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Motivation
❖ Consider a QFT in a pure state or more generally in a density matrix, living 

on a background          which is globally hyperbolic with a nice time foliation 
(Cauchy slices      ).

❖       is a subregion of the Cauchy slice, with an “entangling surface”         .
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Motivation I: Regional observables
❖ What are the observables that one can associate with this region?

๏ e.g., spectral information of the reduced density matrix (Entanglement).

❖ Are there other observables that could be regarded as `natural’?

❖ Class of potential observables:

๏  sensitivity to distribution of matter or 
charges.

๏ ability to characterize distinctions in 
phase structure.

๏ sensitivity to underlying causal 
structure. 

๏ cognizance of holography/entropy 
bounds.
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Motivation II: Locality of the holographic map
❖ The holographic map between strongly coupled planar QFTs and classical 

gravity is remarkable & mysterious.

❖ Various questions: emergence of spacetime locality, bulk causality, etc..

❖ Is there a quantitative characterization of the degree of non-locality in the 
holographic map? 

❖ Given access to part of the field theory how much of the bulk can we 
reconstruct?

❖ To be precise, assume we know the reduced density matrix       associated 
with a spatial region on the boundary: what part of the bulk can be 
reconstructed from it?

❖ Aim: to quantify the amount of information in the holographic map contained 
in the data             . 

⇢A
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Motivation II: Locality of the holographic map
❖ Finer distinctions of holographic map given

๏ in what region of the bulk spacetime does the geometry get  determined 
from this data?

๏ in what region of the bulk spacetime are we sensitive to the bulk 
geometry?

❖ Note that these are a-priori distinct questions and the resulting regions whilst 
overlapping might end-up being distinct.

❖ Also, we are going to focus attention to the semi-classical limit, assuming 
that notions of geometry, causal structure etc., are well defined. 

(A, ⇢A)

❖ Criterion: Naturalness. Minimal assumptions about the holographic map 



A geometric view on entanglement
❖ Ryu-Takayanagi (RT) have provided us with a natural geometric construction  

to the data             : minimal surfaces ending on the entangling surface on 
the boundary. 

❖ More generally, in generic non-static situations, we are required to find an 
extremal surface       which is anchored at the boundary on the entangling 
surface        .

❖ The extremal surface is such that the light-sheets emanating from it towards 
the boundary of the spacetime have zero expansion

๏  natural candidate from viewpoint of covariant entropy bounds.

(A, ⇢A)
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A-priori it seems plausible that �A is some functional of the reduced density matrix ⇢A.

After all, the knowledge of ⇢A is su�cient to compute field theory observables in ⌃A. However,

we will see later that generically �A 6= �Ac , where A

c is the complementary region to A. This

happens even for pure states of the entire system on ⌃B, for which the spectrum of eigenvalues

of ⇢A and ⇢Ac are identical. These observations might lead one to conclude that �A cannot be

determined by knowledge of ⇢A alone,12 which manifestly contradicts the original assertion that

⇢A determines observables in the ⌃A and thence in ⌥A. However, we are overlooking the fact

the entanglement spectrum (i.e., set of eigenvalues) of ⇢A only determines the reduced density

matrix up to unitary transformations. It is therefore possible that we can deduce �A from ⇢A,

though the precise nature of this dependence and an intrinsic field theoretic definition of �A is

an interesting open question which we leave for the future.

2.3 Lightning review of holographic entanglement entropy

The computation of holographic entanglement entropy also requires specification of some region

A on a spatial slice and is defined in terms of the von Neumann entropy of the reduced density

matrix ⇢A, see (1.1). If the entire state of the quantum field theory is static, then the reduced

density matrix is time-independent; relatedly the bulk holographic dual spacetime is also static.

For these situations, we can compute the entanglement entropy using the minimal surface pre-

scription of [2]. However, we can be more general, and consider states that have non-trivial time

dependence, so that the density matrix is not time-independent. In such cases the foliation by

spacelike surfaces ⌃B which exists on the rigid field theory background B does not necessarily

extend to the bulk in a unique way. As a result, it does not su�ce to consider minimal surfaces,

but rather as explained in [4] one looks at extremal surfaces EA which is an extremum of the

area functional (these surfaces were denoted as W in [4]). This extremal surface is anchored on

the boundary @A of the region A and the entanglement entropy is given as13

SA =
Area(EA)

4GN

(2.10)

3 Holographic information

We now have at hand two di↵erent constructions in the bulk associated with the given boundary

region A. Both the causal wedge ⌥A (and therefore its associated co-dimension two causal

information surface ⌅A) as well as the extremal surface EA are constructed covariantly, without

any preferred choice of bulk foliation etc.. We now proceed to explain some of the features of

the causal construction, focussing on its relation to the extremal surface in particular.

12 We thank Hong Liu for alerting us to this possibility.
13 At this point we are restricting attention to two derivative theories of gravity in the bulk. If higher derivative

curvature terms are present in the bulk then we need to consider a suitably generalized functional as has been

discussed in [22, 23]. Similar considerations should also apply to �A.
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Naturalness & pre-geometric construct
❖ Are the extremal surfaces       the most natural construct given              ? 

(A, ⇢A)

EA

❖ Naturalness criterion: the minimal requirement for the holographic map is 
consistency of bulk & boundary causality.

❖ Minimalism: use the bulk causal structure, eschewing use of geometry a-
priori, to associate a bulk spacetime region to             . 

(A, ⇢A)

❖ Claim: The unique minimal construction gives the bulk causal wedge       
associated with the boundary region      . 

❖ Further use of geometry (metric data) allows us to associate a number,        
to             . We’ll call this causal holographic information. 
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surface by  A. So we have

 A ✓ @M(⌥A) ✓ M , @( A) = @A . (2.8)

We claim that in fact the two definitions given above coincide  A = ⌅A. This can be easily seen

as follows: Consider any surface ⌥A ✓ @M(⌥A). We can obtain this surface from  A by flowing a

certain distance � along the null generators. Let us for the moment assume that ⌥A lies along the

future-directed null generators of @+(⌥A); then we can perform a constant rescaling of the a�ne

parameter of each null generator individually, such that ⌥A lies at constant a�ne parameter �0

along the future-directed null generators of @M(⌥A). Now, we know that the expansion of the null

generators of @M(⌥A) cannot be negative towards the boundary (otherwise the generators would

caustic, contradicting the fact that they reach the boundary along the null surface @M(⌥A)). This

means that the area of constant � slices of @M(⌥A) must be monotonically increasing function of

�; in particular, Area(⌥A) � Area( A). Same argument would apply for ⌥A lying on @�(⌥A),

as the past-directed null generators again expand towards the boundary. If ⌥A lies partly on

@+(⌥A) and partly on @�(⌥A), then we can separate  A into domains, separated by ⌥A \  A,

and run the argument for each domain separately. Hence in all cases, any surface ⌥A cannot have

smaller area than  A, which means that  A is the minimal surface on @M(⌥A), i.e.  A = ⌅A.

We note in passing that the construction does not depend on a choice of coordinates, but

only on physically meaningful quantities: causal relations in the spacetime. This ensures that

we can apply the same construction even for time dependent bulk geometries. More importantly

this works in any theory of dynamical gravity satisfying sensible energy conditions; for instance

higher derivative theories of gravity that have attracted some interest recently will admit exactly

the same conditions since the construction is predicated on causal relations alone.

Before moving on, let us note that the causal construction of the surface ⌅A described above

was originally considered in [4] in the context of holographic entanglement entropy. This surface

was called Z in that work which also erroneously declared it to be the maximal area surface. As

we shall see later, the area of spacelike surfaces measured along @M(⌥A) at fixed a�ne parameter

of the null generators increases as we move away from ⌅A towards the boundary, implying that

there are indeed surfaces with larger area than that of ⌅A on @M(⌥A).

2.2 Defining causal holographic information

Having constructed the surface ⌅A we define the following measure of holographic information

associated with the region A:

�A =
Area(⌅A)

4GN

(2.9)

We want to claim that �A provides a lower bound on the information regarding the bulk that

the region A has. The causal nature of the construction which guides our intuition makes this

plausible, but it would be useful to have a first-principles proof of this statement.

– 12 –
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The causal construction I: boundary

Wednesday, 4 April 12
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Fig. 1: Illustration of the causal sets D and J associated with a 1-dimensional spacelike region A. The

future (past) domain of dependence D±[A] is the set of points which are fully determined by future

(past) evolution of the ‘initial data’ on A. The future (past) domain of influence J±[A] is the set

of points which can be causally influenced by (or can influence) A.

region of interest, ⌥A. We define these notions precisely in §2; for now we simply motivate the

construction.

How can we construct a minimal d + 1 dimensional bulk region from a d � 1-dimensional

spatial region A on the boundary? Clearly, both bulk and boundary domains of influence of

A are infinite sets. Their union is likewise infinite, while their intersection is just the region A

itself, so none of these provides a good starting point. On the other hand, the bulk domain of

dependence of A is only the region A itself, which doesn’t extend into the bulk.2 This leaves

us with the boundary domain of dependence of A, which we’ll denote by ⌃A. This is a finite

d-dimensional region on the boundary, and we will use this boundary region to construct the

bulk region of interest ⌥A. While the bulk domain of dependence of ⌃A is still only ⌃A, and

the bulk domain of influence of ⌃A is still infinitely extended, the intersection of future and past

domains of influence of ⌃A is now a non-trivial bulk region which nevertheless does not extend

infinitely far into the bulk. This is our region ⌥A, called the causal wedge of ⌃A. For orientation

we refer the reader to Fig. 2 of the next section, where we explain the technical construction.

Having constructed a d+ 1 dimensional bulk region ⌥A associated with a d� 1 dimensional

boundary regionA, let us go one step further, and ask whether there is likewise a d�1 dimensional

bulk ‘surface’ naturally associated to A, as this may provide a more useful (albeit more limited)

quantity related to A. We can again answer in the a�rmative, by building on the construction

of ⌥A: keeping to only causally-defined quantities, we define the surface of interest ⌅A as the

(bulk) intersection of the boundaries of the past and future domains of influence of ⌃A. The

boundaries are null surfaces in the bulk which end on the boundary of ⌃A, so their intersection is

a spacelike co-dimension 2 bulk surface which is anchored on the AdS boundary at @A, and for

static geometries lies entirely within the same time slice3 as A. More generally, ⌅A corresponds to

2 As follows immediately from the definition we give in §2, the domain of dependence of a given region trivializes

to just the region whenever that region has co-dimension greater than 1.
3 For static bulk geometries, we use the natural time slices defined by the time translation symmetry, i.e.
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๏ Domain of dependence: 
the region of the boundary 
spacetime that must 
influence or be influenced 
by events in     .At

๏ Domain of influence: the region 
of the boundary spacetime that 
can influence or be influenced 
by events in      . At

❖ Causality implies that               determines all observables in      .(A, ⇢A)
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a spacelike co-dimension 2 bulk surface which is anchored on the AdS boundary at @A, and for

static geometries lies entirely within the same time slice3 as A. More generally, ⌅A corresponds to
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– 3 –



Causal construction II: into the bulk

�A ⌘ Area(⌅A)

4GN

❖ Bulk causal wedge

❖ Causal information surface

❖ Causal holographic 
information 

⌥A ⌘ J�[⌃A] \ J+[⌃A]

⌥A

⌅A ⌘ @+(⌥A) \ @�(⌥A)

�A

= { bulk causal curves which 
begin and end on       }⌃A

���*

⌅A

z

t

x

A

J+[A]

J�[A]

⌥A

Fig. 2: Illustration of various causal sets associated with the boundary region A (color online). AdS

boundary is the plane at z = 0 on the right; the bulk extends to the left of this plane. The region

A is the red segment at z = 0, t = 0. The future and past bulk domains of influence of A are

bounded by yellow and green surfaces respectively, and future and past boundaries of the bulk

causal wedge ⌥A are indicated by the red and blue surfaces respectively. Their intersection with

the AdS boundary encloses the boundary domain of dependence ⌃A, and their intersection with

each other (light-blue curve) corresponds to the causal information surface ⌅A. For simplicity we

illustrate these constructs in Poincare AdS; the causal wedge in global AdS3 appears in Fig. 4(a)

(which shows A corresponding to half the circle; causal wedge of any other interval would be

obtained simply by translating one of the null planes with respect to the other).

2 The construction

We begin in this section by outlining the basic construction of the causally motivated surface

⌅A. Readers who are familiar with the notions of domains of dependence and causal wedges

might prefer to skip directly to §3 where we describe some of the properties of the construction,

consulting Fig. 2 or Table 1 for our notation.

2.1 The holographic causal surface

Consider a d+1-dimensional, asymptotically locally AdS spacetime, which we take to be causally

well-behaved. We will refer to this bulk geometry as M and its timelike boundary as @M, taken

to be in the conformal class of a fixed background B which itself is a d-dimensional Lorentzian

manifold with a fixed metric. Since we will want to consider points on the boundary as part

of the bulk spacetime, we will also define the closure of M, denoted M̄ = M [ @M, to be

the spacetime including its boundary. For definiteness we will consider globally static boundary

geometries B, which admit a well defined foliation by fixed-time Cauchy slices; ⌃B will denote a

typical spacelike leaf of such a foliation. Let us further pick the region A of interest to be a closed

– 8 –



Open question
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✴ CFT interpretation of        and       ?

✴ Do they satisfy our requirements of 
naturalness in the field theory?

�A⌅A

๏ Correlation functions of local 
observables can be computed 
within the causal wedge as a 
natural consequence of causality.

Marolf (2005)

๏ Explore features of the construction 
to gather data....



Basic features of the causal surface
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★ Causal information surface        is a 
d-1 dimensional spacelike bulk 
surface which:
❖ is anchored on 
❖ lies within (on boundary of)  
❖ reaches deepest into the bulk from 

among surfaces in 
❖ is a minimal-area surface among 

surfaces on             anchored on 
the entangling surface 

⌅A

@A

@(⌥A)

⌥A

⌥A

➡ However,        is in general not an 
extremal surface       in the bulk.

⌅A
EA



General properties of ⌅A

★Justification 1: explicit construction in a specific example.  The the 
region to be an infinite strip in d > 2 dimensions. 

❖ In general        does not penetrate as far into the bulk as the bulk 
extremal surface       associated with

⌅A
EA (A, ⇢A)

A.1 Discrepancy in AdSd+1 for d ≥ 3

Now let us consider whether the construction Z provides a viable candidate for the dual

of the entanglement entropy. In order for the area of Z to be equal to the entanglement
entropy for general states, a minimal requirement is that Z reduces to the correct minimal

surface for static spacetimes. Therefore we wish to check whether in any static spacetime,

Z coincides with W (which, as we argued above, automatically coincides with X and Y for

all static spacetimes).

We can find an easy counter-example, even for pure AdS, in more than three dimensions
for non-spherical regions. For simplicity, let us consider the infinite strip in AdS4, in Poincaré

coordinates. The bulk metric is ds2 = 1
z2 (−dt2 + dz2 + dx2 + dy2), and let the region A on

the boundary be an infinite strip extended along the y direction; {t = 0, x ∈ (−h, h)}. The

minimal surface is given by (5.18), with x(z) given by d̃ = 2 and smeared over all y. On

the other hand, the causal construction of Z outlined above is determined by past/future

directed null geodesics at constant y, from {z = 0, x = 0, t = ±h} into the bulk. Since
these are insensitive to the conformal factor of the bulk metric, they behave just as in flat

spacetime; the maximal area surface, lying on the intersection of the future and past light-

cones from the tips of D0, is given simply by the half-circle z2+x2 = h2, uniformly smeared in

the y-direction. We can easily check that this surface Z does not coincide with the minimal

h z
!

z

h

"h

x

W
Z

Fig. 12: A constant-y cross-section of the two surfaces Z and W for infinite strip of width 2h in

AdS4. This example demonstrates that Z $= W = X = Y.

surface W since Z does not satisfy28 (5.18). In particular, Fig. 12 demonstrates the difference

28 Note however that, remarkably, for a circular region A, the two surfaces Z and W would coincide

58

z⇤⌅ = h , z⇤E =
�
⇣

1
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General properties of ⌅A

A

c
A

⌅A⌅Ac

EA

Fig. 3: Sketch to illustrate the fact the causal information surfaces ⌅A and ⌅Ac
for a region A and its

complement A

c
have to lie closer to the respective boundary regions than the common extremal

surface EA = EAc
.

However, for the causal construction there is an asymmetry generically between the causal

wedges of the regions A and A

c.17 The basic point is quite simple and the main idea is sketched in

Fig. 3, set in the more natural context of global AdS. Consider e.g. a static asymptotically global

AdS geometry with a gravitational potential well. By the Gao-Wald theorem [24], within a fixed

time set by the size of ⌃A, the null geodesics which define the causal wedge cannot reach as far

from the AdS boundary as they could in the pure AdS spacetime. But in pure global AdS, the

causal information surfaces for a circular region A and its complement would coincide.18 Hence

for any physical deformation of AdS, the causal information surfaces would shift, ⌅A towards the

boundary where A is located, and ⌅c
A towards the boundary where Ac is located, as indicated in

Fig. 3. Moreover, due to caustics in ⌃A for any other shaped region in d > 2, the corresponding

causal information surfaces would likewise retreat towards the boundary, even for pure AdS,

whenever A is not the round ball. Thus, in general, ⌅A and ⌅c
A di↵er, so there is no reason for

�A and �Ac to be the same.

To see an explicit example, for simplicity in the context of flat boundary, let us again consider

the strip discussed above; but in order to keep both A and its complement finitely extended in at

least one direction, let the x1 direction be compactified, say x1 ⇠ x1 +R. This means we should

consider the boundary theory on Rd�2,1
⇥ S1 and let | i be the corresponding vacuum state.

17 This argument was developed together with Mark van Raamsdonk.
18 The reason is apparent from Fig. 4(a), where the null boundaries of the causal wedge for A corresponding

to half the circle are shown. These are Rindler horizons, and due to the large symmetry Rindler horizons from

any other point would look the same. In particular, to construct causal wedge for any other circular region (i.e.

shorter interval in Fig. 4(a)), we can simply time-translate one of the null planes with respect to the other. But

in pure AdS, the same null plane acts both as the past boundary of A’s causal wedge and as the future boundary

of Ac’s causal wedge, since null geodesics through AdS all reconverge at the same antipodal null-translated point.

Since the two null planes (future and past boundaries of either region’s causal wedge) always intersect on a single

surface; this surface is simultaneously ⌅A and ⌅c
A.
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SA = SAc

★  however, causal wedge differs 
for     and      . The surface  
reach furthest in pure AdS 
(vacuum),but in general    
recedes closer to the boundary.

⌅A Ac

❖ In general        does not penetrate as far into the bulk as the bulk 
extremal surface       associated with

⌅A
EA (A, ⇢A)

★Justification 2: general argument based on the features of the 
causal wedge for a region and its complement with a pure state

Require that 

(A, | i ! ⇢A)

Gao, Wald (2000)



General properties of ⌅A

✦ In general        does not penetrate as far into the bulk as the bulk 
extremal surface       associated with

⌅A
EA (A, ⇢A)

bdy

•

p

S↵

S�

bdy

⌅A

EA

⌅Ã

Ã

A

•

p

Fig. 5: Sketch accompanying the argument in main text for why the extremal surface EA cannot lie closer to

the boundary than the causal information surface ⌅A. Left: we argue that at p, ⇥↵ < ⇥� . Right:

impossible situation, since it contradicts the physical requirement that ⇥⌅Ã
� 0 and ⇥EA = 0

everywhere.

follows.

In a static geometry, both ⌅A and EA lie on the same time slice by symmetry, and moreover,

out of all surfaces on that time slice, EA is defined to be the one withminimal area, so by definition

SA  �A. For general time-dependent configurations, the argument is not as straightforward,

but we nevertheless expect that in physically reasonable situations this inequality will continue

to hold.

We now sketch an argument in support of this assertion.22 We first establish a relation

between the relative position of two surfaces anchored on the same boundary region @A and

the expansion ⇥ along null normals to these surfaces. Specifically, ⇥ is the expansion of the

null geodesic congruence emanating from the surface of interest and we are only interested in the

outgoing congruence (either future/past directed), i.e., the congruence that reaches the boundary

(or terminates in a caustic along the way).

We start by observing that given two surfaces, S↵ and S� which are tangent at some point

p as shown in left panel of Fig. 5, such that S↵ is more bent towards the ‘outward’ direction, the

expansion of S↵ at p must be smaller than that of S�,

⇥↵ < ⇥� , (3.51)

since the bending makes the null normals converge more. Using this observation, we proceed to

construct a proof by contradiction. Suppose we had a situation where ⌅A was located further

from the boundary than EA, as in the right panel of Fig. 5. Then there must exist a boundary

region Ã ⇢ A such that the causal information surface corresponding to this smaller region ⌅Ã

just touches EA, i.e. is tangent at some point p. Since ⌅Ã by definition lies on the boundary of

the causal wedge ⌥Ã (so that the null normals must reach the boundary – i.e. must extend to

infinite a�ne parameter without encountering caustics), the causal information surface ⌅Ã must

22 Related observations have been made independently by Aron Wall.
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⇥↵ < ⇥�

Justification 3:  general argument based on expansion of null generators:  
By construction,               while
Proof by contradiction:  suppose        lay closer to bdy than       .        
Then tangent to       , there is a surface        for some smaller region     .  
But for such configuration,                 , which is a contradiction. 

⇥⌅ � 0 ⇥E = 0

⌅A
Ã

⇥⌅Ã
< 0

EA
EA ⌅Ã



Concordances: when      &     coincide⌅A EA

(a) (b) (c)

Fig. 4: Illustration of the causal wedges ⌥A in three dimensional asymptotically globally AdS3 spacetimes.

The three figures correspond to the three geometries described in Table 2. For convenience we

have chosen the region A to be a half of the boundary S1
, i.e., '0 = ⇡. At the intersection of the

@+(⌥A) and @�(⌥A) lies the causal information surface ⌅A which as we discuss in the text is the

same as the extremal surface EA in these examples. Note that for the static spacetimes (a) and

(b) which correspond to AdS3 and the static BTZ geometry, the surfaces at a fixed time slice t = 0

as shown, while for the stationary rotating BTZ geometry (c), this surface dips above and below

the t = 0 slice in the bulk. [Note that for ease of visualization, we have changed the viewpoint

between the three plots. Also, note that the ‘seams’ are just numerical glitches.]

Finally, to obtain the surface ⌅A we realize that all we need to do owing to the symmetries

of the geometry is to look at the spacelike surface at t = 0 on @M(⌥A). Essentially one inverts

the second expression to obtain j in terms of ': j = cot'0 tan', and substitutes back into r to

get ⌅A:

(a). ⌅A : t = 0 , r2(') =
cos2 '0

sin2 '0 cos2 '� cos2 '0 sin2 '
(3.28)

which indeed agrees with the minimal surface (3.19).

(b). For the static BTZ geometry one can proceed along similar lines. The null geodesics of

interest (emanating from ('0, 0)) are given by:

t(r) = '0 +
1

2r+
ln

p
(1� j2) r2 + j2 r2+ � r+p
(1� j2) r2 + j2 r2+ + r+

(3.29)

'(r) =
1

2r+
ln

p
(1� j2) r2 + j2 r2+ + j r+p
(1� j2) r2 + j2 r2+ � j r+

(3.30)

which determines @+(⌥A). Again using the symmetries we realize the the past and future

Rindler horizons must intersect at t = 0. Then setting t = 0 above and solving for j =

coth(r+'0) tanh(r+') then leads to the desired co-dimension two surface:

(b). ⌅A : t = 0 , r2(') = r2+
cosh2(r+ '0)

sinh2(r+ '0) cosh
2(r+ ')� cosh2(r+ '0) sinh

2(r+ ')
(3.31)
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CFT vacuum: thermal density matrix: grand canonical 
density matrix:

pure AdS:

bdy:

static BTZ: rotating BTZ:bulk:

non-static case the surfaces ⌅A = EA do not lie on a fixed time slice, even when A lies on one at

the boundary.

In all three geometries we thus see that the extremal surface relevant for entanglement

entropy coincides with the causally motivated surface. To a certain extent this is to be expected

for the black hole spacetimes given that the surfaces coincide for the pure AdS3 spacetime, owing

to the fact that the latter are locally AdS3. Given this information, we can also conclude from

previous computations that:

(a). SA = �A =
ce↵
3

log

✓
2'0

"

◆
(3.34)

(b). SA = �A =
ce↵
3

log


�

⇡ "
sinh

✓
2⇡ '0

�

◆�
(3.35)

(c). SA = �A =
ce↵
6

log


�+ ��

⇡2 "2
sinh

✓
2⇡ '0

�+

◆
sinh

✓
2⇡ '0

��

◆�
(3.36)

Before proceeding further with the discussion we should note that the agreement between

SA and �A does not extend to other states or density matrices of 1 + 1 dimensional CFTs. The

general argument from a holographic perspective was motivated above and has previously been

given more explicitly in [? ], which we simply quote here without further proof. Given that static

rotationally symmetric states of a 1+1 CFT on a cylinder are dual to static asymptotically AdS3

geometries of the form:

ds2 = �f(r) dt2 + h(r) dr2 + r2 d'2 (3.37)

If we are interested in the entanglement entropy, then we simply compute the area of a minimal

surface at a constant t slice, in particular noting that such a minimal surface is insensitive to the

redshift function f(r). On the other hand, the causal construction requires us to construct light-

cones in the bulk spacetime which care about the metric functions (up to an overall conformal

factor, which we can gauge-fix to be r2). It then follows that the surface ⌅A for a given region A

cares about the redshift factor. More specifically, the minimal radius reached by EA is given by

the conserved angular momentum J along the ' direction, while the minimum radius reached

by the causal surface ⌅A depends on both f(r) and h(r). In particular, in order for EA and ⌅A

to coincide, the spacetime (??) would minimally need to satisfy

Z 1

r0

r0
p
h(r)

r
p

r2 � r02
dr =

Z 1

r0

p
h(r)p
f(r)

dr (3.38)

where the LHS is an expression for the angle '0 reached by a constant-t spacelike geodesic which

passes through r0 at t = 0,' = 0, whereas the RHS corresponds to the time at which a radial null

geodesic at ' = 0 which starts from r = r0 at t = 0 reaches the boundary r = 1 – this would

be q^ for D+
B [A] with A = ' 2 {�'0,'0}, so that t(q^) = '0. Note that (??) is automatically

satisfied for f(r) = 1
h(r) = r2+↵ for any ↵ – as demonstrated above for AdS3 and BTZ; however,

it is certainly not true in full generality. For example one can easily check that (??) is not

satisfied for e.g. f(r) = 1
h(r) = r2 + 1 �

↵
r2
, just to pick a random example. This was already

explained in Appendix A.2 of [? ].
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Concordances: when      &     coincide⌅A EA

❖ What is special about these examples?

❖ Situations where we have been able to understand & derive the RT formula 
directly from field theory + holographic map. 

❖ Logic: apply a unitary transformation to convert the reduced density matrix 
to a thermal density matrix. Converts computation of EE to a partition 
function computation. 

Casini, Heurta, Myers (2011)

❖ Lesson: The agreement between       and      occurs whenever the degrees 
of freedom in     are “maximally entangled” with those in     .

�A SA
A Ac

❖ Conjecture: The quantity        provides a lower bound on the holographic 
information contained in the boundary region    .

�A
A



Detour: Bulk reconstruction
❖ What is the gravity dual of the density matrix? Given the data               what 

portion of the bulk spacetime should we be able to reconstruct?
(A, ⇢A)

❖ Answer 1: The bulk causal wedge and nothing more.

๏  Justification: argue that the boundary of the bulk causal wedge       is the 
surface obtained by taking the union of ingoing light-sheets from 

Bousso, Leichenauer, Rosenhaus (2012)

❖ Answer 2: The bulk domain of dependence associated with the extremal 
surface      .

๏  Justification: Entanglement computations imply that we can probe at least 
as deep as the extremal surface      (+other justifications based on 
reasonable assumptions).

Czech, Karczmareck, Nogueira, Van Raamsdonk (2012)

A-priori it seems plausible that �A is some functional of the reduced density matrix ⇢A.

After all, the knowledge of ⇢A is su�cient to compute field theory observables in ⌃A. However,

we will see later that generically �A 6= �Ac , where A

c is the complementary region to A. This

happens even for pure states of the entire system on ⌃B, for which the spectrum of eigenvalues

of ⇢A and ⇢Ac are identical. These observations might lead one to conclude that �A cannot be

determined by knowledge of ⇢A alone,12 which manifestly contradicts the original assertion that

⇢A determines observables in the ⌃A and thence in ⌥A. However, we are overlooking the fact

the entanglement spectrum (i.e., set of eigenvalues) of ⇢A only determines the reduced density

matrix up to unitary transformations. It is therefore possible that we can deduce �A from ⇢A,

though the precise nature of this dependence and an intrinsic field theoretic definition of �A is

an interesting open question which we leave for the future.

2.3 Lightning review of holographic entanglement entropy

The computation of holographic entanglement entropy also requires specification of some region

A on a spatial slice and is defined in terms of the von Neumann entropy of the reduced density

matrix ⇢A, see (1.1). If the entire state of the quantum field theory is static, then the reduced

density matrix is time-independent; relatedly the bulk holographic dual spacetime is also static.

For these situations, we can compute the entanglement entropy using the minimal surface pre-

scription of [2]. However, we can be more general, and consider states that have non-trivial time

dependence, so that the density matrix is not time-independent. In such cases the foliation by

spacelike surfaces ⌃B which exists on the rigid field theory background B does not necessarily

extend to the bulk in a unique way. As a result, it does not su�ce to consider minimal surfaces,

but rather as explained in [4] one looks at extremal surfaces EA which is an extremum of the

area functional (these surfaces were denoted as W in [4]). This extremal surface is anchored on

the boundary @A of the region A and the entanglement entropy is given as13

SA =
Area(EA)

4GN

(2.10)

3 Holographic information

We now have at hand two di↵erent constructions in the bulk associated with the given boundary

region A. Both the causal wedge ⌥A (and therefore its associated co-dimension two causal

information surface ⌅A) as well as the extremal surface EA are constructed covariantly, without

any preferred choice of bulk foliation etc.. We now proceed to explain some of the features of

the causal construction, focussing on its relation to the extremal surface in particular.

12 We thank Hong Liu for alerting us to this possibility.
13 At this point we are restricting attention to two derivative theories of gravity in the bulk. If higher derivative

curvature terms are present in the bulk then we need to consider a suitably generalized functional as has been

discussed in [22, 23]. Similar considerations should also apply to �A.
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EA

the causal wedge ⌥Ã (so that the null normals must reach the boundary – i.e. must extend to

infinite a�ne parameter without encountering caustics), the causal information surface ⌅Ã must

have non-negative expansion, ⇥⌅Ã
� 0. But that would force the expansion for an extremal

surface to be strictly positive at the point where the two surfaces are tangent, ⇥EA(p) > 0 by

(3.51). This is a contradiction, since by construction, the expansion for an extremal surface must

vanish everywhere, as proved in [4]. Hence we conclude that in order for EA to be an extremal

surface (i.e. ⇥EA = 0) and ⌅A to be a causal holographic information surface (i.e. ⇥⌅A � 0),

the causal holographic information surface ⌅A must either lie closer to the boundary than (or at

best coincide with) the extremal surface EA.

This solidifies our expectation that the causal information cannot be any smaller than the

entanglement entropy, since the former corresponds to the area of a surface located closer to the

boundary where the warp factor is larger, leading to greater area, SA  �A.

4 Discussion

The primary issue that motivated the present discussion is how much information is there about

the bulk in a given spatial region of the field theory. To make this question sharper, we imagine

that one has access to a suitable algebra of observables of the field theory localized to the region

A in question and that one is also equipped with the knowledge of the reduced density matrix ⇢A.

Armed with this information, one can predict the quantum development of ⇢A in the boundary

domain of dependence ⌃A. The question then is: what part of the bulk should one hope to

reconstruct given such data on the boundary?

As we have argued, a very natural region from the bulk standpoint is the bulk causal wedge

⌥A associated with the region A. This region is composed of all points in the bulk which can

both influence and be influenced by some part of ⌃A, the latter being the boundary region which

is fully determined by A. The causal wedge ⌥A is therefore defined purely by causal relations,

and we believe that this inherent simplicity translates to correspondingly natural (albeit perhaps

not as readily apparent) construct in the dual field theory. It seems natural to expect that ⌥A

gives the minimal spacetime volume that should be reconstructable from the data contained in

A, since we can imagine ‘observers’ sent from the field theory being able venture into this region

and returning to the boundary within ⌃A. More specifically, we are suggesting that the reduced

density matrix ⇢A (which is more naturally associated with the full ⌃A rather than just A) can

be used to recover the bulk geometry at least in ⌥A. As we have stressed at various points, it

may be possible to reconstruct more of the bulk geometry; here we have proposed what we think

is the conservative option.

In the bulk, the causal wedge is bounded by two null surfaces, whose intersection is a bulk

co-dimension two surface which we dubbed causal information surface, denoted by ⌅A. This is

a special surface within ⌥A: it reaches deepest into the bulk and has extremal area among all

surfaces on @M(⌥A). It is also anchored on our entangling surface @A on the boundary. We
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Back to      :  summary of explorations�A

❖ The Causal Holographic Information 
๏ in special (maximally entangled) cases, coincides with 

๏ but in general diverges more strongly than entanglement entropy
e.g. for d=4,     = strip of width    , w/ IR regulator     & UV 
regulator    ,

๏ hence provides a bound on entanglement entropy
๏ unlike entanglement entropy, always varies continuously with size of

        the region     under consideration.

�A

SA

�A ⌘ Area(⌅A)

4GN
SA ⌘ �Tr (⇢A log ⇢A) =

Area(EA)

4GN
=

SA = ce↵ L
2

✓
1

"2
� 0.32

w2

◆
, �A = ce↵ L

2

✓
1

"2
� 2

w2
+

4

w2
log

⇣w
"

⌘◆

A w L
"

A



General properties of �A

❖ The Causal Holographic Information unlike entanglement entropy, does NOT 
satisfy strong subadditivity

SA1 + SA2 � SA1[A2 + SA1\A2

SA1 + SA2 � SA1\A2
+ SA2\A1

A1 A2

x0
a1 a2

F (a1 + x0) + F (a2 + x0)� F (a1 + a2 + x0)� F (x0) > 0 , F (x) =

1

x

2
log

⇣
x

"̃

⌘

x0 = a1 = a2

SS requires

but this can be violated  - e.g. by 

❖ We know that the RT formula crucially satisfies strong subadditivity, and 
there is now evidence that perhaps the covariant proposal also does.

Headrick, Takayanagi (2007); Callan, He, Headrick (2012)

❖ There are easy counter-examples for       : strip-regions�A



Dynamical situations: toy model
Vaidya-AdS spacetime, describing a null shell in AdS:

ds2 = �f(r, v) dv2 + 2 dv dr + r2 d⌦2

f(r, v) = r2 + 1� #(v)m(r)

m(r) =

(
r2+ + 1 , in AdS3

r2+
r2 (r2+ + 1) , in AdS5

with

and pure AdS
Schw-AdS (or BTZ)#(v) =

⇢
0 , for v < 0

1 , for v � 0

we can think of this as             limit of smooth shell with thickness    :�� ! 0

#(v) =
1

2

⇣
tanh

v

�
+ 1

⌘

holographic quench literature....

Hubeny, MR, Takayanagi (2007)
Hubeny, MR, Tonni (wip)



Profile of the causal wedge in Vaidya AdS

Out[77]=

across shellAdS BTZ

For fixed size of    , causal wedge profile changes in time:A



Quasi-teleological nature of 

-3 -2 -1 1 2 3
tA

1

2

3

4

5

rminXrmin
⌅

tA

For fixed size of     , deepest reach of        monotonically 
increases from AdS value to BTZ value:

A ⌅A

Similarly for       : Note that it starts increasing before �A tA = tshell

�A



Time dependence: contrast       & 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
tA

0.5

1.0

1.5

2.0
rmin

EA

⌅A

�A SA

❖Unlike      , the extremal surface      depends only on spatial 
information.

❖Temporally we see local behaviour:      starts increasing only after the 
perturbation has come into play.              

⌅A EA

SA



Time dependence of SA

v0 ! 0.1 v0 ! 0.5 v0 ! 1

v0 ! "2 v0 ! "1 v0 ! 0

Fig. 5: Minimal surface in Vaidya-AdS (in this 3-d case a geodesic) projected onto r − x slice of the

bulk (x is compact); the radial coordinate r is compactified using tan−1 function, the thick

outer circle represents the global AdS boundary, and the thick (red) inner circle the horizon

radius at the value of v = v0 reached by the geodesic at minimum radius, as labeled.

which is not necessarily a geodesic. Its two orthogonal null vectors are given by

Nµ
± = N

(

µ± (∂v)
µ + (1 + µ± f(r, v)) (∂r)

µ − 1

r2
(v′ + µ± r′) (∂x)

µ

)

, (6.13)

where we have defined

N =
1√
2

√

r2 f(r, v) + r′2

r2 + 2 r′ v′ − v′2 f(r, v)
,

µ± = −
r2 + r′ v′ ∓ r

√

r2 + 2 r′ v′ − v′2 f(r, v)

r2 f(r, v) + r′2
. (6.14)

The expansions for these null vectors are then found to be

θ+ + θ− = − Θ1√
2
√

r2 f(r, v) + r′2 (r2 + 2 r′ v′ − f(r, v) v′2)3/2
,

θ+ − θ− =
Θ2√

2
√

r2 f(r, v) + r′2 (r2 + 2 r′ v′ − f(r, v) v′2)
, (6.15)

where we have defined

Θ1 = −2 r2 r′′ + 2 r′ v′ r2∂rf + 2 r2 f v′′ + r2 v′2 ∂vf − 2 f r r′ v′ + 2 r r′2

+3 v′2 r′2 ∂rf + 2 r′2 v′′ − r′ v′3 f ∂rf − 2 r′ r′′ v′ + r′ v′3 ∂vf,

Θ2 = 2 r2 f + 2 r r′ v′ ∂rf − 2 r r′′ − r f v′2 ∂rf + r v′2 ∂vf + 4 r′2 . (6.16)
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Fig. 6: left: Regularised proper length Lreg as a function of the boundary v∞, for several regions, φ0 =

0.8, 0.9, 1, 1.1, 1.2 in the Vaidya-AdS spacetime (6.12). right: the corresponding prediction

in BTZ from (6.17) .

-2 -1 1 2 3 4
v!

-0.3

-0.2

-0.1

0.1

0.2

0.3

L

Fig. 7: Regularised proper length Lreg as a function of the boundary v∞, for the particular region

φ0 = 1 in the Vaidya spacetime (6.12) (red dots) and the corresponding prediction in BTZ

from (6.17), with a shifted v value (black curve).
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Hubeny, MR, Takayanagi (2007)

❖  Time-sequence of black 
hole formation in the bulk 
modeled by a null shell 
collapse.

❖ The temporal evolution of 
entanglement entropy.



Summary

❖ Conjecture that       is a field theoretic quantity that

๏ provides a bound on the holographic information associated with 

๏ has entropy-like behaviour, without quite being a von Neumann entropy 
(violates strong subadditivity)

๏ It bounds the entanglement entropy from above.

๏ coincides with the entanglement entropy for special choice of 

๏ has intriguing quasi-teleological properties

❖ The bulk causal wedge      is a natural region that can be associated with                         
the region of interest:   

๏ it is the minimal region that is related to & be reconstructable from             .

�A

(A, ⇢A)

(A, ⇢A)

A-priori it seems plausible that �A is some functional of the reduced density matrix ⇢A.

After all, the knowledge of ⇢A is su�cient to compute field theory observables in ⌃A. However,

we will see later that generically �A 6= �Ac , where A

c is the complementary region to A. This

happens even for pure states of the entire system on ⌃B, for which the spectrum of eigenvalues

of ⇢A and ⇢Ac are identical. These observations might lead one to conclude that �A cannot be

determined by knowledge of ⇢A alone,12 which manifestly contradicts the original assertion that

⇢A determines observables in the ⌃A and thence in ⌥A. However, we are overlooking the fact

the entanglement spectrum (i.e., set of eigenvalues) of ⇢A only determines the reduced density

matrix up to unitary transformations. It is therefore possible that we can deduce �A from ⇢A,

though the precise nature of this dependence and an intrinsic field theoretic definition of �A is

an interesting open question which we leave for the future.

2.3 Lightning review of holographic entanglement entropy

The computation of holographic entanglement entropy also requires specification of some region

A on a spatial slice and is defined in terms of the von Neumann entropy of the reduced density

matrix ⇢A, see (1.1). If the entire state of the quantum field theory is static, then the reduced

density matrix is time-independent; relatedly the bulk holographic dual spacetime is also static.

For these situations, we can compute the entanglement entropy using the minimal surface pre-

scription of [2]. However, we can be more general, and consider states that have non-trivial time
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Discussion

❖ Bulk surfaces that are sensitive to field theory phases?

๏ Flux sensitive surfaces that can distinguish between fractionalized and 
cohesive phases.

❖  Surfaces that can probe details of matter distribution in the bulk?

❖ Other causal constructions: complements of unions of various causal sets?

Hartnoll, Radicevic (2012)

❖  Field theory interpretation of      and the causal wedge     ?

❖ Utility in setting up a reconstruction algorithm? With knowledge of      for 
various sub-regions can we recover all of the bulk geometry in      ?  
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❖ Formulation of bulk locality & causality more directly from field theory?


