \text{and} \quad \vartheta(v) &= \begin{cases} 0 & , & \text{for } v < 0 & \longrightarrow \text{ pure AdS} \\ 1 & , & \text{for } v \ge 0 & \longrightarrow \text{ Schw-AdS (or BTZ)} \end{cases} \end{split}$$

we can think of this as $\delta \to 0$ limit of smooth shell with thickness δ :

$$\vartheta(v) = \frac{1}{2} \left(\tanh \frac{v}{\delta} + 1 \right)$$

Hubeny, MR, Takayanagi (2007) Hubeny, MR, Tonni (wip)

holographic quench literature....

Profile of the causal wedge in Vaidya AdS

For fixed size of \mathcal{A} , causal wedge profile changes in time:

Quasi-teleological nature of χ_A

For fixed size of \mathcal{A} , deepest reach of $\Xi_{\mathcal{A}}$ monotonically increases from AdS value to BTZ value:

Similarly for $\chi_{\mathcal{A}}$: Note that it starts increasing before $t_{\mathcal{A}} = t_{\text{shell}}$

Time dependence: contrast $\chi_{\mathcal{A}}$ & $S_{\mathcal{A}}$

- * Unlike Ξ_A , the extremal surface \mathfrak{E}_A depends only on spatial information.
- * Temporally we see local behaviour: S_A starts increasing only after the perturbation has come into play.

Hubeny, MR, Takayanagi (2007)

Summary

* Conjecture that χ_A is a field theoretic quantity that

- provides a bound on the holographic information associated with $(\mathcal{A}, \rho_{\mathcal{A}})$
- has entropy-like behaviour, without quite being a von Neumann entropy (violates strong subadditivity)
- It bounds the entanglement entropy from above.
- coincides with the entanglement entropy for special choice of $(\mathcal{A}, \rho_{\mathcal{A}})$
- has intriguing quasi-teleological properties

- * The bulk causal wedge $\blacklozenge_{\mathcal{A}}$ is a natural region that can be associated with the region of interest:
 - it is the minimal region that is related to & be reconstructable from $(\mathcal{A}, \rho_{\mathcal{A}})$.

Discussion

- * Field theory interpretation of χ_A and the causal wedge \blacklozenge_A ?
- * Utility in setting up a reconstruction algorithm? With knowledge of χ_A for various sub-regions can we recover all of the bulk geometry in \blacklozenge_A ?
- Bulk surfaces that are sensitive to field theory phases?
 - Flux sensitive surfaces that can distinguish between fractionalized and cohesive phases.
 Hartnoll, Radicevic (2012)
- Surfaces that can probe details of matter distribution in the bulk?
- * Other causal constructions: complements of unions of various causal sets?
- * Formulation of bulk locality & causality more directly from field theory?